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Constraints Handling in Optimization with
Metaheuristic Algorithms
(support for Lecture 12)
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D. Zaharie Constraints Handling 1 / 22



2/22

Motivation

I Most of real world optimization problems are constrained

I Types of constraints

I Bound constraints: aj ≤ xj ≤ bj for j = 1, n
I Inequality constraints: gi (x) ≤ 0 for i = 1, p
I Equality constraints: hi (x) = 0 for i = 1, q (usually transformed in |hi (x)| ≤ ε)
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Motivation

A simple example: f (x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2)2, x1, x2 ∈ [−5, 5]
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I Where is (are) the optimum (optima)?
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I What about the case when the feasible region is smaller (e.g. [0, 4]× [−1, 4]
instead of [−5, 5]× [−5, 5])?
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Motivation

A simple example: f (x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2)2, x1, x2 ∈ [−5, 5]
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I Global unfeasible optima (red points): f (−3.59,−1.89) = 0.00032,
f (−3.04, 1.74) = 0.00049

I Feasible optimum (blue point): f (3.29, 0.08) = 10.87

I The search should be directed toward the feasible region defined by the bound
constraints

D. Zaharie Constraints Handling 5 / 22



6/22

Outline

I Overview of constraint handling methods

I penalty functions
I feasibility rules
I stochastic ranking
I ε-constraints

I Particular methods for handling bound constraints

I resampling
I random reinitialization
I projection
I reflection
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Overview of constraint handling methods

Constrained optimization problems

find x which minimizes f (x) subject to

I aj ≤ xj ≤ bj (bound constraints)

I gi (x) ≤ 0, i = 1, p (inequality constraints)

I hi (x) = 0, i = 1, q (equality constraints)

Main approaches:

I Search only the feasible region (e.g. start with a feasible element and keep the
constraints satisfied)

I rather easy for bound constraints
I for general constraints it might be difficult even to find initial feasible positions

I Allow the search outside the feasible region but favor the feasible or almost feasible
elements

I Question: How can be decided that an element is almost feasible?
I Answer: By estimating the amount of violated constraints
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Quantifying the constraint violation

I Number of violated constraints

I does not express the distance to the feasible region

I Amount of violation

φ(x) =

p∑
i=1

max{0, gi (x)}+

q∑
i=1

|hi (x)|

I φ(x) = 0 means that the constraints are satisfied
I smaller values of φ(x) correspond to elements ”closer” to the feasible region
I can be interpreted as a second optimization criterion which can be used to

influence the selection (ranking) of the elements =⇒ bias the search toward
the feasible region
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Penalty functions method

Main idea
Penalize the infeasible solutions by increasing the value of the objective function based
on the amount of constraint violation

Implementation
New objective function

F (x) = f (x) +

p∑
i=1

αi ·max{0, gi (x)}+

q∑
i=1

βi · |hi (x)|

Advantages

I easy to implement

Disadvantages

I sensitive to the values of the penalty factors (αi , βi ) which are problem-dependent
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Penalty functions method
A simple example

Constraint:

x1 > 0 =⇒ −x1 ≤ 0 =⇒ F (x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2)2 + α ·max{0,−x1}
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Penalty functions method
A simple example

Constraint:

x1 > 0 =⇒ −x1 ≤ 0 =⇒ F (x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2)2 + α ·max{0,−x1}
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Feasibility rules
Deb’s approach

Main idea
use separate objective value (f ) and penalty value = degree of constraint violation (φ)
when compare two elements a

aK. Deb, An Efficient Constraint Handling Method for Genetic Algorithms, 2000

Implementation (for a minimization problem)

x is better than x ′ if:

I x and x ′ are both feasible and f (x) < f (x ′)

I x is feasible and x ′ is not feasible

I x and x ′ are both unfeasible and φ(x) < φ(x ′)

D. Zaharie Constraints Handling 12 / 22



13/22

Feasibility rules
Deb’s approach

Advantages

I easy to implement and to couple with various search algorithms

I it does not require parameters

Disadvantages

I separating the constraints and the objective function can lead to diversity loss
(because the approach strongly favor the feasible solutions)

I Solution: use diversity enhancement mechanisms (e.g. random elements)

I combining the constraint violations in one function (φ(x)) might lead to losing the
particularities of each of the constraints

I Solution: use a Pareto ranking approach over the constraint violation values
computed separately per constraint
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Stochastic ranking

Main idea

I decides randomly which selection criterion to use (objective or penalty function)

I in some cases (random decision) two solutions are compared based only on the
objective function, even if they are not both of them feasible

Implementation

x is better than x ′ if
((φ(x) = φ(x ′) = 0) or (rand(0, 1) < Pf )) and (f (x) < f (x ′))

φ(x) < φ(x ′)
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Stochastic ranking

Advantages

I it limits the diversity loss (by accepting promising but unfeasible candidates)

Disadvantages

I it requires the specification of a parameter (Pf ) - the algorithm behaviour might be
sensitive to the value of Pf (a value used in papers: Pf = 0.45 a)

aT.Runarsson, X. Yao- Stochastic Ranking for Constrained Evolutionary
Optimization, IEEE TEvC, 2000
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ε-Constrained Methods

Main idea
I if both elements are feasible, slightly infeasible or have the same amount of

constraint violation, they are compared based on the objective function

I if both elements are infeasible, they are compared based on their amount of
constraint violation.

