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Abstract—Parameter tuning, that is, to find appropriate pa-
rameter settings (or configurations) of algorithms so that their
performance is optimized, is an important task in the develop-
ment and application of metaheuristics. Automating this task,
i.e., developing algorithmic procedure to address parameter
tuning task, is highly desired and has attracted significant
attention from the researchers and practitioners. During last
two decades, many automatic parameter tuning approaches have
been proposed. This paper presents a comprehensive survey
of automatic parameter tuning methods for metaheuristics. A
new classification (or taxonomy) of automatic parameter tuning
methods is introduced according to the structure of tuning
methods. The existing automatic parameter tuning approaches
are consequently classified into three categories: simple generate-
evaluate methods, iterative generate-evaluate methods, and high-
level generate-evaluate methods. Then, these three categories
of tuning methods are reviewed in sequence. In addition to
the description of each tuning method, its main strengths and
weaknesses are discussed, which is helpful for new researchers
or practitioners to select appropriate tuning methods to use.
Furthermore, some challenges and directions of this field are
pointed out for further research.

Index Terms—Parameter setting, parameter tuning, automatic
parameter tuning, metaheuristics.

I. INTRODUCTION

OPTIMIZATION methods are extensively required and
applied to solve problems from almost all disciplines,

whether economics, sciences, or engineering [1]. Generally
speaking, optimization approaches can be classified into exact,
heuristic, and metaheuristic methods [2]. Exact methods can
guarantee the optimality of their solutions. In other words, an
exact method can obtain the optimal solution if it is com-
pletely executed. However, many computationally challenging
problems have emerged in real-world applications. Solving
these problems with exact methods would require a huge or
unaffordable amount of computing resources since many of
these problems are NP-hard [3]. Traveling salesman problem,
vehicle routing problem, capacitated art routing problem, time-
tabling, and software verification are examples of such hard
problems. Unlike exact methods, heuristic and metaheuristic
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algorithms do not guarantee their solutions’ optimality, but
they can obtain high-quality solutions in a reasonable time,
which is practical for application problems. Thus, heuristics
and metaheuristics are the main alternatives to solve hard
optimization problems.

Heuristics are problem specific algorithms that implement
some reasonable strategies or rules (heuristic mechanisms) to
solve problems. Although there is no theoretical guarantee of
optimality, heuristics have met some notable success on many
difficult problems and thus have been a popular choice for
solving NP-hard problems. However, the problem-dependent
nature of heuristics restricts the application of a heuristic to
one particular class of problems, i.e., heuristics are designed
to handle specific problems (or instances). Also, heuristics
usually provide only sub-optimal solutions because they do
not attempt to escape from local optimum. These drawbacks
have led to the introduction of metaheuristics.

Metaheuristics are high-level methodologies or general al-
gorithmic templates, which generally do not adapt deeply
to specific problem(s) [4]. Hence, they usually can solve a
wide range of problems [2]. In fact, the prefix “meta”, which
means “upper level methodology”, indicates that metaheuristic
algorithms can be viewed as “higher level” heuristics. Hy-
brid approaches based on existing metaheuristic(s) are also
considered metaheuristics [5]. In last decades, metaheuristics
have received widespread attention from researchers and are
widely recognized as efficient approaches for hard optimiza-
tion problems. A number of metaheuristic algorithms have
been developed and extensively applied, including Simulated
Annealing (SA) [6], Tabu Search (TS) [7], Evolutionary Algo-
rithms (EAs) [8], Ant Colony Optimization algorithm (ACO)
[9], Particle Swarm Optimization (PSO) [10], and so forth.
Most of metaheuristics are nature-inspired (inspired from some
principles in physics, biology and etc.), contain stochastic
components, and often have several free parameters that can
be set by users according to problem(s) at hand [4].

The setting of parameters (or parameter setting) has strong
impact on the performance or efficacy of a metaheuristic, be-
cause parameters control the behavior of heuristic mechanisms
in the algorithm [11]. Take SA algorithm as an example, it
yields good solutions only if its parameters, including initial
temperature, cooling factor, number of iterations and so on,
are properly chosen [12]. Thus, to obtain high performance,
algorithm’s parameters should be properly set or fine-tuned.
Even though default parameter settings are provided, tuning
algorithm’s parameters for problems to be solved can result in
performance improvement since default parameter settings are
often determined with other problems (or application contexts)
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which are different from the problems at hand.
According to the no free lunch (NFL) theorem of opti-

mization [13], there does not exist an universal algorithm
which works well for all optimization problems. This indicates
that one need to tailor the adopted algorithm for problems at
hand to improve algorithm’s performance and to obtain good
solutions. Moreover, this also implies that parameter setting
is not a one-time task, that is, researchers or end users need
to address parameter setting problem again when they face
new problems. Consequently, the so-called parameter setting
problem (also known as algorithm configuration in literature)
[11], which is to properly set algorithm’s parameter values
for maximizing the empirical performance of the algorithm, is
routinely encountered by algorithms designers and users.

Although it has been recognized that the performance of
a metaheuristic depends on its parameter values, parameter
setting problem has not been formally treated by the academic
community until the end of the last century [14]. During
the first decades of metaheuristics research, metaheuristics
were tuned “by hand”, i.e., performing experiments with
different parameter settings and selecting the best one, or “by
analogy”, i.e., adopting parameter setting that is successful on
similar problem(s) [15]. The demand of systematic approaches
for metaheuristics’ parameter setting has been increasingly
outlined in the literature since the end of the last century [16],
[17]. Subsequently, the parameter setting problem has attracted
more attention of developers and end users of metaheuristics
and more efforts have been dedicated to developing systematic
and sophisticated approaches to address this problem.

Parameter setting problem, i.e., finding appropriate or op-
timal parameter setting (i.e., configuration) in the parameter
space of a metaheuristic, is a broad problem and research
topic. According to [18]–[21], it can be mainly divided into
two cases:

• Parameter tuning (also termed as off-line tuning), where
good parameter values (parameter setting) are identified
before applying the algorithm to solve problems at hand.
In this case, the results of parameter tuning, i.e., the
optimal parameter setting founded by tuning process, is
used in solving problems and these parameter values
remain unchanged during the run [18].

• Parameter control (also known as on-line tuning), where
the values of controlled parameters are changing directly
according to some strategies during the execution of
algorithm (i.e., during the run). In this situation, initial
values and appropriate control strategies for controlled
parameters, which change or adapt relevant parameter
values during the run, are required. These control strate-
gies could be deterministic, adaptive, or self-adaptive
[21].

To avoid confusion, only terms “parameter tuning” (tuning
for short) and “parameter control” are used instead of “off-
line tuning” and “on-line tuning” hereafter. Parameter tuning
processes usually requires a large number of runs of the
algorithm to analyze its performance on one instance or a
set of problem instances with different parameter settings.
This makes tuning process time-consuming, which is the main
disadvantage of parameter tuning. The advantage of parameter

tuning is its universality, that is, a good tuning method
is applicable to handle parameter tuning of many different
metaheuristics. While, the obvious drawback of parameter
control is its non-universality, that is, the proper control
strategies for one algorithm usually is not suitable for another
algorithm [19]. For example, the self-adaption strategy of
mutation strength in (µ/ρ, λ)-evolution strategy (ES) [22] is
not proper for controlling inertia weight of PSO. Additionally,
in order to correctly design parameter control strategies for
an algorithm, it is necessary to have a rough idea of how to
change parameter(s) during the run to achieve good perfor-
mance. This usually requires an understanding of the proper
parameter values at different phases in the running of the
algorithm and involves the utilization of history information
generated in iterative process of the algorithm. Hence, in above
senses, parameter tuning is easier and more practical than
parameter control. In parameter control, self-adaptive param-
eter control, such as step-size control and covariance matrix
adaptation in covariance matrix adaptation evolution strategy
(CMA-ES) [23], is the state-of-the-art method for numerical
parameter control. Adaptive operator selection (AOS) is a
popular method to dynamically determine which operator(s)
should be applied during the run of an optimization algorithm
(i.e., categorical parameter control), based on its performance
history of available operators [24]–[26]. More description and
achievements in parameter control could be found in [27].

