
1/22

Constraints Handling in Optimization with
Metaheuristic Algorithms
(support for Lecture 12)

Daniela Zaharie

D. Zaharie Constraints Handling 1 / 22

2/22

Motivation

I Most of real world optimization problems are constrained

I Types of constraints

I Bound constraints: aj ≤ xj ≤ bj for j = 1, n
I Inequality constraints: gi (x) ≤ 0 for i = 1, p
I Equality constraints: hi (x) = 0 for i = 1, q (usually transformed in |hi (x)| ≤ ε)

D. Zaharie Constraints Handling 2 / 22

2/22

Motivation

I Most of real world optimization problems are constrained

I Types of constraints

I Bound constraints: aj ≤ xj ≤ bj for j = 1, n
I Inequality constraints: gi (x) ≤ 0 for i = 1, p
I Equality constraints: hi (x) = 0 for i = 1, q (usually transformed in |hi (x)| ≤ ε)

D. Zaharie Constraints Handling 2 / 22

3/22

Motivation

A simple example: f (x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2)2, x1, x2 ∈ [−5, 5]

-5 0 5

-5
0

5

0

200

400

600

800

-4 -2 0 2 4

-4

-2

0

2

4

I Where is (are) the optimum (optima)?

D. Zaharie Constraints Handling 3 / 22

4/22

Motivation

A simple example: f (x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2)2, x1, x2 ∈ [−5, 5]

-5 0 5

-5
0

5

0

200

400

600

800

-4 -2 0 2 4

-4

-2

0

2

4

I What about the case when the feasible region is smaller (e.g. [0, 4]× [−1, 4]
instead of [−5, 5]× [−5, 5])?

D. Zaharie Constraints Handling 4 / 22

5/22

Motivation

A simple example: f (x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2)2, x1, x2 ∈ [−5, 5]

-5 0 5

-5
0

5

0

200

400

600

800

-4 -2 0 2 4

-4

-2

0

2

4

I Global unfeasible optima (red points): f (−3.59,−1.89) = 0.00032,
f (−3.04, 1.74) = 0.00049

I Feasible optimum (blue point): f (3.29, 0.08) = 10.87

I The search should be directed toward the feasible region defined by the bound
constraints

D. Zaharie Constraints Handling 5 / 22

6/22

Outline

I Overview of constraint handling methods

I penalty functions
I feasibility rules
I stochastic ranking
I ε-constraints

I Particular methods for handling bound constraints

I resampling
I random reinitialization
I projection
I reflection

D. Zaharie Constraints Handling 6 / 22

7/22

Overview of constraint handling methods

Constrained optimization problems

find x which minimizes f (x) subject to

I aj ≤ xj ≤ bj (bound constraints)

I gi (x) ≤ 0, i = 1, p (inequality constraints)

I hi (x) = 0, i = 1, q (equality constraints)

Main approaches:

I Search only the feasible region (e.g. start with a feasible element and keep the
constraints satisfied)

I rather easy for bound constraints
I for general constraints it might be difficult even to find initial feasible positions

I Allow the search outside the feasible region but favor the feasible or almost feasible
elements

I Question: How can be decided that an element is almost feasible?
I Answer: By estimating the amount of violated constraints

D. Zaharie Constraints Handling 7 / 22

7/22

Overview of constraint handling methods

Constrained optimization problems

find x which minimizes f (x) subject to

I aj ≤ xj ≤ bj (bound constraints)

I gi (x) ≤ 0, i = 1, p (inequality constraints)

I hi (x) = 0, i = 1, q (equality constraints)

Main approaches:

I Search only the feasible region (e.g. start with a feasible element and keep the
constraints satisfied)

I rather easy for bound constraints
I for general constraints it might be difficult even to find initial feasible positions

I Allow the search outside the feasible region but favor the feasible or almost feasible
elements

I Question: How can be decided that an element is almost feasible?
I Answer: By estimating the amount of violated constraints

D. Zaharie Constraints Handling 7 / 22

8/22

Quantifying the constraint violation

I Number of violated constraints

I does not express the distance to the feasible region

I Amount of violation

φ(x) =

p∑
i=1

max{0, gi (x)}+

q∑
i=1

|hi (x)|

I φ(x) = 0 means that the constraints are satisfied
I smaller values of φ(x) correspond to elements ”closer” to the feasible region
I can be interpreted as a second optimization criterion which can be used to

influence the selection (ranking) of the elements =⇒ bias the search toward
the feasible region

