Evolutionary Design of Neural
Networks

Motivation
Evolutionary training
Evolutionary design of the architecture

Evolutionary design of the learning rules

Metaheuristic Algorithms - Lecture
13

Evolutionary Design of Neural
Networks

Neural networks design consists of at least two steps:
= Choice of the architecture (network topology + connectivity)
» |t has an influence on the network ability to solve the problem
» Usually is a trial-and-error process
= Training of the network
= |tis an optimization problem = find the parameters (weights) which
minimize the error on the training set
» The classical methods (e.g. gradient-based methods as is
BackPropagation) have some drawbacks :
» Risk of getting stuck in local minima
» They cannot be applied if
» the activation functions are not differentiable

= the error function cannot be expressed directly as a function of
the parameters (e.g. for recurrent networks)

Metaheuristic Algorithms - Lecture 2
13

Evolutionary Design of Neural
Networks

ldea: use an evolutionary process

Human Elephant _
X \'1

= |nspired by the biological evolution of the
brain

= The system is not explicitly designed but Dolphin Gorilla -
its structure derives by an evolutionary ¥ '*‘“iu
process involving a population of S
encoded neural networks

= Genotype = the network codification
(structural description)

= Phenotype = the network itself,
which can be simulated (functional
description)

Metaheuristic Algorithms - Lecture 3
13

Evolutionary Design of Neural
Networks

Variants

= Evolutionary training:
= Estimate the weights using a global optimization metaheuristic

= |t can be used for networks with discontinuous activation functions
and for recurrent networks

= Evolving architecture:

= Evolve the number of units, types of activation functions,
connections

= Evolving the learning process:
= Evolve adjustment rules in the training process

Metaheuristic Algorithms - Lecture
13

Evolutionary Training

= Use an evolutionary
algorithm to solve the
problem of minimizing the
mean squared error on the
training set

» Parameters: synaptic weights
and biases

Training set :{(x},d%),...., (x5, d ")}
W ={W31, Wap, Wag, Waq, Wyp, Wyo,

. 1<
Error function :E(W)=—=> (d' —y')?
|—|Z=1: oWy, Wy, Wegh

Metaheuristic Algorithms - Lecture 5
13

Evolutionary Training

Evolutionary algorithm components:

Encoding: each element of the population is a real vector
containing all adaptive parameters (similar to the case of
evolution strategies)

Evolutionary operators: typical to evolution strategies or
evolutionary programming or other population-based
metaheuristics for global optimization (e.g. particle swarm
optimization, differential evolution)

Evaluation: the quality of an element depends on the mean
squared error (MSE) or another loss function computed for the
training/validation set; an element is better if the MSE/loss
function is smaller

Metaheuristic Algorithms - Lecture
13

Evolutionary Training

Applications:

= For networks with non-differentiable or non-continuous
activation functions

* For recurrent networks (the output value cannot be explicitely
computed from the input value, thus the derivative based
learning algorithms cannot be applied)

Drawbacks:

= More costly than traditional non-evolutionary training
* |tis not appropriate for fine tuning the parameters
Hybrid versions:

= Use an EA to explore the parameter space and a local search
technique to refine the values of the parameters

Metaheuristic Algorithms - Lecture
13

Evolutionary Training

Remark. EAs can also be used to preprocess the training set
« Selection of attributes

« Selection of examples

Metaheuristic Algorithms - Lecture
13

Evolutionary Pre-processing

Selection of attributes (for classification problems)

- Motivation: if the number of attributes is large the training is
difficult

« Itis important when some of the attributes are not relevant for
the classification task

* The aim is to select the relevant attributes

« For initial data having N attributes the encoding could be a
vector of N binary values (0 — not selected, 1 — selected)

- The evaluation is based on training the network for the selected
attributes (this corresponds to a wrapper-like technique of
attributes selection)

Metaheuristic Algorithms - Lecture
13

Evolutionary Pre-processing

Example: identify patients with cardiac risk

Total set of attributes:

(age, weight, height, body mass index, blood pressure,
cholesterol, glucose level)

Population element: (1,0,0,1,1,1,0)

Corresponding subset of attributes:
(age, body mass index, blood pressure, cholesterol)

Evaluation: train the network using the subset of selected
attributes and compute the accuracy; the fitness value will be
proportional to the accuracy

Metaheuristic Algorithms - Lecture
13

10

Evolutionary Pre-processing

Remarks:

« This technique can be applied also for non neural classifiers (ex:
Nearest-Neigbhor)

» |tis called “wrapper based attribute selection”

« the optimization problem can be formulated as a multi-objective
optimization problem aiming to:
— Maximize the accuracy
— Minimize the number of selected features

« Besides GAs, there are various metaheuristics which have been
successfully applied for feature selection: PSO, GP, DE,
memetic algorithms etc.

[B. Xue et al, A Survey of EC Approaches for Feature Selection, IEEE Trans EC,
2016]

Metaheuristic Algorithms - Lecture 11
13

Evolutionary Pre-processing

Selection of examples

- Motivation: if the training set is large the training process is
costly and there is a higher risk of overfitting

« |tis similar to attribute selection
« Binary encoding (O — not selected, 1 — selected)

« The evaluation is based on training the network (using any
training algorithm) for the subset specified by the binary
encoding

Metaheuristic Algorithms - Lecture 12
13

Evolving architecture

Elements which can be evolved:
= Number of units

= Connectivity

= Activation function type

Encoding variants:
= Direct
= Indirect

Metaheuristic Algorithms - Lecture
13

13

Evolving architecture

Direct encoding: each element of the architecture appears explicitly in the
encoding

* Network architecture = oriented graph
* The network can be encoded by the adjacency matrix

Rmk. For feedforward networks the units can be numbered such that the unit
| receives signals only from units j, with the property that j<i => inferior
triangular matrix

Adjacency matrix

o 0 0 0 O Chromosome

. “ 0 0 0 0 |

Architecture)9,0 =|7 | o o|=> OLLLLD
o 1 1 1 0

0 0 1 0
— [000y (0.0,1,0,1.0,0,0,0.1.0,1,1,1.0,0)
0 1 0 1
1T 1 0 0
Metaheuristic Algorithms - Lecture 14

13

Evolving architecture

Operators
= Crossover similar to that used for genetic algorithms

(0
""
4o
(1,0,1]1,0,1) 0,1,1,1,0.1) \ o
Po=0
(2

(0,1.141,1,1) (1,0,I,1,1,1)
—>

Metaheuristic Algorithms - Lecture
13

15

Evolving architecture

Operators:
= Mutation similar to that used for genetic algorithms

° o — (10110]1) = ((00LLL]) =)o’o

Metaheuristic Algorithms - Lecture 16
13

Evolving architecture

Evolve the number of units and connections
Hypothesis: N — maximal number of units

Encoding:

* Binary vector with N elements
— 0: inactivated unit
— 1. activ unit

« Adjacency matrix NxN

— For a zero element in the unit vector the corresponding row and
column in the matrix are ignored in the forward step.

Metaheuristic Algorithms - Lecture
13

17

Evolving architecture

Evolving the activation function type:
Encoding :
* Binary vector with N elements
— 0: inactivated unit
— 1: active unit with activation function of type 1 (ex: tanh)
— 2: active unit with activation function of type 2 (ex: logistic)
— 3. active unit with activation function of type 3 (ex: linear)

Evolution of weights
* The adjacency matrix is replaced with the matrix of weights

— 0: no connection
— <>0: weight value

Metaheuristic Algorithms - Lecture 18
13

Evolving architecture

Evaluation:

« The network is trained
» The training error is estimated (E,)
« The validation error is estimated (E,)

« The fitness is inverse proportional to:
— Training error
— Validation error
— Network size