The focus of this paper is on parameter tuning, since many
interesting contributions have been published recently within
this field. A survey of automatic parameter tuning methods
for metaheuristic algorithms is provided. The remainder of
the paper is organized as follows. Section II firstly gives a
short overview of the parameter tuning problem including the
problem statement and types of parameters, then, a new clas-
sification method of automatic parameter tuning approaches
is introduced. Section III to V review the classified three
categories of tuning approaches successively. Finally, some
future research directions and a concluding summary are given
in Section VI.

II. AUTOMATIC PARAMETER TUNING

It is widely recognized that the performance of an op-
timization algorithm can be improved by parameter tuning.
The task of parameter tuning, however, can be very time-
consuming and tedious. In early research, this task was carried
out manually in many cases. Thus, automating this tough
task, i.e., developing automated approaches to finding good
parameter settings (or configurations), is desired and of high
practical relevance in several contexts. Hutter et al. [28],
[29] stated the following main motivation and relevance for
developing automatic procedure for parameter tuning:

• Development of complex algorithms: Parameter setting
is an indispensable but time-consuming step in algorithm
development. The use of automatic parameter tuning
methods can effectively reduce the time cost of this task,
and potentially result in better algorithm’s performance
than manual methods.
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• Empirical studies, evaluations, and comparisons of
algorithms: Comparing performance of different algo-
rithms is a common task in research. An essential ques-
tion in this task is whether one algorithm outperforms
another owing to its fundamental superiority or the
optimality of its parameters [17]. Automatic parameter
tuning methods can alleviate this problem and thus make
comparative studies more fair and meaningful.

• Practical use of algorithms: In application of meta-
heuristics, to make the algorithm work well (have good
performance), users often need to appropriately set al-
gorithm’s parameters for the problems they are facing.
However, this usually requires users to know how param-
eters of the algorithm affect its performance. Fortunately,
automatic parameter tuning can find proper parameter
settings and eliminate the need of prior knowledge for
users.

Therefore, automatic parameter tuning, also referred as
automatic algorithm configuration, is a rapidly growing field
because of above motivation and eliminating the limitations
and difficulties of manual parameter tuning.

A. Statement of Parameter Tuning Problem

The parameter tuning problem can be briefly described as:
given a parameterized algorithm and one instance or a set
of instances, find an optimal parameter setting that results
in the best possible performance across the given problem
instance(s). In other words, the purpose of parameter tuning
is to find a configuration that maximizes the performance of
an algorithm over the given problem instance(s). A formal
statement of parameter tuning problem was concisely given in
[11] as:
Given

• a parameterized algorithm A with free parameters that
affect its behavior,

• a configuration space (or parameter space) C, which
defines possible configurations (i.e., parameter settings),

• a set of problem instances I ,
• a performance metric m that measures the performance

of A across I for a given configuration c (c ∈ C),
find a configuration c∗ ∈ C that optimizes the performance of
A on I according to metric m.

In parameter tuning problem, the algorithm A whose perfor-
mance will be optimized via tuning its parameters is called the
target algorithm, the automatic parameter tuning method used
for finding the optimal configuration is often referred to as a
tuning algorithm (tuner for short) [30]. A parameter setting or
configuration c refers to a setting of free parameters (of A) that
need to be tuned, and A(c) denotes target algorithm A under
specific configuration c. The process of automatic parameter
tuning is illustrated in Fig. 1.

Performance evaluation of the target algorithm (with dif-
ferent configurations) is a vital part of the parameter tuning
process. Usually, the performance of a run of a metaheuristic
on one instance (a run for short) can be evaluated or as-
sessed by the quality of the solution obtained with a fixed
computation time, or by the computation time required to

Parameter Tuning Algorithm

Instances Set  Target Algorithm  and its 

Configuration Space  

Return Best 

Configuration  !

Select or Generate 

Configuration  ! "

Evaluate  (!) on 

some instances  ! "  

Return Performance Metric  

Fig. 1. Illustration of automatic parameter tuning procedure.

find a solution of the desired quality. However, in parameter
tuning, target algorithm performance evaluation is not an
easy task. Because of the stochasticity of tuning problem,
the performance measure of target algorithm is stochastic
and computationally expensive. The stochasticity (or random-
ness) of tuning problem comes from two main sources of
randomness: (1) the stochastic nature of target algorithm,
which results from the utilization of randomized decisions
during the execution of algorithm; (2) the randomness in
selecting problem instance(s) to estimate target algorithm’s
performance [31], [33]. Since the performance metric is a
stochastic quantity, usually, the expected performance of the
target algorithm is optimized during parameter tuning process
[34]. The estimation of expected performance measure cannot
be achieved directly through analytical computation, so it is
usually estimated by Monte Carlo method [31].

According to the above statements, parameter tuning prob-
lem can be viewed as an optimizing problem, often called
meta-optimization [35]. Meta-optimization is a research field
of searching the right behavioral parameters for some under-
lying optimizer [36]. This is not a new concept as it was
already used by Mercer and Sampson [37] in the late 1970s for
optimizing evolutionary algorithm. In consequence, a tuning
algorithm (tuner) is a meta-optimizer that searches for the
optimal (or at least somewhat well performing) set of pa-
rameters for the target algorithm. And this meta-optimization
problem is a black-box problem since the relationship between
algorithm’s parameter values and its performance metric on
given instances are unavailable. Considering its stochasticity
at the same time, parameter tuning problem can be treated as
a stochastic black-box (meta)-optimization problem.

Automatic parameter tuning can also be considered, from a
machine learning perspective, as a learning problem of finding
a good parameter setting for solving unseen problem instances
with high efficacy by learning from a set of training instances
[31]. Hence, there are two distinct phases or steps: tuning
phase and testing (or production) phase. In tuning phase,
a parameter setting that optimizes the performance measure
of the algorithm is to be determined, based on the training
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instances that commonly are representatives of the problem
faced in the following reproduction phase. In the later testing
(or production) phase, the founded configuration is adopted to
solve previously unseen instances [38]. The goal of algorithm
configuration is to find a good parameter setting in tuning
phase so that it maximizes the performance of target algorithm
across instances that will be seen during the test phase [30].

1) Parameter Types: In parameter tuning, virous types of
parameters may occurs depending on the given target algo-
rithm. Based on the parameter types classification in existing
work [11], [38]–[40], parameters can be mainly classified
into categorial and numerical parameters, according to their
searchability [41], [42]:

• Numerical parameters can be real or integer values.
The population size and mutation rate in evolutionary
algorithms are typical example of numerical parameters.

• Categorical parameters are related to mechanisms or
operators that can be implemented in different ways in
the algorithm. They have a finite, unordered set of discrete
values. Examples of categorical parameter include the se-
lection operator in an evolutionary algorithm, which can
be chosen among tournament, roulette, and ranking-based
selection [41], and the mutation operator in evolutionary
programing, which could be chosen from Gaussian and
Cauchy mutation [43].

Numerical parameters define a domain that has distance
measures between different parameter values, and thus one
can use optimization methods to search the optimal values.
But for categorical parameters, this is not possible because
the categorical parameters’ domain is not exploitable and only
sampling methods can be used to search this domain [41].

The number and type of algorithm parameters, as well as
the constraints on configurations, determine the nature of con-
figuration space C and have a profound impact on the methods
used for finding optimal parameter settings within that space
[11]. For instance, if there are only numerical parameters
in a tuning problem, it can be solved by a derivative-free
optimization algorithm along with an approach of handling
the stochasticity.

2) Specialist or Generalist: Besides parameter types, an-
other aspect that has profound influence on solving parameter
tuning problem is the goal that one wants to tailor the target
algorithm to be a specialist or generalist [44], which are
defined as:

• Generalist denotes a parameter setting that has good
performance across a wide range (or a set) of problems
(or instances).