D. Zaharie Constraints Handling 8 / 22

9/22

Penalty functions method

Main idea
Penalize the infeasible solutions by increasing the value of the objective function based
on the amount of constraint violation

Implementation
New objective function

F (x) = f (x) +

p∑
i=1

αi ·max{0, gi (x)}+

q∑
i=1

βi · |hi (x)|

Advantages

I easy to implement

Disadvantages

I sensitive to the values of the penalty factors (αi , βi) which are problem-dependent

D. Zaharie Constraints Handling 9 / 22

9/22

Penalty functions method

Main idea
Penalize the infeasible solutions by increasing the value of the objective function based
on the amount of constraint violation

Implementation
New objective function

F (x) = f (x) +

p∑
i=1

αi ·max{0, gi (x)}+

q∑
i=1

βi · |hi (x)|

Advantages

I easy to implement

Disadvantages

I sensitive to the values of the penalty factors (αi , βi) which are problem-dependent

D. Zaharie Constraints Handling 9 / 22

9/22

Penalty functions method

Main idea
Penalize the infeasible solutions by increasing the value of the objective function based
on the amount of constraint violation

Implementation
New objective function

F (x) = f (x) +

p∑
i=1

αi ·max{0, gi (x)}+

q∑
i=1

βi · |hi (x)|

Advantages

I easy to implement

Disadvantages

I sensitive to the values of the penalty factors (αi , βi) which are problem-dependent

D. Zaharie Constraints Handling 9 / 22

9/22

Penalty functions method

Main idea
Penalize the infeasible solutions by increasing the value of the objective function based
on the amount of constraint violation

Implementation
New objective function

F (x) = f (x) +

p∑
i=1

αi ·max{0, gi (x)}+

q∑
i=1

βi · |hi (x)|

Advantages

I easy to implement

Disadvantages

I sensitive to the values of the penalty factors (αi , βi) which are problem-dependent

D. Zaharie Constraints Handling 9 / 22

10/22

Penalty functions method
A simple example

Constraint:

x1 > 0 =⇒ −x1 ≤ 0 =⇒ F (x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2)2 + α ·max{0,−x1}

-5 0 5

-5

0

5

0

200

400

600

800

-5 0 5

-5

0

5

0

200

400

600

800

α = 1 α = 10

D. Zaharie Constraints Handling 10 / 22

11/22

Penalty functions method
A simple example

Constraint:

x1 > 0 =⇒ −x1 ≤ 0 =⇒ F (x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2)2 + α ·max{0,−x1}

-5 0 5

-5
0

5

0

500

1000

-5 0 5

-5
0

5

0

500

1000

α = 50 α = 100

D. Zaharie Constraints Handling 11 / 22

12/22

Feasibility rules
Deb’s approach

Main idea
use separate objective value (f) and penalty value = degree of constraint violation (φ)
when compare two elements a

aK. Deb, An Efficient Constraint Handling Method for Genetic Algorithms, 2000

Implementation (for a minimization problem)

x is better than x ′ if:

I x and x ′ are both feasible and f (x) < f (x ′)

I x is feasible and x ′ is not feasible

I x and x ′ are both unfeasible and φ(x) < φ(x ′)

D. Zaharie Constraints Handling 12 / 22

13/22

Feasibility rules
Deb’s approach

Advantages

I easy to implement and to couple with various search algorithms

I it does not require parameters

Disadvantages

I separating the constraints and the objective function can lead to diversity loss
(because the approach strongly favor the feasible solutions)

I Solution: use diversity enhancement mechanisms (e.g. random elements)

I combining the constraint violations in one function (φ(x)) might lead to losing the
particularities of each of the constraints

I Solution: use a Pareto ranking approach over the constraint violation values
computed separately per constraint

D. Zaharie Constraints Handling 13 / 22

14/22

Stochastic ranking

Main idea

I decides randomly which selection criterion to use (objective or penalty function)

I in some cases (random decision) two solutions are compared based only on the
objective function, even if they are not both of them feasible

Implementation

x is better than x ′ if
((φ(x) = φ(x ′) = 0) or (rand(0, 1) < Pf)) and (f (x) < f (x ′))

