
Metaheuristic Algorithms - Lecture

13

1

Evolutionary Design of Neural

Networks

▪ Motivation

▪ Evolutionary training

▪ Evolutionary design of the architecture

▪ Evolutionary design of the learning rules

Metaheuristic Algorithms - Lecture

13

2

Evolutionary Design of Neural

Networks

Neural networks design consists of at least two steps:

▪ Choice of the architecture (network topology + connectivity)

▪ It has an influence on the network ability to solve the problem

▪ Usually is a trial-and-error process

▪ Training of the network

▪ It is an optimization problem = find the parameters (weights) which

minimize the error on the training set

▪ The classical methods (e.g. gradient-based methods as is

BackPropagation) have some drawbacks :

▪ Risk of getting stuck in local minima

▪ They cannot be applied if

▪ the activation functions are not differentiable

▪ the error function cannot be expressed directly as a function of

the parameters (e.g. for recurrent networks)

Metaheuristic Algorithms - Lecture

13

3

Evolutionary Design of Neural

Networks

Idea: use an evolutionary process

▪ Inspired by the biological evolution of the

brain

▪ The system is not explicitly designed but

its structure derives by an evolutionary

process involving a population of

encoded neural networks

▪ Genotype = the network codification

(structural description)

▪ Phenotype = the network itself,

which can be simulated (functional

description)

Metaheuristic Algorithms - Lecture

13

4

Evolutionary Design of Neural

Networks

Variants

▪ Evolutionary training:

▪ Estimate the weights using a global optimization metaheuristic

▪ It can be used for networks with discontinuous activation functions
and for recurrent networks

▪ Evolving architecture:

▪ Evolve the number of units, types of activation functions,
connections

▪ Evolving the learning process:

▪ Evolve adjustment rules in the training process

Metaheuristic Algorithms - Lecture

13

5

Evolutionary Training

▪ Use an evolutionary

algorithm to solve the

problem of minimizing the

mean squared error on the

training set

2

1

11

)(
1

 :functionError

)},(),....,,{(:set Training

l
L

l

l

LL

yd
L

E(W)

dxdx

 


▪ Parameters: synaptic weights

and biases

},...,,...,

,,,,,,{

76717

404241303231

www

wwwwwwW 

Metaheuristic Algorithms - Lecture

13

6

Evolutionary Training

Evolutionary algorithm components:

▪ Encoding: each element of the population is a real vector
containing all adaptive parameters (similar to the case of
evolution strategies)

▪ Evolutionary operators: typical to evolution strategies or
evolutionary programming or other population-based
metaheuristics for global optimization (e.g. particle swarm
optimization, differential evolution)

▪ Evaluation: the quality of an element depends on the mean
squared error (MSE) or another loss function computed for the
training/validation set; an element is better if the MSE/loss
function is smaller

Metaheuristic Algorithms - Lecture

13

7

Evolutionary Training

Applications:

▪ For networks with non-differentiable or non-continuous

activation functions

▪ For recurrent networks (the output value cannot be explicitely

computed from the input value, thus the derivative based

learning algorithms cannot be applied)

Drawbacks:

▪ More costly than traditional non-evolutionary training

▪ It is not appropriate for fine tuning the parameters

Hybrid versions:

▪ Use an EA to explore the parameter space and a local search

technique to refine the values of the parameters

Metaheuristic Algorithms - Lecture

13

8

Evolutionary Training

Remark. EAs can also be used to preprocess the training set

• Selection of attributes

• Selection of examples

Metaheuristic Algorithms - Lecture

13

9

Evolutionary Pre-processing
Selection of attributes (for classification problems)

• Motivation: if the number of attributes is large the training is
difficult

• It is important when some of the attributes are not relevant for
the classification task

• The aim is to select the relevant attributes

• For initial data having N attributes the encoding could be a
vector of N binary values (0 – not selected, 1 – selected)

• The evaluation is based on training the network for the selected
attributes (this corresponds to a wrapper-like technique of
attributes selection)

Metaheuristic Algorithms - Lecture

13

10

Evolutionary Pre-processing

Example: identify patients with cardiac risk

Total set of attributes:

(age, weight, height, body mass index, blood pressure,

cholesterol, glucose level)

Population element: (1,0,0,1,1,1,0)

Corresponding subset of attributes:

(age, body mass index, blood pressure, cholesterol)

Evaluation: train the network using the subset of selected

attributes and compute the accuracy; the fitness value will be

proportional to the accuracy

Metaheuristic Algorithms - Lecture

13

11

Evolutionary Pre-processing

Remarks:

• This technique can be applied also for non neural classifiers (ex:

Nearest-Neigbhor)

• It is called “wrapper based attribute selection”

• the optimization problem can be formulated as a multi-objective

optimization problem aiming to:

– Maximize the accuracy

– Minimize the number of selected features

• Besides GAs, there are various metaheuristics which have been

successfully applied for feature selection: PSO, GP, DE,

memetic algorithms etc.

[B. Xue et al, A Survey of EC Approaches for Feature Selection, IEEE Trans EC,

2016]

Metaheuristic Algorithms - Lecture

13

12

Evolutionary Pre-processing

Selection of examples

• Motivation: if the training set is large the training process is
costly and there is a higher risk of overfitting

• It is similar to attribute selection

• Binary encoding (0 – not selected, 1 – selected)

• The evaluation is based on training the network (using any
training algorithm) for the subset specified by the binary
encoding

Metaheuristic Algorithms - Lecture

13

13

Evolving architecture

Elements which can be evolved:

▪ Number of units

▪ Connectivity

▪ Activation function type

Encoding variants:

▪ Direct

▪ Indirect

Metaheuristic Algorithms - Lecture

13

14

Evolving architecture
Direct encoding: each element of the architecture appears explicitly in the

encoding

• Network architecture = oriented graph

• The network can be encoded by the adjacency matrix

Rmk. For feedforward networks the units can be numbered such that the unit
i receives signals only from units j, with the property that j<i => inferior
triangular matrix

Architecture

Adjacency matrix
Chromosome

Metaheuristic Algorithms - Lecture

13

15

Evolving architecture

Operators

▪ Crossover similar to that used for genetic algorithms

Metaheuristic Algorithms - Lecture

13

16

Evolving architecture

Operators:

▪ Mutation similar to that used for genetic algorithms

Metaheuristic Algorithms - Lecture

13

17

Evolving architecture

Evolve the number of units and connections

Hypothesis: N – maximal number of units

Encoding:

• Binary vector with N elements

– 0: inactivated unit

– 1: activ unit

• Adjacency matrix NxN

– For a zero element in the unit vector the corresponding row and

column in the matrix are ignored in the forward step.

Metaheuristic Algorithms - Lecture

13

18

Evolving architecture

Evolving the activation function type:

Encoding :

• Binary vector with N elements

– 0: inactivated unit

– 1: active unit with activation function of type 1 (ex: tanh)

– 2: active unit with activation function of type 2 (ex: logistic)

– 3: active unit with activation function of type 3 (ex: linear)

Evolution of weights

• The adjacency matrix is replaced with the matrix of weights

– 0: no connection

– <>0: weight value

Metaheuristic Algorithms - Lecture

13

19

Evolving architecture

Evaluation:

• The network is trained

• The training error is estimated (Et)

• The validation error is estimated (Ev)

• The fitness is inverse proportional to:

– Training error

– Validation error

– Network size

Metaheuristic Algorithms - Lecture

13

20

Evolving architecture

Drawbacks of the direct encoding:

• It is not scalable

• Can lead to different representations of the same network

(permutation problem)

• It is not appropriate for modular networks

Metaheuristic Algorithms - Lecture

13

21

Evolving architecture

Indirect encoding:

• Biological motivation

• Parametric encoding

– The network is described by a set of characteristics (fingerprint)

– Particular case: feedforward network with variable number of
hidden units

– The fingerprint is instantiated as a network only during the
evaluation stage

• Rules-based encoding

Metaheuristic Algorithms - Lecture

13

22

Evolving architecture
• Parametric encoding

Instantiation: random choice of connections according to the

specified characteristics

Network param Layer 1 Layer 2

Nr layers Training param

Nr of units Layer Description of connectivity (density, receptive fields etc)