• Specialist signifies a parameter setting that show excel-
lent performance on only one problem (or instance).

By no-free lunch theorem, the true generalist which per-
forms well on all problems (or instances) does not exist. So, in
practice, a generalist is restricted to a set of problem instances
not to all the possible instances. The choice of tuning a
specialist or a generalist commonly depends on the practitioner
and the application context he is facing.

Generally speaking, tuning the target algorithm as a special-
ist is easier than tuning it as a generalist. The main difference

between tuning a specialist and a generalist exists in evaluating
the performance of target algorithm. In the case of tuning
the algorithm on only one problem instance, the performance
metric could be the mean of performance measures from
multiple runs on the instance. While, performance metric
of the target algorithm on a set of instances means the
performance over a whole set of instances. This could be
represented by the expected value of the performance over the
instance set, roughly speaking, the average performance of the
algorithm across the given set of instances [27], [31]. However,
for some situations, the performance metrics of the algorithm
on different instances may be different tremendously, such as
different in orders of magnitude. In this case, the expected
value of performance measure over different instance is un-
reasonable, and normalization of performance measures on
each instance or the building block design would be helpful
[31]. Apparently, finding the optimal parameter setting (or
configuration) usually requires a large number of runs of
the target algorithm with different configurations on different
instances. Thus, parameter tuning problem is a computational
expensive and time-consuming task.

B. Classification of Tuning Methods

Since the end of last century, a number of automatic
parameter tuning approaches have been put forward, such as
F-Race, REVAC, ParamILS, SPO, SMAC and so forth. In the
overview paper of development in automatic parameter tuning
[39], it distinguished the existing automatic parameter tuning
algorithms among two types of methods: model-free and
model-based methods. In [42] tuning methods were classified
as: hand-made tuning, tuning by analogy, experimental design
based tuning, search based tuning, and hybrid tuning. Eiben
et al. [41] classified tuning methods according to search
effort of each method. This paper distinguishes the existing
tuning methods from the perspective of tuner’s structure and
composition.

Essentially, all the existing tuning methods work by the
generate and evaluate (or test) principle, that is, by generating
different parameter settings (or configurations) and evaluating
them by establishing their performance metrics [33], [34], [41].
Based on this principle, this paper classifies the existing tuning
methods into three main categories:

• Simple Generate-Evaluate Methods are straightforward
approaches that consist of a generate and an evaluate
phase. In generate step, a set of candidate configurations
are generated. Then, in evaluate phase, each of those
configurations is evaluated in order to find the best one
from them.

• Iterative Generate-Evaluate Methods mainly involve a
repeated process of generate and evaluate steps. This kind
of methods do not generate all the candidate configura-
tions in one step as like in simple generate-evaluate meth-
ods. On the contrary, it starts with a small set of initial
configurations and creates new configurations iteratively
during execution. After new configurations are generated,
they are evaluated to find the incumbent, that is, the best
configuration found so far, and at the same time to guide
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the generating of new configurations for next iteration.
This category can be further sub-categorized into: ex-
perimental design based tuning, numerical optimization
based tuning, heuristic search based methods, and model-
based optimization approaches. These sub-categories will
be described in Section IV.

• High-Level Generate-Evaluate Methods consist of a
high-level generate mechanism and an evaluation step. In
generate phase, a number of elite (high-quality) configu-
rations are generated by existing tuners or search methods
rather than by random sampling or design of experiments
methods. In evaluate step, the best of these configurations
is selected through careful evaluating.

The general structures or frameworks of above three cat-
egories are illustrated in Fig. 2. Different generating tech-
niques (also referred to as sampling methods) and evaluation
approaches form different tuning algorithms. Generating tech-
niques produce candidate parameter settings (configurations)
and evaluation approaches estimate candidate configurations’
performance, where the stochasticity of the tuning problem
need to be handled. In parameter tuning approaches, the com-
monly used techniques for creating candidate configurations
includes design of experiments (DOE), such as full factorial
design, central composite design, Latin hypercube design, and
random sampling design. Yuan et al. [34] broadly considered
black-box optimization algorithms as sampling methods for
parameter tuning. Actually, any methods that can effectively
generate candidate configurations could be taken as generating
techniques.

Evaluation methods in tuning problem distinguish from
these methods used in black-box optimization problem due
to the stochasticity of tuning problem. Thus, it is worth here
to briefly summarize the evaluation methods that are used
in the existing tuning algorithms. Evaluation techniques for
parameter tuning mainly include:

• Repeated evaluation. For stochastic or random objective
function optimization problem, like parameter tuning
problem, the most straightforward method for evaluating
the objective function is to evaluate the function multiple
times and return the average value [34]. In parameter
tuning, the repeated evaluation method assesses each
candidate configuration by running a number of times of
the target algorithm and returning its average performance
measure.

• F-Racing. The F-Race method proposed by Birattari et
al. [31], [45] evaluates candidate configurations gradually,
i.e., instance by instance, and immediately eliminates
inferior configurations as soon as statistical evidence is
gathered against them. The early elimination of poor qual-
ity configurations can concentrate computing resources
on more promising candidates and hence allow them to
obtain more reliable performance estimation [42]. Thus,
racing method uses computational power more efficiently
than repeated evaluation.

• Intensification. Intensification is a method used in com-
paring a new configuration to the incumbent. In this
method, the new candidate is gradually evaluated on the

sequence of instances (sequence for short in following of
this paragraph) that the incumbent has already evaluated
on. During the evaluation, once the new candidate is
worse than the incumbent, it is eliminated; otherwise,
it is evaluated on next instance from the sequence and
compares with the incumbent again. This process con-
tinues until the candidate has been evaluated on all
the instances in the sequence, then a new incumbent is
determined. Intensification mechanism has been used in
several tuning methods, including ParamILS [28], SPO+
[46], and SMAC [47].

• Sharpening. Sharpening [48] is another intensification
technique that makes the promising parameter configura-
tions are tested more thoroughly than the ones that are
not as prospective. In the beginning, each configuration
is evaluated with a small number of tests, but when
certain threshold is met, the number of tests increases,
i.e., doubles. In this way, the tuning algorithm can explore
the configuration space quickly.

• Adaptive Capping. Adaptive capping proposed in [28]
is a method used to cut off the run of unpromising
configurations and thus lead to computational savings.
The authors present two of its variants, namely, trajectory-
preserving capping and aggressive capping.

The parameter tuning algorithms that as far as we are aware
from literature are allocated to above three main categories and
its sub-categories. This classification is presented in Fig. 3. In
subsequent sections, each category of tuning algorithms will
be reviewed successively.

III. SIMPLE GENERATE-EVALUATE METHODS

Since parameter tuning problem is a black-box problem, the
most straightforward way to find a good parameter setting is
through the generate-evaluate principle. The simple generate-
evaluate methods, as illustrated in Fig. 2 (a), are non-iterative
tuners that directly adopt this principle by firstly creating a
number of parameter settings (candidate configurations), then,
evaluating each of them to finding the best configuration. The
brute-force approach and F-Race method fall in this category.
The main difference between them is the evaluation method.
Specifically, brute-force adopts the repeated evaluation, while
F-Race employs racing method.

A. Brute-Force Approach

In brute-force approach, at first, a set of parameter con-
figurations are generated usually by full factorial design or
other DOE techniques, then the performance of each candidate
configuration is estimated by running the same number of runs
on training instances. The configuration with the best estimated
performance is considered the optimal parameter setting. In
this method, the computing resources are evenly distributed
to each candidate configurations [31]. To achieve good results
by brute-force method, a sufficiently large number of runs is
required for each candidate configurations.