Metaheuristic Algorithms - Lecture
13

19

Evolving architecture

Drawbacks of the direct encoding:

It is not scalable

Can lead to different representations of the same network
(permutation problem)

It is not appropriate for modular networks

o0 o

(0,1,0,1,1,0,0,0,1.1) (0,1,1,1,0,0,0,0,1,1)

Metaheuristic Algorithms - Lecture
13

20

Evolving architecture

Indirect encoding:

Biological motivation

Parametric encoding
— The network is described by a set of characteristics (fingerprint)

— Particular case: feedforward network with variable number of
hidden units

— The fingerprint is instantiated as a network only during the
evaluation stage

Rules-based encoding

Metaheuristic Algorithms - Lecture
13

21

Evolving architecture

« Parametric encoding

Network param ‘ Layer 1 Layer 2

I

Nr layers ‘ Training param

(description of each layer)

Nr of units| Layer | Description of connectivity (density, receptive fields etc)

Instantiation: random choice of connections according to the
specified characteristics

Metaheuristic Algorithms - Lecture 22
13

Evolving architecture

. I Operators:
xample: .
P Mutation: change the network
characteristics
Recombination: combine characteristics of
layers
Fully connected layers
| — —> Fully Y
N0 N2 N
L. Sparsely connected layers
Pa‘r/a{‘m. BP Info. layer 2
20109 NI 0100% 100%0 N2 015% 80% 50% 1 100% 100% 0
A Info. layer 1
Number of Iayers Metaheuristic Algorithms - Lecture 23

13

Evolving architecture

Rule-based encoding (similar to Grammar Evolution)

General rule . (s11 S12)
S21 0 S22

Examples:

. A B i a b b b a a d
b%(c D)" A—>(m ﬂ), B—:r(b n-.)" C_}(a c), D—:-(a d)"

00 , 10 00 . 0 1
oo/l ""Voo) ““Vi1o) “7VLool

Structure of an element:

Metaheuristic Algorithms - Lecture
13

24

Evolving architecture

Deriving an architecture:

b
b

i
1l
o
(s
vy
S
l
e
DR R R
B B
T o T = R =
——
1l

[000 001010
o000 0000
o0 0 0 1 000
o000 0000
s
1 0000001 @ o o
o000 0000
o000 0 001
\0 010000 0)
Metaheuristic Algorithms - Lecture 25

13

Evolving architecture

Drawback of separate evolution of the architecture and weights:

Since the behaviour of an architecture depends on the weights
values, at different evaluations steps, same architecture can have
various fitness values (caused by different training processes) -
thus the fitness is noisy

Solutions:

Repeat the training of the same architecture and compute an
averaged fitness => high computational costs

Simultaneous evolution of the architecture and weights (it will
ensure a one-to-one mapping between the genotype — the
architecture - and the phenotype — the trained network)

Metaheuristic Algorithms - Lecture 26
13

EPNet

Exemplu: EPNet = evolutionary design of feedforward neural networks
using principles of evolutionary programming [Xin Yao,1999]

| | _-BP+SA

S L]
Hmm::?:;‘j;}iliﬂaﬁm Hybrid training
I] B Successful
BP @{mm; ves_ =error decrease
b k Initial partial traimin The refﬁ-oved nodes I L
(aC ﬁ hidden node
A l aré randomly selected | deletion
propag a’r_l_on) : /M Successful=better
Rank-based selection i/ than the worst
no
- v Network from the
. COTIMETI O ﬂl{:lu[ju]" population
Mutations "Q‘Ef'—'“f“”
: i AL
—— connection/node |
— % N n"_.'."-.._______ _ j::l_.{li[iu-r.
Oibtain the new -‘""-;.-1qu -- .
generation . e ¥
— g ¥ES)
Further training —=
Metaheuristic Algorithms - Lecture 27

13

EPNet

Network encoding:
list of hidden units + Connectivity matrix + Weight matrix

Example: each neuron (except for the first m which are input neurons) is connected to all
previous neurons [X. Yao — Evolving Artificial Neural Networks, 1999]