Implementation

x is better than x ′ if
f (x) < f (x ′) in the case when φ(x) ≤ ε, φ(x ′) ≤ ε
f (x) < f (x ′) in the case when φ(x) = φ(x ′)
φ(x) < φ(x ′) otherwise
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ε-Constrained Methods

Advantages
The ranking process can be controlled by ε

I ε =∞ - only the objective function is used

I ε = 0 - lexicographic order (constraint violation first, then the objective function)

Disadvantages
Sensitive to the value of ε
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Bound constraints handling

I Bound constraints: aj ≤ xj ≤ bj

I Aim: repair the infeasible elements (xj < aj or xj > bj for at least one component j)

I Characteristics of the repairing method to be analyzed:

I Does it preserve some information from the infeasible element?
I Does it preserve the characteristics of the search process or it introduces a bias

(e.g. by favoring only some subregions of the feasible region)?

Variants: resampling, random reinitialization, projection, reflection
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Bound constraints handling
Resampling

Main idea
I Ignore the infeasible element and generate a new one by selecting new parents or

other values of some control parameters

I The resampling can be done at the level of components or at the level of the full
vector

Advantages

I Easy implementation(repeated generation of new elements until a feasible one is
obtained)

I It preserves the characteristics of the search strategy (no specific bias)

Disadvantages

I The repeated generation of new candidates might be costly especially in the case
when the full vector is recosntructed
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Bound constraints handling
Random reinitialization

Main idea
I The components which violate the constraints are randomly reinitialized in the

bounding box
if xj < aj or xj > bj then xj = random(aj , bj)

I It looses the previous search direction (at least for reinitialized components)

Advantages

I Easy implementation and small costs

I If it is based on an uniform distribution then it does not introduce any specific bias

I It increases the population diversity (helps in avoiding premature convergence)

Disadvantages

I It might slow down the convergence

D. Zaharie Constraints Handling 20 / 22



20/22

Bound constraints handling
Random reinitialization

Main idea
I The components which violate the constraints are randomly reinitialized in the

bounding box
if xj < aj or xj > bj then xj = random(aj , bj)

I It looses the previous search direction (at least for reinitialized components)

Advantages

I Easy implementation and small costs

I If it is based on an uniform distribution then it does not introduce any specific bias

I It increases the population diversity (helps in avoiding premature convergence)

Disadvantages

I It might slow down the convergence

D. Zaharie Constraints Handling 20 / 22



20/22

Bound constraints handling
Random reinitialization

Main idea
I The components which violate the constraints are randomly reinitialized in the

bounding box
if xj < aj or xj > bj then xj = random(aj , bj)

I It looses the previous search direction (at least for reinitialized components)

Advantages

I Easy implementation and small costs

I If it is based on an uniform distribution then it does not introduce any specific bias

I It increases the population diversity (helps in avoiding premature convergence)

Disadvantages

I It might slow down the convergence

D. Zaharie Constraints Handling 20 / 22



21/22

Bound constraints handling
Projection

Main idea
I The components which violate the constraints are replaced with the closest bound

xj =

{
aj if xj < aj
bj if xj > bj

I It preserves the previous search direction

Advantages

I Easy implementation and small costs

I Useful when the optimum is on the bounds

Disadvantages

I It introduces a bias in the search by focusing on the boundary

I For some evolutionary operators the bound violation probability remains large, i.e.
the repairing rule plays an important role in the search process

I It might reduce the population diversity
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Bound constraints handling
Reflection

Main idea
I For each component which violates the bounds iterate:

xj =

{
bj − (xj − bj) if xj > bj
aj + (aj − xj) if xj < aj

until xj ∈ [aj , bj ].

Advantages

I It might increase the diversity

Disadvantages

I For some evolutionary operators the bound violation probability remains large, i.e.
the repairing rule plays an important role in the search process

I It looses the information on the search direction
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Summary

I the constraint handling methods can be combined with any metaheuristic approach

I some of the handling methods (penalty method, multi-objective reformulation)
do not require any change in the algorithm

I other methods (feasibility rules, stochastic ranking, ε-constraints) interferes
only with the selection step

I the bounding-box constraint handling methods (resampling, reinitialization,
projection, reflection) are based on changes in the reproduction step (e.g. new
elements are created such that they satisfy the constraints)
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