Brute-force approach is the easiest method for parameter
tuning, but it presents some serious weakness. First, because
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Fig. 2. Illustrations of the general structures of three categories of tuning methods: (a) simple generate-evaluate methods, (b) iterative generate-evaluate
methods and (c) high-level generate-evaluate methods.
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Fig. 3. Classification of automatic parameter tuning approaches.

of the even allocation of computational resources to each con-
figuration, poor quality configurations are thoroughly tested to
the same extent as the good ones are, thus, the computational
power is not used efficiently. Additionally, there is no criterion
that decides how many runs of each configuration on each
instance should be performed to handle the stochasticity of
the target algorithm [45].

B. F-Race
F-Race, which is inspired from the algorithm Hoeffding

race [49], [50] in machine learning for model selection,
was proposed in [45] and comprehensively studied in [31].
The essential idea of racing method is to evaluate candidate
configurations incrementally on a stream of instances. As
soon as sufficient (statistical) evidence is gathered against
some candidates, these configurations are discarded, and the

race continues on the surviving candidates. In F-Race, after
each evaluation round of the candidate configurations, the
nonparametric Friedman test (Friedman two-way analysis of
variance by ranks) is used as a family-wise test to check
whether there is evidence that at least one of the candidate
configurations is significantly different from others in terms of
performance measures. If the null hypothesis of no differences
is rejected, pair-wise comparisons between the best ranked and
each other configuration are executed and all candidates that
result in significantly worse performance than the incumbent
are eliminated and will not appear in next evaluation round
[51]. The process is repeated until there are only two candi-
dates remain, and the better one of the two is taken as the
result for tuning problem.

The test statistic used in F-Race is based on the ranking of
candidates’ performance metrics. It is worth mentioning that
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ranking plays a two-fold role here. The first role is connected
with the non-parametric nature of the statistical test based on
the ranking. A second role is to implement a blocking design
[52], where only the ranking of different configurations within
each instance is considered. The blocking design is an effective
way of normalizing or standardizing the performance metrics
observed on different instances [38].

A set of candidate configurations should be created before
the execution of racing procedure. When F-Race was first
proposed by Birattari et al. [45], this candidates set was
generated by a full factorial design (FFD), and this version
of F-Race using FFD is denoted as FFD/F-Race. However,
FFD is restricted due to its drawbacks. Firstly, it requires
practitioners to determine the levels of each parameters. More
importantly, the number of candidates grows exponentially
with the number of parameters. Therefore, when the number
of parameters is large, this is impractical and computationally
prohibitive. Consequently, FFD is usually limited to the case
with small number of parameters and reasonable number of
levels for each parameter.

Balaprakash et al. [53] showed that F-Race with can-
didates generated by a random sampling design (RSD) is
significantly better than FFD/F-Race in many applications.
In RSD, the values of parameters are sampled according to
some probability model defined over the parameter space.
Usually, priori information is unavailable, and in this case
the probability model is set to an uniform distribution. The
F-Race using random sampling design is denoted as RSD/F-
Race. Using RSD in F-Race has two main advantages: 1) no
priori definition of levels for numerical parameters is required
and 2) an arbitrary number of candidates can be generated
while also uniformly covering the configuration space [51].

In [31] F-Race was compared with other racing algorithms
and brute-force approach on two tuning problems. In the
first tuning problem, the iterated local search [54] is tuned
on Quadratic Assignment problem [55]. And in the second
one, the ACO [9] is tuned on Traveling Salesman Problem
(TSP) [56]. The results showed that F-Race is an effective
and convenient method to solve parameter tuning problems
of metaheuristics. Besides above two applications, the F-Race
algorithm has been adopted in a number of other studies,
as briefly mentioned in reference [31]. The race package1

implemented in programming language R by Birattari [32]
and a simple documentation2 can be found from the websites.

F-Race uses the computational power more efficiently than
repeated evaluation in brute-force approach. It also can stop
the search process by itself, i.e., stop when only one configura-
tion left. However, if the target algorithm has a large number of
parameters and/or each parameter has a wide range of possible
values, a very large number of candidate configurations should
be evaluated to obtain high-quality results. In such cases, the
adoption of F-Race could become impractical or computa-
tionally prohibitive. This is a common drawback of simple
generate-evaluate methods due to generating candidate con-
figurations in one-stage and without using priori information

1https://cran.r-project.org/src/contrib/Archive/race/.
2http://ftp.uni-bayreuth.de/math/statlib/R/CRAN/doc/packages/race.pdf

about the importance and interaction of algorithm parameters
in generating step.

C. Remarks on Simple Generate-Evaluate Methods
Simple generate-evaluate methods, as its name implies, are

easy to understand and implement. Brute-force and F-Race
methods are able to tune both numerical and categorical pa-
rameters. As the most basic approach, the brute-force approach
usually serves as a baseline in experimental evaluation of
other parameter tuning algorithms [31], even though it is com-
putationally expensive. F-Race method provides a promising
approach for evaluating candidate configurations and results in
significant computational resource savings. In simple generate-
evaluate methods, all candidate configurations are initially
generated at once by FFD, RSD or other sampling strategies,
and usually no priori information about the importance and
interaction of algorithm parameters is used in candidate config-
urations generating step, that is, the set of candidates are gener-
ated uniformly, i.e., without bias. In order to obtain acceptable
optimal configurations, the number of candidates should be
large enough. When parameter space is large, this number will
increase tremendously. This leads to a huge number of runs
in evaluating phase and, thus, is computationally expensive
even prohibitive. Therefore, simple generate-evaluate methods
are not suitable for parameter tuning problems with large
configuration space.

IV. ITERATIVE GENERATE-EVALUATE METHODS

Iterative generate-evaluate methods are iterative tuners, that
is, unlike simple generate-evaluate methods, they repeatedly
execute the generate and evaluate steps, as illustrated in Fig. 2
(b). More importantly, the information gathered from previous
iteration(s) is used to guide the generating (or sampling) of
new candidate configurations for next iteration. It is desirable
to generate candidates around the promising region of the
configuration space in this way. In other words, by taking
advantage of history information, iterative generate-evaluate
methods could explore parameter space more effectively
than simple generate-evaluate methods which usually evenly
sampling candidates within the space. Thus, iterative tuners
mitigate the main drawback, that is, inefficiency in case of
large parameter space, of non-iterative tuners presented in last
section.

According to the strategies of generating candidate configu-
rations, i.e., the sampling strategies, iterative generate-evaluate
methods can be further divided into:

• Experimental design based tuning approaches, where
experimental design techniques are used to set parameter
values, i.e., to generate candidate configurations.

• Numerical optimization based methods, where derivate-
free numerical optimization algorithms are taken as sam-
pling strategies to create candidate configurations.

• Heuristic search based methods, where new candidate
configurations are generated by some heuristic rules, such
as the crossover and mutation in EAs.

• Model-based optimization approaches, where a model
that describes the relation between parameter configu-
rations and algorithm performance is used to assist the

https://cran.r-project.org/src/contrib/Archive/race/.
http://ftp.uni-bayreuth.de/math/statlib/R/CRAN/doc/packages/race.pdf
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evaluation of candidates and to guide the sampling of
new candidates.

Apparently, iterative generate-evaluate methods include the
largest class of current parameter tuning algorithms. This
section devotes to this category of tuners. Specifically, above
four sub-categories of tuning approaches are reviewed from
subsection IV-A to IV-D, respectively.

A. Experimental Design based Tuning

The Design of Experiments (DOE) is a well-established
method to plan experiments so that desired data are collected
and can be analyzed by statistical methods to draw valid
conclusions [57]. In simple generate-evaluate methods, DOE
has been used to generate candidate configurations. Never-
theless, DOE can be used beyond the candidates generating.
Based on experimental analysis, for instance, one can locate
the promising region of search space, analyze the effects of
parameter values changing, screen and rank the importance of
parameters. This subsection reviews some tuning approaches
that are based on experimental designs and use analysis of
experiments to guide the search process.

