
Metaheuristic algorithms 
 
Lab 5: Ant Colony Optimization. Particle Swarm Optimization. Differential Evolution 
            
______________________________________________________________________________ 
 

1. Ant Colony Optimization (ACO) 
 
ACO is a metaheuristic inspired by the behavior of the ant colonies. It is especially used in 
solving combinatorial optimization problems (e.g. routing, scheduling, assignment)  It uses a 
population of artificial ants (agents) which is changed during an iterative process. At each 
iteration each ant constructs, component by component, a potential solution. The values for the 
solution components are chosen randomly based on a probability distribution. The probability 
distribution is computed by using both local information (what the ant can collect from its 
neighbourhood) and global information (obtained by using the indirect communication process 
between ants based on pheromone trails). 
 
Solving TSP using ACO.  The input data consists of the graph describing the direct connections 
between towns and their costs.  A population of ants is initially placed on random nodes (or all of 
them in the first node). At each iteration, each ant visits n distinct nodes, constructing a tour. The 
ants have a local memory where the list of visited nodes is stored in order to avoid visiting twice 
the same node. The transition of an ant k from the node i to the node j at step t is based on the 
following probability: 
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The factors appearing in the computation of the probability are:  

• τij  models the pheromone concentration released by the ants on edge (i,j); the pheromone 
concentration is randomly initialized with small positive values. Each ant which visits an 
edge (i,j) can release some pheromone on it contributing to the update of the pheromone 
concentration: 
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              ρ is a constant less than 1 which controls the evaporation process, Qij(k) is 0 if   (i,j) does 
             not belong to the tour constructed by ant  k.   Cost(Tk)  denotes the cost of the tour  
             constructed by the ant k. 

• ηij models the local information concerning the quality of the edge; the simplest variant is 
when it is 1/cost(i,j).  

• α and β are parameters which control the relative importance of those two types of 
information: the global information provided by the pheromone concentration and the 
local one provided by the cost of the edge.  

• N(k) denotes the neighborhood of node i and contains the nodes which can be reached 
from node i and have not been visited yet. 

 
Application 1. Implement an ACO algorithm for TSP.  



Exercise.  Change the previous implementation such that when the pheromone matrix elements 
are updated, the tours visited by all ants are taken into account. 
Hint.  The updating terms are cumulated after each tour construction. 
  
 

2. Particle Swarm Optimization (PSO) 
 
PSO is a metaheuristic used for continuous function optimization inspired by the behavior of bird 
swarms. It uses a population of m “particles”, each particle i being characterized by its position  
(xi) and its velocity (vi). Moreover, each particle memorizes the best position it visited up to the 
current moment (xbesti). There is also another variable which contains the best position found up 
to the current iteration by the entire swarm (xbest).  The evolutionary process consists in the 
change, at each generation t, of the position of all particles in the population according to the 
following rules:  
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where:   

• gamma is a constriction factor (a typical value for gamma is 0.7) 
• r1 and r2 are two constant values (e.g. r1=r2=2.05) 

 
Besides this variant, where xbest is the global best element from the swarm, there is also another 
variant where for each particle i, xbest(i) is selected as the best element from the neighborhood of 
the particle i.  The neighborhood of a particle can be defined by various topologies, one of the 
most used is the ring topology (in this case the neighborhood of size K of particle i is represented 
by the particles having the indices {i-K,i-K+1,...,i-1,i,i+1,...,i+K-1,i+K}).   
 
Application 2. Implement a PSO algorithm (using the above eqs.) and test its behavior for a 
unimodal function (e.g. sphere) and for a multimodal function (e.g. Griewank).  
 
Exercise.  Change PSO.m such that it implements the “local best” variant using a ring topology to 
define the neighbourhood. 
 

 
3. Differential Evolution (DE).  
 

DE is a popular optimization technique based on a simple rule of constructing new candidates by 
using differences between elements of the current population. The basic idea is to construct for 
each population element x(i) a new trial element following the steps: 

• Construct a “mutant” vector, y, by combining several elements of the population. Two of 
the most used approaches are: 

o DE/rand/1/bin:  y=x(r1)+F*(x(r2)-x(r3))  where  r1,r2,r3 are distinct random 
indices 

o DE/best/1/bin:  y=x(ibest)+F*(x(r2)-x(r3)) where x(ibest) is the best element of 
the population  

Rmk: in both cases, F is a scale factor taking values in (0,2). 
• Construct a trial element, z, by crossing over the components of the mutant y with  those 

of the current element, x(i),  by following the rule (known as binomial crossover): 



o z(j)=y(j)  with probability CR 
o z(j)=x(i,j) with probability 1-CR 
Rmk: CR (with values in (0,1)) is a crossover probability 

  
 
Application 3. Implement the DE algorithm (both variants) and analyze its performance in 
comparison with that of an evolution strategy  (see lab 3). 
 

 