(description of each layer)

…

Metaheuristic Algorithms - Lecture

13

23

Evolving architecture

Example:
Operators:

Mutation: change the network

characteristics

Recombination: combine characteristics of

layers

Param. BP

Info. layer 1

Info. layer 2

Number of layers

Fully connected layers

Sparsely connected layers

Metaheuristic Algorithms - Lecture

13

24

Evolving architecture
Rule-based encoding (similar to Grammar Evolution) :

General rule

Examples:

Structure of an element:

Metaheuristic Algorithms - Lecture

13

25

Evolving architecture
Deriving an architecture:

Metaheuristic Algorithms - Lecture

13

26

Evolving architecture

Drawback of separate evolution of the architecture and weights:

• Since the behaviour of an architecture depends on the weights

values, at different evaluations steps, same architecture can have

various fitness values (caused by different training processes) -

thus the fitness is noisy

Solutions:

• Repeat the training of the same architecture and compute an

averaged fitness => high computational costs

• Simultaneous evolution of the architecture and weights (it will

ensure a one-to-one mapping between the genotype – the

architecture - and the phenotype – the trained network)

Metaheuristic Algorithms - Lecture

13

27

EPNet
Exemplu: EPNet = evolutionary design of feedforward neural networks

using principles of evolutionary programming [Xin Yao,1999]

BP

(back

propagation)

BP+SA

Successful

=error decrease

The removed nodes

are randomly selected

Successful=better

than the worst

Network from the

population

Metaheuristic Algorithms - Lecture

13

28

EPNet
Network encoding:

list of hidden units + Connectivity matrix + Weight matrix

Example: each neuron (except for the first m which are input neurons) is connected to all
previous neurons [X. Yao – Evolving Artificial Neural Networks, 1999]

Metaheuristic Algorithms - Lecture

13

29

EPNet
Architectures evolved by EPNet for the parity problem

n=7 n=8

Metaheuristic Algorithms - Lecture

13

30

NEAT
NEAT = NeuroEvolution of Augmenting Topologies

(http://nn.cs.utexas.edu/?neat)

• Direct encoding:

– List of nodes (neurons)

• Type of the nodes: input, hidden, output, bias

– List of connections; for each connection:

• In-node

• Out-node

• Connection weight

• Activation bit (0 – active connection, 1- disabled connection)

• Innovation value

Metaheuristic Algorithms - Lecture

13

31

NEAT
NEAT = NeuroEvolution of Augmenting Topologies

(http://nn.cs.utexas.edu/?neat)

• The initial population consists of simple architectures (only input and

output layers)

• Mutation variants:

– Node adding: insert a new node between two already connected

nodes (the old connection is removed and two other

connections are added: the connection entering the new node

has the weight =1, the connection going out from the new node

has the weight of the removed connection)

– Connection adding: a new connection (with a random weight) is

added between two previously unconnected nodes

Metaheuristic Algorithms - Lecture

13

32

NEAT
Mutation example: [K.Stanley, R. Miikulainen – Evolving Neural

Networks through Augmenting Topologies, Evol.Comput. 2002]

Metaheuristic Algorithms - Lecture

13

33

NEAT
Crossover:

2 parents  1 offspring

Similar to uniform crossover used in genetic algorithms

Step 1: identify the matching genes from the two parents based on the

innovation values

• Two genes match if they have the same innovation value (this value

is assigned when the gene is created and is specified in the

diagram)

• The non-matching genes are disjoint or in excess genes

Metaheuristic Algorithms - Lecture

13

34

NEAT
Crossover:

2 parents  1 offspring

Similar to uniform crossover used in genetic algorithms

Step 2: offspring construction

• For matching genes the offspring will receive the gene from one of

the parents (randomly selected)

• The in excess/disjoint genes are transferred into the ofspring either

based on a probabilistic decision or based on the fitness of the

parents (the gene its transferred if it belongs to the better parent)

Metaheuristic Algorithms - Lecture

13

35

NEAT
Crossover example

(Stanley,

Miikulainen,

2002)