WMIH Hn, 1

m+M+1 m+MN+n

Voo

1.r| TII
Chutput
vietdalieur istc AIyur s - Lecuwie 28

13

EPNet

Architectures evolved by EPNet for the parity problem

Metaheuristic Algorithms - Lecture
13

29

NEAT

NEAT = NeuroEvolution of Augmenting Topologies
(http://nn.cs.utexas.edu/?neat)

» Direct encoding:
— List of nodes (neurons)
« Type of the nodes: input, hidden, output, bias
— List of connections; for each connection:
* In-node
Out-node
Connection weight
Activation bit (O — active connection, 1- disabled connection)

Innovation value

Metaheuristic Algorithms - Lecture 30
13

NEAT

NEAT = NeuroEvolution of Augmenting Topologies
(http://nn.cs.utexas.edu/?neat)

« The initial population consists of simple architectures (only input and
output layers)

 Mutation variants:

— Node adding: insert a new node between two already connected
nodes (the old connection is removed and two other
connections are added: the connection entering the new node
has the weight =1, the connection going out from the new node
has the weight of the removed connection)

— Connection adding: a new connection (with a random weight) is
added between two previously unconnected nodes

Metaheuristic Algorithms - Lecture 31
13

NEAT

Mutation example: [K.Stanley, R. Miikulainen — Evolving Neural
Networks through Augmenting Topologies, Evol.Comput. 2002]

1|2 |3 41516 112 |3 4|56
|—>4 P-4 [3=>42—>55>4[1->5 | [|->4 p—=4 3724|2554 1—>5 3>
DIS DIS

Mutate Add Connection

1 2 3 4 5 6 1 2 3 4 5 6 3
|—=4 2—=4|3—=4|2—=5|5—"=>4|1—=5| [|—=4 2—=4|3—=4|2—=55—=4|1=5|3—=6|6—>
DIS DIS | DIS

Mutate Add Node

Metaheuristic Algorithms - Lecture
13

NEAT

Crossover:
2 parents - 1 offspring
Similar to uniform crossover used in genetic algorithms

Step 1: identify the matching genes from the two parents based on the
Innovation values

« Two genes match if they have the same innovation value (this value
IS assigned when the gene is created and is specified in the
diagram)

« The non-matching genes are disjoint or in excess genes

Metaheuristic Algorithms - Lecture 33
13

NEAT

Crossover:
2 parents = 1 offspring
Similar to uniform crossover used in genetic algorithms

Step 2: offspring construction

« For matching genes the offspring will receive the gene from one of
the parents (randomly selected)

* The in excess/disjoint genes are transferred into the ofspring either
based on a probabilistic decision or based on the fithess of the
parents (the gene its transferred if it belongs to the better parent)

Metaheuristic Algorithms - Lecture 34
13

Crossover example

(Stanley,
Miikulainen,
2002)

NEAT

35

Parentl Parent2
1 2 3 4 3 § 1 2 3 4 5 6 7 L 10
124 | 2=d | 3—=4 | 2—=5 | 5—=4| 1=5 124 | 2=4 | =4 | 2—=5 | S5=d | 5—=0]| 6—=4]| 3—=5] 1-=6
DISAB DISAB ISAH
disjoint
1 z 3 4 5 8
Parentl | 1 -y 2—=4 | 3—4 | 2—=5 | 514 1%
DIS:
) 9 10
Parent2 3=3 | 16
exCessexcess
. 8] 10
Offspring 1s| 3zl 126
Metaheuristic Algorithms - Lecture

13

Evolving learning rules

General form of a local adjustement rule

W, (K +1) = o(w; (K), X, Vi, X, Y, 6,0, @)