1) CALIBRA: Adenso-Dı́az and Laguna [5] developed an
iterative tuning algorithm called CALIBRA which employs
design of experiments coupled with a local search procedure.
In CALIBRA, the experimental designs helps the local search
to focus on promising region of the parameter space (search
space). Before the local search starting, a design of exper-
iments, that is, a two-level full factorial design, is used to
identify a start point for the search. Apart from keeping the
local search starting on promising region, CALIBRA uses
experimental analysis to narrows the search space and initiates
the next round of experiments. In the local search, optimal
configuration is found by incrementally narrowing the range
of each parameter through experimental analysis. Specifically,
for each iteration of the local search, a Taguchi’s fractional
experimental design [58] is carried out using the bounds
and midpoint of the narrowed range. This is repeated until
local optimum criteria are satisfied. If computational budget is
available, new local search could be executed to provide more
local optimal solutions. The best parameter setting found is
the output best solution. For stochastic algorithms, CALIBRA
uses repeated evaluation to establish the performance measures
of each experiment point (candidate configuration).

CALIBRA is a representative DOE based tuning method
and can focuses on promising region quickly owing to the
combining of experimental designs and local search. How-
ever, due to the Taguchi’s fractional experimental design
(the L9(3

4)) is used, CALIBRA can only handle up to five
parameters. Additionally, this approach focuses on the main
effects of parameters without exploiting the interaction effects
between parameters [5], [59]. These two drawbacks limit the
application of CALIBRA to situations where the number of
parameters is small (up to five) and the interactions among
parameters are negligible.

2) Other DOE based Tuning Approaches: Based on exper-
imental designs, Gunawan et al. [59] proposed a parameter
tuning framework consists of three phases, i.e., screening,

exploration, and exploitation. Given a number of parameters
of the target algorithm, the screening phase uses a factorial
experiment design to rank these parameters so that unimpor-
tant parameters, whose values have insignificant impact on
the performance of target algorithm, are determined. Values of
unimportant parameters can be set as constants and thus reduce
the configuration space to be explored. Then, in the exploration
phase, a first-order polynomial model is constructed to identify
the promising ranges for important parameters. Finally, in
the exploitation phase, the promising ranges of important
parameters are sent to an automated tuning configurator such
as ParamILS [28] to find the optimal parameter configuration.

Moreover, Gunawan et al. [60] improved the efficiency
of above tuning framework by adding a parameter space
decomposition step at the beginning. The decomposition step
aims at reducing the parameter space such that the number of
candidates in experimental designs would decreases. In [60]
the so-called Resolution IV Design [57] was used to separate
the main effects and interactions of parameters.

B. Numerical Optimization based Tuning
When all the parameters of target algorithm are numerical,

i.e., real or integer valued, the tuning problem could be
solved by numerical optimization techniques along with an
evaluation method. Integer parameters can be handled by
the continuous optimizer through rounding. Yuan et al. [34]
presented research on derivative-free numerical optimization
algorithms for tuning numerical parameters. In that work,
Bound Optimization by Quadratic Approximation (BOBYQA)
[61] was combined with repeated evaluation, and Mesh Adap-
tive Direct Search (MADS) [62] was combined with both
repeated evaluation and F-Race to solve parameter tuning
problems. We call these methods that combine numerical
optimizer and evaluation methods as numerical optimization
based tuning or tuners.

In general, a numerical optimizer can be combined with
the repeated evaluation or F-Race to form a tuner. However,
for those numerical optimizers that, in each iteration, only one
candidate is generated and selection is not required, the F-Race
evaluation method is not feasible, only the repeated evaluation
is available [34]. The repeated evaluation and F-Race both can
be coupled with numerical optimizers that generate multiple
candidates and select the best out of them in each iteration. For
computational cost savings, F-Race is preferred in this case.
From the generate-evaluate principle perspective, numerical
optimization based tuners are apparently iterative generate-
evaluate methods where candidate configurations are generated
according to numerical optimizer’s search strategies.

Numerical optimization based tuning methods are easily
acquired by combining the existing powerful black-box op-
timizer and evaluation methods, such as racing or repeated
evaluation methods. Practitioners can choose a familiar op-
timization algorithm to form a tuner and then adopt it to
solve their tuning problems. The common limitation is that
most of this kind of tuners are only applicable to numerical
parameters (cannot deal with categorical parameters) since the
majority of derivative-free optimizers only deal with numerical
optimization problems.
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C. Heuristic Search based Methods

Iterative tuning algorithms that use some heuristic rules
to generate new candidate configurations are referred to as
heuristic search based methods. The goal of using heuristic
rules is to effectively create candidates so that the promising
region could be quickly identified and then be focused on. In
this way, the tuning algorithm could find good configuration
fast. Many of the existing tuning algorithms, including iterated
F-Race, ParamILS, Meta-EAs and HORA, fall in this category.

1) Iterated F-Race: The main challenge and drawback of
F-Race is that, when the tuning problem has a large number
of parameters and/or each parameter has a wide range of
possible values, the number of candidate configurations to be
evaluated should be quite large, in order to obtain high-quality
solutions. In such cases, F-Race method becomes impractical
and computationally prohibitive. To alleviate this problem,
Balaprakash et al. [63] proposed the iterative application of
F-Race, which is abbreviated to iterated F-Race or I/F-Race
and showed its effectiveness through examples on MAX-MIN
ant system (MMAS) [64], estimation-based local search [65],
and SA algorithm.

The iterated F-Race, as its name suggests, use an iterative
procedure to find optimal parameter settings. Specifically, in
each iteration, firstly, a set of candidate configurations are
generated according to a probabilistic model, then a standard
F-Race is performed on the candidate set and the survived
candidates are used to update the probabilistic model which
will be used in next iteration. This cycle is repeated until the
stop condition, such as maximum computational budget, is
satisfied. It is hopeful to focus candidate configurations around
the promising region by using survived candidates to bias the
sampling of new candidates [38]. The efficiency of the search
procedure is, thus, improved by this way. Details about how
to update the probabilistic model in iterated F-Race could be
found in [51], [63].

Recently, López-Ibáñez et al. [30] provided a software
package implemented in programming language R, called
irace, that includes the iterated F-Race algorithm as well
as several of its extended and improved variants. This irace
package could be found along with user guide document
and usage examples from its website.3 In [66] iterated F-
Race method was applied to improve the performance of the
CMA-ES algorithm with increasing population size (iCMA-
ES) [67] on CEC’05 benchmark set [68]. The results showed
that the performance of iCMA-ES was significantly improved
by automatic parameter tuning procedure. Later, Liao et al.
[69] employed iterated F-Race method to tune seven high-
performing continuous optimizers on two different benchmark
sets (CEC’05 [68] and SOCO [70]) and also concluded that the
performance of tested continuous optimizers were improved by
parameter tuning.

Iterated F-Race has become one of the competitive au-
tomatic parameter tuning approach. It can handle both nu-
merical and categorical parameters. However, it has a few
limitations. Firstly, iterated F-Race was not primarily designed
for reducing computation time [30]. So that, the time-saving

3http://iridia.ulb.ac.be/irace/

techniques, such as sharpening and adaptive capping, is not in-
volved in current iterated F-Race method. Moreover, to obtain
acceptable results, an adequate number of iterations should be
implemented, in other words, a sufficient number of candidate
configurations need to be sampled and evaluated. Thus, if
the tuning budget is too small, the resulting configuration of
iterated F-Race might be poor.

2) Meta-EAs: Since parameter tuning problem is a meta-
optimization problem, apparently, EAs can be used as meta-
evolutionary algorithm (meta-EAs) to solve tuning problems.
In a meta-EA, its individuals, i.e., numeric vectors, represent
parameter configurations and the performance measures estab-
lished by evaluation method (such as repeated evaluation or
F-Race) of each configuration are related to the corresponding
(meta-) fitness [48]. Meta evolutionary algorithm was firstly
introduced by Mercer and Sampson [37]. Greffenstette [15]
conducted experiments with meta Genetic Algorithm (meta-
GA) and showed its effectiveness.