Metaheuristic Algorithms - Lecture

13

36

Evolving learning rules
General form of a local adjustement rule

),,,,,,),(()1( jijjiiijij yxyxkwkw 

xi,xj – input signals

yi,yj – output signals

α – control parameters (ex: learning rate)

δi,δj – error signal

Example: BackPropagation

jiijij ykwkw )()1(

Metaheuristic Algorithms - Lecture

13

37

Evolving learning rules

Elements which can be evolved:

• Parameters of the learning process (ex: learning rate, momentum

coefficient)

• The adjusting expression (see Genetic Programming)

Evaluation:

• Train networks using the corresponding rule

Drawback: very high cost

Metaheuristic Algorithms - Lecture

13

38

Evolutionary Deep Neural Networks

M.J.Shafiee, A. Mishra, and A. Wong - Deep Learning with Darwin:

Evolutionary Synthesis of Deep Neural Networks, 2016

DeepNN = neural networks with many layers

Motivation: evolve efficient Deep NN (instead of trying to compress

existing DeepNN in order to make them more efficient

Main ideas:

• the deep neural networks architecture are encoded using

synaptic probability models (interpreted as network DNA)

• new networks are synthesized using these probability models

which are further trained

Implemented mechanisms: heredity, natural selection, random

mutation

Metaheuristic Algorithms - Lecture

13

39

Evolutionary Deep Neural Networks

M.J.Shafiee, A. Mishra, and A. Wong - Deep Learning with Darwin:

Evolutionary Synthesis of Deep Neural Networks, 2016

Particularities:

• usage of the exponential distribution as probability model for

synaptic weights

• Impose constraints on the number of synapses (e.g. an offspring

has at most 50% of the synapses of its parent).

Metaheuristic Algorithms - Lecture

13

40

Deep Neuroevolution

R. Miikkulainen- Evolving Deep Neural Networks, 2017

▪ Deep NEAT = extension of NEAT to evolve deep topologies and

hyperparameters

▪ same idea as in NEAT, i.e. the initial population consists of simple

architectures which are further extended through mutation and crossover (new

nodes and edges are added)

▪ it uses a speciation mechanism: the population is divided into subpopulations

(species) based on a similarity metric

▪Main difference between NEAT and DeepNEAT

▪In NEAT a node corresponds to a neuron

▪In Deep NEAT a node corresponds to a layer and contains a table of

values corresponding to hyperparameters

41

Deep Neuroevolution

R. Miikkulainen- Evolving Deep Neural Networks, 2017

▪ Examples of hyperparameters associated to a node (which defines a layer):

▪ layer type: convolutional, fully connected, recurrent

▪ layer properties: number of neurons, activation function, kernel size,

number of filters

▪ Remark: the edges in the chromosome do not have associated weights

(as in NEAT) but they specify only how are connected the layers

▪ Examples of global parameters: learning rate, training algorithm, shift and scaling

sizes

▪ Instantiation of a network

▪ The chromosome graph is traversed and each node is replaced with the

corresponding layer

▪ The constructed DNN is then trained

▪ The performance of DNN after training is used as fitness value
Metaheuristic Algorithms - Lecture

13

42

Deep Neuroevolution

R. Miikkulainen- Evolving Deep Neural Networks, 2017

▪ Remark: the most successful DNN (e.g. GoogleLeNet, ResNet, AlexNet, SegNet

etc) consist of several very similar modules (as structure)

▪ CoDeepNEAT = Coevolution DeepNEAT = variant of DeepNEAT characterized by:

▪ two populations of modules and blueprints are separately evolved

▪ Remark:

▪ each blueprint chromosome is a graph where each node is a reference

(pointer) to a particular module species

▪ each module chromosome is a graph that represents a small DNN

▪ During instantiation each node in a blueprint chromosome is replaced with a DNN

randomly selected from the species referred by the node

Metaheuristic Algorithms - Lecture

13

43

Deep Neuroevolution

R. Miikkulainen- Evolving Deep Neural Networks, 2017

▪ Evaluation:

▪ to each blueprint and module chromosome is associated the average

performance score obtained by the DNNs which contain that blueprint or module

▪ during evolution the instantiated networks are trained for a small number of

epochs (e.g. less than 10)

Metaheuristic Algorithms - Lecture

13