φ(x) < φ(x ′)

D. Zaharie Constraints Handling 14 / 22

15/22

Stochastic ranking

Advantages

I it limits the diversity loss (by accepting promising but unfeasible candidates)

Disadvantages

I it requires the specification of a parameter (Pf) - the algorithm behaviour might be
sensitive to the value of Pf (a value used in papers: Pf = 0.45 a)

aT.Runarsson, X. Yao- Stochastic Ranking for Constrained Evolutionary
Optimization, IEEE TEvC, 2000

D. Zaharie Constraints Handling 15 / 22

16/22

ε-Constrained Methods

Main idea
I if both elements are feasible, slightly infeasible or have the same amount of

constraint violation, they are compared based on the objective function

I if both elements are infeasible, they are compared based on their amount of
constraint violation.

Implementation

x is better than x ′ if
f (x) < f (x ′) in the case when φ(x) ≤ ε, φ(x ′) ≤ ε
f (x) < f (x ′) in the case when φ(x) = φ(x ′)
φ(x) < φ(x ′) otherwise

D. Zaharie Constraints Handling 16 / 22

17/22

ε-Constrained Methods

Advantages
The ranking process can be controlled by ε

I ε =∞ - only the objective function is used

I ε = 0 - lexicographic order (constraint violation first, then the objective function)

Disadvantages
Sensitive to the value of ε

D. Zaharie Constraints Handling 17 / 22

18/22

Bound constraints handling

I Bound constraints: aj ≤ xj ≤ bj

I Aim: repair the infeasible elements (xj < aj or xj > bj for at least one component j)

I Characteristics of the repairing method to be analyzed:

I Does it preserve some information from the infeasible element?
I Does it preserve the characteristics of the search process or it introduces a bias

(e.g. by favoring only some subregions of the feasible region)?

Variants: resampling, random reinitialization, projection, reflection

D. Zaharie Constraints Handling 18 / 22

19/22

Bound constraints handling
Resampling

Main idea
I Ignore the infeasible element and generate a new one by selecting new parents or

other values of some control parameters

I The resampling can be done at the level of components or at the level of the full
vector

Advantages

I Easy implementation(repeated generation of new elements until a feasible one is
obtained)

I It preserves the characteristics of the search strategy (no specific bias)

Disadvantages

I The repeated generation of new candidates might be costly especially in the case
when the full vector is recosntructed

D. Zaharie Constraints Handling 19 / 22

19/22

Bound constraints handling
Resampling

Main idea
I Ignore the infeasible element and generate a new one by selecting new parents or

other values of some control parameters

I The resampling can be done at the level of components or at the level of the full
vector

Advantages

I Easy implementation(repeated generation of new elements until a feasible one is
obtained)

I It preserves the characteristics of the search strategy (no specific bias)

Disadvantages

I The repeated generation of new candidates might be costly especially in the case
when the full vector is recosntructed

D. Zaharie Constraints Handling 19 / 22

19/22

Bound constraints handling
Resampling

Main idea
I Ignore the infeasible element and generate a new one by selecting new parents or

other values of some control parameters

I The resampling can be done at the level of components or at the level of the full
vector

Advantages

I Easy implementation(repeated generation of new elements until a feasible one is
obtained)

I It preserves the characteristics of the search strategy (no specific bias)

Disadvantages

I The repeated generation of new candidates might be costly especially in the case
when the full vector is recosntructed

D. Zaharie Constraints Handling 19 / 22

20/22

Bound constraints handling
Random reinitialization

Main idea
I The components which violate the constraints are randomly reinitialized in the

bounding box
if xj < aj or xj > bj then xj = random(aj , bj)

I It looses the previous search direction (at least for reinitialized components)

Advantages

I Easy implementation and small costs

I If it is based on an uniform distribution then it does not introduce any specific bias

I It increases the population diversity (helps in avoiding premature convergence)

Disadvantages

I It might slow down the convergence

D. Zaharie Constraints Handling 20 / 22

20/22

Bound constraints handling
Random reinitialization

Main idea
I The components which violate the constraints are randomly reinitialized in the

bounding box
if xj < aj or xj > bj then xj = random(aj , bj)

I It looses the previous search direction (at least for reinitialized components)

Advantages

I Easy implementation and small costs

I If it is based on an uniform distribution then it does not introduce any specific bias