In [48] the CMA-ES [23], which is the state-of-the-art im-
provement of evolution strategies for numerical optimization,
was adopted as a meta-EA and the repeated evaluation was
used to establish performance measures (fitness of meta-EA)
of each candidate configuration. The CMA-ES was also used
as meta-EA by Yuan et al. [34] where both repeated evaluation
and F-Race were taken as evaluation methods.

The so-called Gender-based Genetic Algorithm (GGA) for
automatic parameter tuning was introduced by Ansótegui et
al. [71]. The GGA uses the concept of competitive and
non-competitive genders [72], [73] in generating candidates
configurations. In each generation of GGA, the whole popu-
lation is divided into two sub-population with different gen-
ders, i.e., competitive and non-competitive. The individuals
(i.e., candidate configurations) in competitive population are
evaluated on the set of training instances and compete for
the right of mating. The fittest individuals (candidates), that
is, candidates that yield better performance, are then mated
with the non-competitive population to generate new candidate
configurations [71], [74].

The REVAC (parameter Relevance Estimation and Value
Calibration) method was introduced by Nannen and Eiben
[75], [76] based on the idea of solving parameter tuning
problem by estimating parameter relevance with normalized
Shannon entropy [78]. The REVAC is considered a meta
Estimation of Distribution Algorithm (meta-EDA) [77] since
it use the same general idea as EDA [79], that is, estimating
the distribution of promising parameter values [80]. REVAC
algorithm is an iterative process that consists of estimating the
distributions of promising parameter values for each parame-
ter within the configuration space, and generating parameter
configurations by drawing values from these distributions.
These parameter distributions are updated after evaluating
newly drawn candidates [48]. The tuning process terminates
until the maximum number of tested (or evaluated) candidate
configurations is reached.

Meta-EAs are automated search methods to identify good
parameter settings for metaheuristics. They have the potential
to reach the global optimum within parameter space since they
are based on EAs, which are well-known global optimizers. It

http://iridia.ulb.ac.be/irace/


This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2921598, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

is also important to remark that meta-EAs can stop at any point
of the search process and return the current best configuration
(incumbent) as a solution. However, the similar as EAs, meta-
EAs usually require a large number of evaluations of candi-
date configurations to obtain desirable solutions. This is not
practical when parameter space is large. Additionally, many
meta-EAs such as REVAC and meta-CMA-ES cannot handle
categorical parameters. They are the two main weaknesses of
meta-EAs for parameter tuning.

3) ParamILS: ParamILS, which was proposed by Hutter et
al. [28], [81], is an automatic parameter tuning framework. It
combines stochastic local search method with specific mech-
anisms which exploit some properties of parameter tuning
problem [11]. The core of ParamILS is the iterated local search
(ILS) [54], which is a versatile and well-known stochastic local
search method [82]. ILS involves a main loop consist of three
components: (1) the perturbation of current best solution to
scape from the local optima, (2) the local search procedure
to find optima from given start point, and (3) the acceptance
criterion to determine whether the currently obtained solution
is kept or rejected [54].

ParamILS employs the ILS method to search the optimal
parameter setting for target algorithm within its configuration
space. It starts the search from the best parameter configu-
ration out of the combination of default configuration and a
number of randomly generated configurations. This follows
a subsidiary local search procedure, that is, iterative first
improvement process that searches a one-exchange neighbor-
hood, where configurations differ in the value given to exactly
one parameter, i.e., only one parameter value is changed at
a time. Once a local optimal configuration is identified, the
main loop of the ILS is entered, which involves three steps: a
perturbation step that changes randomly the parameters values,
an execution of the iterative improvement process and an
acceptance criterion that decides from which configuration to
continue the search process [28]. In local search procedure of
the ILS, one needs to test the two candidate configurations
and determine which one is preferred, i.e., the evaluation of
parameter configurations with consideration of handling the
stochasticity of tuning problem.

In ParamILS framework, Hutter et al. [28] proposed differ-
ent ways to evaluate parameter configurations for determining
which configuration should be preferred. The most simple and
intuitive approach, which is called BasicILS, is to evaluate
every candidate configuration by running it on same problem
instances (training instances) with the same random number
seeds. FocusedILS, which is a variant of BasicILS, uses the
intensification mechanism (described in Section II-B) that
adaptively changes the number of training instances during
evaluating candidates. For situations where the performance
metric is the computation time, i.e., the goal of parameter
tuning is to find the optimal parameter setting that minimizes
the computation time, ParamILS can use the so-called adaptive
capping mechanism, which bounds the execution time of
configurations according to the observed performance of the
current best configuration and early prune or stop the poor
configurations, to reduce the computational cost. The software
of ParamILS implemented in programming language Ruby,

which is free for academic use, can be found from the
website4, where a quick start guide could also be downloaded.

Recently, Pérez Cáceres and Stützle [83] employed the
variable neighborhood search (VNS) [84] mechanism as an
alternative for the one-exchange neighborhood in the local
search procedure of ParamILS. In that article, the authors
adopted the reduced variable neighborhood search (RVNS),
where various neighborhoods are explored randomly by chang-
ing the neighborhood to be explored in a systematic way as it is
common in VNS, rather than the one-exchange neighborhood
local search in original ParamILS. It has been shown that
the search of good algorithm configurations can profit from
RVNS’ ability of exploring different and also larger neighbor-
hoods but also enabling the intensification of the search when
is required.

ParamILS is one of the state-of-the-art automatic parameter
tuning methods. It is able to tune both numerical and cate-
gorical parameters. ParamILS, like meta-EAs, can be stopped
at almost any point in the search process and provide a
good quality parameter configuration. Since the neighborhood
search is applied, ParamILS requires the discretization for
each parameters to define the neighborhood of candidate con-
figurations. This is not so easy-to-handle as meta-EAs, SPO
and SMAC (will be described in next subsection) which just
require the definition of ranges of values for each parameter.

4) HORA: The so-called Heuristic Oriented Racing Al-
gorithm (HORA) introduced by B. M. Barbosa and L. F.
Senne [85], [86] is a relatively new heuristic search method
for parameter tuning. HORA is an iterative algorithm which
dynamically creates candidate configurations and uses the
racing method to evaluate them. Thus, HORA is apparently
an iterative generate-evaluate method.

At the start of the HORA tuning process, a number of
instances (n instances) are selected arbitrarily from the given
set of problem instances. Experimental studies are then per-
formed on each of the selected instances (also called training
instances) using the response surface methodology (RSM) to
identify the best (or promising) parameter settings for each
training instance. The experimental studies, thus, result in
n different settings, each one being related to a training
instance. These identified parameter settings ensure diversity
of the parameters and they are used to define the upper and
lower bounds of each parameter. After that, HORA enters an
iterative procedure consisting of (1) dynamically creating new
candidates in the neighborhood of some best known candidate
configurations, i.e., configurations that are preferred in evalua-
tion, and (2) evaluating the set of candidate configurations with
racing method to discard poor ones according to the statistical
evidences [85], [86]. By this repeated procedure, HORA
algorithm consistently finds better candidate configurations.

In [85], [86] a case study about HORA, in which a brute-
force and racing methods were also considered for comparison,
was performed on GA and SA with instances selected from
the OR-Library [87]. The results of the case study showed that
HORA achieve similar (or even better) results but with much
lower computational cost compared to other approaches. This

4http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
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verified the effectiveness of HORA and indicated it is a fast
tuner.

It seems like that HORA and iterated F-Race are similar
since they are both iterative tuners that involve iteratively
generating new candidates and evaluating candidates with
racing method. However, the main difference between them is
the way of generating candidate configurations, that is, HORA
creating new candidates in the neighborhoods of some good
configurations, while iterated F-Race generating candidates
according to a probabilistic model. Additionally, HORA uses
DOE to establish a set of initial configurations and narrow the
original search space of the parameters.