X;,X; — Input signals

Yi,y; — output signals

a — control parameters (ex: learning rate)
0;,0; — error signal

Example: BackPropagation

w; (K+1) =w; (k) +70;y,

Metaheuristic Algorithms - Lecture
13

36

Evolving learning rules

Elements which can be evolved:

« Parameters of the learning process (ex: learning rate, momentum
coefficient)

« The adjusting expression (see Genetic Programming)

Evaluation:
« Train networks using the corresponding rule

Drawback: very high cost

Metaheuristic Algorithms - Lecture 37
13

Evolutionary Deep Neural Networks

M.J.Shafiee, A. Mishra, and A. Wong - Deep Learning with Darwin:
Evolutionary Synthesis of Deep Neural Networks, 2016

DeepNN = neural networks with many layers

Motivation: evolve efficient Deep NN (instead of trying to compress
existing DeepNN in order to make them more efficient

Main ideas:

« the deep neural networks architecture are encoded using
synaptic probability models (interpreted as network DNA)

 new networks are synthesized using these probability models
which are further trained

Implemented mechanisms: heredity, natural selection, random
mutation

Metaheuristic Algorithms - Lecture 38
13

Evolutionary Deep Neural Networks

M.J.Shafiee, A. Mishra, and A. Wong - Deep Learning with Darwin:
Evolutionary Synthesis of Deep Neural Networks, 2016

Particularities:

« usage of the exponential distribution as probability model for
synaptic weights

* Impose constraints on the number of synapses (e.g. an offspring
has at most 50% of the synapses of its parent).

Metaheuristic Algorithms - Lecture 39
13

Deep Neuroevolution

R. Miikkulainen- Evolving Deep Neural Networks, 2017

= Deep NEAT = extension of NEAT to evolve deep topologies and
hyperparameters

» same idea as in NEAT, i.e. the initial population consists of simple
architectures which are further extended through mutation and crossover (new
nodes and edges are added)

= it uses a speciation mechanism: the population is divided into subpopulations
(species) based on a similarity metric

*Main difference between NEAT and DeepNEAT
*"In NEAT a node corresponds to a neuron

*In Deep NEAT a node corresponds to a layer and contains a table of
values corresponding to hyperparameters

Metaheuristic Algorithms - Lecture 40
13

Deep Neuroevolution

R. Miikkulainen- Evolving Deep Neural Networks, 2017

= Examples of hyperparameters associated to a node (which defines a layer):
= layer type: convolutional, fully connected, recurrent

= layer properties: number of neurons, activation function, kernel size,
number of filters

» Remark: the edges in the chromosome do not have associated weights
(as in NEAT) but they specify only how are connected the layers

® Examples of global parameters: learning rate, training algorithm, shift and scaling
sizes

® |nstantiation of a network

= The chromosome graph is traversed and each node is replaced with the
corresponding layer

» The constructed DNN is then trained

» The performance of DNN after training is used as fitness value

Metaheuristic Algorithms - Lecture 41
13

Deep Neuroevolution

R. Miikkulainen- Evolving Deep Neural Networks, 2017

= Remark: the most successful DNN (e.g. GoogleLeNet, ResNet, AlexNet, SegNet
etc) consist of several very similar modules (as structure)

= CoDeepNEAT = Coevolution DeepNEAT = variant of DeepNEAT characterized by:

= two populations of modules and blueprints are separately evolved

" Remark:

= each blueprint chromosome is a graph where each node is a reference
(pointer) to a particular module species

» each module chromosome is a graph that represents a small DNN

» During instantiation each node in a blueprint chromosome is replaced with a DNN
randomly selected from the species referred by the node

Metaheuristic Algorithms - Lecture 42
13

Deep Neuroevolution

R. Miikkulainen- Evolving Deep Neural Networks, 2017

= Evaluation:

= to each blueprint and module chromosome is associated the average
performance score obtained by the DNNs which contain that blueprint or module

= during evolution the instantiated networks are trained for a small number of
epochs (e.g. less than 10)

Metaheuristic Algorithms - Lecture 43
13