I It increases the population diversity (helps in avoiding premature convergence)

Disadvantages

I It might slow down the convergence

D. Zaharie Constraints Handling 20 / 22

20/22

Bound constraints handling
Random reinitialization

Main idea
I The components which violate the constraints are randomly reinitialized in the

bounding box
if xj < aj or xj > bj then xj = random(aj , bj)

I It looses the previous search direction (at least for reinitialized components)

Advantages

I Easy implementation and small costs

I If it is based on an uniform distribution then it does not introduce any specific bias

I It increases the population diversity (helps in avoiding premature convergence)

Disadvantages

I It might slow down the convergence

D. Zaharie Constraints Handling 20 / 22

21/22

Bound constraints handling
Projection

Main idea
I The components which violate the constraints are replaced with the closest bound

xj =

{
aj if xj < aj
bj if xj > bj

I It preserves the previous search direction

Advantages

I Easy implementation and small costs

I Useful when the optimum is on the bounds

Disadvantages

I It introduces a bias in the search by focusing on the boundary

I For some evolutionary operators the bound violation probability remains large, i.e.
the repairing rule plays an important role in the search process

I It might reduce the population diversity
D. Zaharie Constraints Handling 21 / 22

21/22

Bound constraints handling
Projection

Main idea
I The components which violate the constraints are replaced with the closest bound

xj =

{
aj if xj < aj
bj if xj > bj

I It preserves the previous search direction

Advantages

I Easy implementation and small costs

I Useful when the optimum is on the bounds

Disadvantages

I It introduces a bias in the search by focusing on the boundary

I For some evolutionary operators the bound violation probability remains large, i.e.
the repairing rule plays an important role in the search process

I It might reduce the population diversity
D. Zaharie Constraints Handling 21 / 22

21/22

Bound constraints handling
Projection

Main idea
I The components which violate the constraints are replaced with the closest bound

xj =

{
aj if xj < aj
bj if xj > bj

I It preserves the previous search direction

Advantages

I Easy implementation and small costs

I Useful when the optimum is on the bounds

Disadvantages

I It introduces a bias in the search by focusing on the boundary

I For some evolutionary operators the bound violation probability remains large, i.e.
the repairing rule plays an important role in the search process

I It might reduce the population diversity
D. Zaharie Constraints Handling 21 / 22

22/22

Bound constraints handling
Reflection

Main idea
I For each component which violates the bounds iterate:

xj =

{
bj − (xj − bj) if xj > bj
aj + (aj − xj) if xj < aj

until xj ∈ [aj , bj].

Advantages

I It might increase the diversity

Disadvantages

I For some evolutionary operators the bound violation probability remains large, i.e.
the repairing rule plays an important role in the search process

I It looses the information on the search direction

D. Zaharie Constraints Handling 22 / 22

22/22

Bound constraints handling
Reflection

Main idea
I For each component which violates the bounds iterate:

xj =

{
bj − (xj − bj) if xj > bj
aj + (aj − xj) if xj < aj

until xj ∈ [aj , bj].

Advantages

I It might increase the diversity

Disadvantages

I For some evolutionary operators the bound violation probability remains large, i.e.
the repairing rule plays an important role in the search process

I It looses the information on the search direction

D. Zaharie Constraints Handling 22 / 22

22/22

Bound constraints handling
Reflection

Main idea
I For each component which violates the bounds iterate:

xj =

{
bj − (xj − bj) if xj > bj
aj + (aj − xj) if xj < aj

until xj ∈ [aj , bj].

Advantages

I It might increase the diversity

Disadvantages

I For some evolutionary operators the bound violation probability remains large, i.e.
the repairing rule plays an important role in the search process

I It looses the information on the search direction

D. Zaharie Constraints Handling 22 / 22

23/22

Summary

I the constraint handling methods can be combined with any metaheuristic approach

I some of the handling methods (penalty method, multi-objective reformulation)
do not require any change in the algorithm

I other methods (feasibility rules, stochastic ranking, ε-constraints) interferes
only with the selection step

I the bounding-box constraint handling methods (resampling, reinitialization,
projection, reflection) are based on changes in the reproduction step (e.g. new
elements are created such that they satisfy the constraints)

D. Zaharie Constraints Handling 23 / 22

	Motivation
	Overview of constraint handling methods
	Particular methods for handling bound constraints