HORA is a relatively new method that combines exper-
imental study, neighborhood search and racing techniques.
Current studies in [85], [86] show that HORA is a promising
method for parameter tuning, but comprehensive study on
more problems is still required. Since the experimental study
based on RSM is used in HORA to initially identify the best
parameter settings and to narrow the search space, the search
speed could be improved. On the other side, if the landscape
of algorithm’s performance respect to its parameter settings
is complex or multimodal, using the simple RSM to identify
promising region may lead to the search of HORA focusing
on wrong region.

D. Model-based Optimization Approaches

The use of response surface model, also called surrogate
model, is promising and popular in dealing with complex
real-world optimization problems, especially expensive opti-
mization problems. This is commonly known as model-based
optimization methods [88]. Model-based parameter tuning ap-
proaches adopt model-based optimization methods to address
tuning problem. They build response surface or surrogate
models to describe (or model) the dependence of target al-
gorithm’s performance on its parameter settings and then use
these models to find good parameter settings for the target
algorithm. The existing model-based tuning approaches can
be described in a unified framework that involves an iterative
procedure consisting of constructing models and using them
to determine candidate configurations to be investigated or
tested [89]. Apparently, model-based tuners are iterative pro-
cedures to tackle parameter tuning problems. The distinctive
difference distinguishing model-based tuners from previously
presented iterative tuning methods is that, in model-based
tuning methods, the candidate configurations to be tested
or investigated are determined based response models which
provides desirable information to address the trade-off between
exploration and exploitation.

Model-based parameter tuning approaches could be viewed
as extensions of the influential model-based optimization
method, that is, the efficient global optimization (EGO) [90]
which combines the predictive model (Kriging or Gaussian
process model), i.e., design and analysis of computer ex-
periments (DACE) [91], with sequential sampling strategies
(commonly based on the expected improvement criterion),
which is used to identify the most promising next design
point. The commonly known model-based tuning approaches

including the Sequential Parameter Optimization (SPO) [92]
and the more sophisticated Sequential Model-based Algorithm
Configuration (SMAC) [47].

1) SPO: The SPO procedure was introduced by Bartz-
Beielstein et al. [92], [93] to optimize algorithm performance.
SPO extended EGO to tackle parameter tuning problem by
coupling with special techniques to handle stochasticity of
tuning problem. SPO starts with a set of initial design points
(parameter settings or configurations) which are generated by a
Latin hypercube design (LHD) [94]. Due to the stochastic na-
ture of the target algorithm, performance for each design point
(configuration) is evaluated by means of repeated evaluation.
The best configuration from the initial set is chosen as the
initial incumbent. Based on the set of parameter settings and
their corresponding performance measures, SPO constructs a
response surface model called Kriging model [89]. Then, a
new set of design points (configurations) are generated and
tested using the constructed model. The most promising points
(configurations), which have the highest expected improve-
ment, are chosen as new candidate configurations for next
iteration. The selected new candidates will be evaluated and
compared with the current incumbent to determine the new
incumbent through the intensification mechanism [88]. With
newly evaluated points, the model can be updated and then
used in next iteration. This process is repeated until termina-
tion criterion, such as the maximum number of iterations or
number of repetitions for the best configuration, has fulfilled.

Sequential Kriging Optimization (SKO) [95] is another
extension of EGO to noisy function optimization and can be
used to parameter tuning problem. Unlike in SPO, SKO uses
Gaussian process regression to fit noisy response data, i..e, the
algorithm performance metric values, directly. Besides model
fitting, SKO and SPO are different in selection of incumbent,
generating new parameter settings, and intensification mecha-
nisms. In [88] Hutter et al. have demonstrated the superiority
of SPO over SKO, and thus SKO appears rarely in parameter
tuning domain. Hutter et al. [46], [89] later presented a new
version of SPO named SPO+, where log-transformed response
data, new expected improvement criterion, and new intensi-
fication procedure were used. This new version performed
more robustly and given better results. In addition, in order to
avoid the up-front cost of initial design, the time-bounded SPO
(TB-SPO) [96] was introduced as another extension of SPO.
SPO and its variants are sophisticated model-based parameter
tuning approaches for target algorithms with only numerical
parameters on single problem instance. The SPOT (Sequential
Parameter Optimization Toolbox) package of SPO method
implemented in programming language R and its reference
manual are available in the SPOT website.5 Further description
of this SPOT package and its usage can also be found in [97],
[98].

2) SMAC: With the aim of removing the two main limita-
tions of SPO and its variants, these are, only support numerical
parameters and only optimizes algorithm performance for
single instance, the more sophisticated SMAC method [47]
was introduced to address general parameter tuning problems.

5https://cran.r-project.org/web/packages/SPOT/index.html

https://cran.r-project.org/web/packages/SPOT/index.html
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Firstly, to handle categorical parameters of target algorithm,
SMAC uses random forest [99], which is a machine learning
method for regression and classification, instead of Kriging
in SPO. Random forests are collections of regression trees,
which are known to perform well for categorical input data.
Thus, random forests share the benefit of regression trees and
typically yield more accurate predictions [100]. Furthermore,
they also provide quantification of uncertainty in a given
prediction.

Another aspect is to extend the model to handle multiple
instances so that the tuning approach can optimize the per-
formance of target algorithm on a set of problem instances
instead of only on a single instance. In SMAC, information
about the instances is explicitly integrated into the response
surface model, i.e., the random forests model. Therefore,
SMAC learns a joint model that can predicts performance of
target algorithm for combinations of parameter settings and
instances features. And these predictions are then aggregated
across instances to give a statistic performance metric on each
parameter configuration.

SMAC also uses the expected improvement (EI) criterion
as used in [46] to select promising candidate configurations
in parameter space. Unlike in SPO, it performs a simple
multi-start local search to find configurations with maximal
EI and considers all resulting configurations as promising
candidates for next iteration. With above main modifications
and extensions, SMAC can tackle general algorithm parameter
tuning problems and yields very good results.

Experimental study that compares the efficacy of SMAC,
TB-SPO, GGA, and ParamILS for a range of parameter
tuning problems that involve minimizing the runtime of the
SAT (propositional satisfiability problem) solver SAOS and
SPEAR and MIP (mixed integer programming) solver IBM
ILOG CPLEX, was performed in [47]. The empirical results
demonstrated that, overall, SMAC yielded statistically signifi-
cant improvements over the compared approaches. The source
code of SMAC in Java6 and in Python7 are available for free
download. Documentations for both versions are provided and
can be found from the websites.

Model-based optimization approaches are efficient methods
to solve parameter tuning problems. SPO has shown the
potential and efficiency of model-based tuning approach, but
SPO and its variants have two main limitations, these are, only
support numerical parameters and only optimizes algorithm
performance for single instance. The sophisticated SMAC
method can tackle both numerical and categorical parameters,
and it is especially good at solving tuning problems with many
categorical parameters. To the best of our knowledge, SMAC
is the currently most powerful automatic parameter tuning
method.

E. Remarks on Iterative Generate-Evaluate Methods

Iterative generate-evaluate methods, generally, alleviate the
computational burden by iteratively generating a small number
of candidate configurations rather than initially generating

6http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
7https://github.com/automl/SMAC3

a large number of candidates in simple generate-evaluate
methods. This category is the most fruitful class of approaches
for tuning problems. Iterative tuners, like iterated F-Race,
ParamILS and SMAC are the state-of-the-art automatic param-
eter tuning approaches. Numerical optimization methods and
heuristic search methods could be modified to solve parameter
tuning problem by combining proper evaluation methods.
Effective sampling methods, which balance the exploration
and exploitation and thus quickly focus on the promising
region, are still needed. Pre-screening and narrowing the
parameter space with small amount of computational resource
is advisable for improving the efficiency of tuning process. The
use of response model or surrogate model is helpful to reduce
the evaluation cost and guide the sampling of new candidate
configurations.

V. HIGH-LEVEL GENERATE-EVALUATE METHODS

The high-level generate-evaluate methods refer to a recently
new category of tuning methods that uses more advanced
(high-level) approaches to generate candidate configurations
and then carefully evaluates these candidates for selecting
the best parameter configuration, as illustrated in Fig. 2 (c).
In parameter tuning problem, a large number of parameter
configuration evaluations, which involve performing a number
of runs for each configuration on a set of problem instances,
is usually required. This is computationally expensive, in
particular when repeated evaluation method is used in tuning
algorithm or the size of problem instances is very large.
High-level generate-evaluate methods attempt to solve tuning
problem in an advanced generate-evaluate framework and to
cut down the computational cost.

The essential idea of high-level generate-evaluate methods
is to quickly generate a set of elite or high-quality parameter
configurations (through coarse evaluations) with small amount
of computational resources, and then to carefully select the
best one from this set instead of evaluating each candidate
configuration thoroughly from the very beginning. By this way,
computational resources are saved in exploring the parameter
space and identifying promising parameter configurations, and
thus more resources are available for carefully evaluating of
elite configurations. The post-selection mechanism [33], [34]
was designed under this direction to solving tuning problems.

A. Post-Selection Mechanism

The post-selection mechanism divides the parameter tuning
process into two phases, namely, elite qualification phase and
elite selection phase [33]. In elite qualification phase, a number
of high-quality or elite candidate configurations are identified
by running some tuning algorithms. Then, in elite selection
phase, these elite configurations are evaluated throughly and
the best one is carefully selected. The initial results in [34]
showed that, owing to a careful elite selection phase, the
post-selection mechanism allows a more rough assessment of
candidate configurations during elite qualification phase, i.e,
the evaluation of most candidates can be performed with fewer
training instances. Therefore, more candidate configurations
can be generated (as the total budget of tuning process is

http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
https://github.com/automl/SMAC3
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limited), and potentially better configurations may be found.
Consequently, elite configurations can be collected by run-
ning a quick tuner with restart or executing different tuners
simultaneously. And in elite selection phase, a racing method
or intensification mechanism could be used to select the best
configuration. Yuan et al. [33] carried out analysis of post-
selection mechanism and suggested that this mechanism was
helpful to improve automatic parameter tuning methods.

Post-selection method provides a new idea to find good
parameter settings by using the existing tuners as generators
to create or identify elite candidate configurations and then
selecting the best one from them after careful evaluation. This
method can easily provide a number of elite configurations
rather than only providing the best one. The key problem
in post-selection method, however, is to keep diversity of
elite candidates in elite qualification phase, so that the global
optimum or adequate high-quality parameter setting could be
selected finally.

B. Remarks on High-Level Generate-Evaluate Methods

The idea of high-level generate-evaluate methods for param-
eter tuning is relatively new and there are few researches in this
direction. It could be found that the existing tuning approaches
can be taken as high-level strategies to systematically generate
elite configurations by running them with low computational
budget and with restart mechanism. New methods for quickly
generate high-quality candidate configurations are of course
highly desirable. Racing methods and other intensification
mechanisms can be used to carefully evaluate the set of
elite configurations. Besides the effectiveness of high-level
generate-evaluate methods, another advantage is that they can
easily provide a number of high-quality alternative configura-
tions except giving the best one. The positive results already
obtained indicate that the idea of this category methods is
promising and worth pursuing.

VI. FUTURE RESEARCH PROSPECTS AND CONCLUDING
SUMMARY

A. Future Research Prospects

Based on the development history of automatic parameter
tuning methods and the current research status of this field,
the following possible research directions are pointed out.

1) Enhance the efficiency of solving parameter tuning prob-
lems: Since tuning process is usually computational expensive,
especially for real-world application problems, it is very im-
portant to improve its efficiency, i.e., to reduce computational
cost. Generally speaking, there are two possible ways to
achieve this goal: 1) to reduce the total number of candidate
configurations that are tested, and 2) to cut down the average
cost of evaluating a configuration. The first way implies to
use advanced sampling strategies to generate candidate con-
figurations such that the configuration space could be explored
effectively and quickly focuses on promising region of the
space. While, the second calls for efficient evaluation methods
to test candidate configurations and to identify the elite ones
rapidly.

2) Establish benchmark test suite and easy-to-use algorithm
tuning toolbox: With the development and maturity of algo-
rithm parameter tuning field, a benchmark set of standardized
tuning problems and an open algorithm parameter tuning
toolbox that allows for simple usage and integration of new
tuning methods are highly desirable. Such benchmark set and
tuning toolbox would facilitate the empirical studies of tuning
algorithms, and reduce barriers faced by new researchers and
practitioners in the community. Until now, only the AClib8,
a library of algorithm parameter tuning (or configuration)
benchmarks, has been introduced by F. Hutter et al. [101].
There is still need for more standardized benchmarks that
includes more tuning problem from different domain. As
mentioned in previous sections, open source code of F-Race,
Iterated F-Race, ParamILS, SPO and SMAC are available
separately. Those packages do not offer GUI (graphical user
interface) visual front-ends for users. They are used through
the command lines or scripts in supported programming lan-
guage (such as Java, Python, or R), which requires users to
have adequate programming skills. Therefore, an open and
easy-to-use parameter tuning toolbox that allows for simple
usage and integration of new tuning methods is in demand.
Although developing an algorithm tuning toolbox that includes
all the existing tuning approaches is a challenging task, this has
very important academic and practical value. Such a toolbox
is expected by researchers and end users.

3) Research on multi-objective tuning approaches: Until
very recently, almost all the existing tuning approaches are
designed to optimize a single performance measure or metric
of the target algorithm, such as the solution quality or run
time. However, in some case, one may expect to optimize
more than one performance metrics simultaneously. This is a
new challenging and direction that has not deeply discussed in
parameter tuning. Recently, multi-objective racing algorithm
has already been newly presented by Zhang et al. [102]–
[104] for model selection in machine learning, and also has
been applied to identify the Pareto optimal parameter settings
of ACO algorithm on TSP [103] and artificial bee colony
algorithms on numerical optimization problems [104]. Bolt et
al. [105] recently introduced MO-ParamILS, a multi-objective
extension of ParamILS, for multi-objective parameter tuning
problems. To the best of our knowledge, parameter tuning
for multiple performance objectives has been studied only
recently and there are few research achievement. Thus, this
new subtopic of parameter tuning need to further study and
development in the future.

B. Concluding Summary

This paper provides a survey of the existing automatic
parameter tuning methods for metaheuristics. A common
introduction was firstly given and followed by the general
statement of parameter tuning problem. A new classification
of tuning approaches was introduced according to tuners’
structure or framework. The existing tuning methods were
classified into three main categories: simple generate-evaluate
methods, iterative generate-evaluate methods and high-level

8http://www.aclib.net/
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generate-evaluate methods. Parameter tuning approaches as
far as we are aware from literature were, then, reviewed
category by category. After the description of each tuning
approach, its main strengths and weaknesses were briefly
stated, which is helpful for new researcher or practitioners
to select appropriate tuner to solve problem at hand. Last but
not least, some directions were pointed out for future research.
In conclusion, a comprehensive survey of automatic parameter
tuning methods was given for researcher or practitioner of this
field.

In the end, it is necessary to highlight the significance of
applying automated tuning methods to properly set algorithm
parameters. Many works have proved the significant improve-
ment in algorithm’s performance with the aid of automatic
parameter tuning. In addition to developing new approaches,
it is highly desirable to apply frequently the existing tuning
methods in industry and research applications, so that the ben-
efits of automatic parameter tuning can be taken adequately,
and new challenges may appear and could be figured out.
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[55] R. E. Burkard, E. Çela, P. M. Pardalos, and L. S. Pitsoulis, “The
Quadratic Assignment Problem,” in Handbook of Combinatorial Op-
timization, D.-Z. Du and P. M. Pardalos, Eds., Boston, MA, USA:
Springer Verlag, 2014, pp. 1713–1809.
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[82] H. Hoos and T. Stützle, Stochastic Local Search: Foundations &
Applications. San Francisco, CA, USA: Elsevier, 2005.
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