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Impact of Communication Topology in
Particle Swarm Optimization

Tim Blackwell

Abstract—Particle swarm optimization (PSO) has two salient
components: 1) a dynamical rule governing particle motion and
2) an interparticle communication topology. Recent practice has
focused on the fully connected topology (Gbest) despite earlier
indications on the superiority of local particle neighborhoods.
This paper seeks to address the controversy with empirical trials
with canonical PSO on a large benchmark of functions, cate-
gorized into 14 properties. This paper confirms the early lore
that Gbest is the overall better algorithm for unimodal and sep-
arable problems and that a ring neighborhood of connectivity
two (Lbest) is the preferred choice for multimodal, nonseparable
and composition functions. Topologies of intermediate particle
connectivity were also tested and the difference in global/local
performance was found to be even more marked. A measure
of significant improvement is introduced in order to distinguish
major improvements from refinements. Lbest, according to the
experiments on the 84 test functions and a bi-modal problem
of adjustable severity, is found to have significant improvements
later in the run, and to be more diverse at termination. A mobility
study shows that Lbest is better able to jump between opti-
mum basins. Indeed Gbest was unable to switch basins in the
bi-modal trial. The implication is that Lbest’s larger terminal
diversity, its better ability to basin hop and its later significant
improvement account for the performance enhancement. In sev-
eral cases where Lbest was not the better algorithm, the trials
show that Lbest was not stuck but would have continued to
improve with an extended evaluation budget. Canonical PSO is
a baseline algorithm and the ancestor of all contemporary PSO
variants. These variants build on the basic structure of base-
line PSO and the broad conclusions of this paper are expected
to follow through. In particular, research that fails to consider
local topologies risks underplaying the success of the promoted
algorithm.

Index Terms—Particle swarm optimization (PSO).

I. INTRODUCTION

INCE its introduction in 1995, the particle swarm
Soptimization (PSO) algorithm has gone through many
changes. The dynamics of the particles have been studied,
parameter values have been evaluated, and extended and
compact versions have been proposed. The communication
topology of the swarm has been investigated, and various
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dynamic and adaptive variations have been put forward. A
March 2018 search for the string “particle swarm” in Google
Scholar returned 261000 results; the algorithm has been
looked at quite intensively by a curious and active research
community.

For all the variations and innovations, though, the version
that has ascended as the “standard” in a majority of recent
publications is not the version that has usually been judged as
superior over the past 20 plus years. In particular, the research
community has settled on the global-best (Gbest) topology for
the great majority of implementations, even when distributed
communication topologies have been uniformly preferred and
praised in the literature. This has sometimes led to disappoint-
ing research results; a slight modification of the algorithm
might have been successful.

The very first particle swarm papers [1], [2], described a
primitive algorithm with some surprising properties. Based on
the metaphor of social learning, a population of initially ran-
dom candidate problem solutions, or particles, moved through
the search space and informed one another of better positions.
Teaching and learning from one another simultaneously, the
system—swarm—evolved toward a global optimum in a large
number of standard test problems.

Even in 1995, two kinds of interparticle communication
network were proposed. The Gbest network keeps track of
the best solution found by any member of the population, and
shares that information with all particles. The ring network—
known here as Lbest—is the most extreme local topology;
it permits information sharing between immediate neighbors
only. Even in that first year it was noted that the Lbest topology
seemed to make the swarm relatively immune to the attraction
of local optima, while Gbest ran quickly but was susceptible
to getting stuck.

Over recent years the research community has largely
assumed Gbest as the default or standard topology, and, in
2013, Engelbrecht [3] reported that, on a 60 function bench-
mark, there was no real performance difference between G
and Lbest. This conclusion went against a large amount of
published research.

This paper seeks to clarify the G/Lbest controversy with
rigorous testing on a large benchmark that combines the pop-
ular CEC test functions with the problems chosen in the 2013
study. In order to match performance with function charac-
teristics, correlations between error and 14 binary problem
properties were investigated. Furthermore, an insight into
G/Lbest behavior is obtained by monitoring how late into a
run a swarm continues to improve, its diversity at the end of a
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run, and its ability to jump between promising modal basins.
This last quality is investigated with a purpose-built bi-modal
function that allows for tight control of problem difficulty.

The main finding of this paper is that the topology affects
many aspects of the swarm’s performance, and a distributed
topology offers advantages, especially in the case of more
difficult problems.

This paper continues with a review of PSO particle com-
munication; the aim is to spotlight the G/Lbest controversy
and argue for a definitive response. Section III tests G/Lbest
on the combined benchmark and links performance with
the presence of one or more of the fourteen binary func-
tion properties. A study of Gbest/Lbest stagnation—the ten-
dency of an algorithm to get stuck—and mobility—the ability
to jump between optimum basins—follows. Tests on real-
world problems are reported in Section VI. A study of
other local topologies completes the empirical investigations;
all findings are gathered and presented in the concluding
section.

II. PARTICLE COMMUNICATION

This section gives an overview of the particle swarm
algorithm and a review of communication topology and
PSO performance. The section ends with comments on the
uptake of Gbest as the default topology and summarizes
Engelbrecht’s [3] 2013 study.

A. Particle Swarm

The particle swarm described herewith is the “canon-
ical” PSO [4]-[8] which differs only from the original
1995 PSO by the inclusion of a convergence controlling
inertia weight (equivalent to Clerc and Kennedy’s [6] con-
striction parameter). This PSO contains the two essential
components—dynamics and topology—at a conceptually fun-
damental level. It is widely accepted as the baseline PSO
and is invariably used as a reference model in contemporary
research.

Each individual, or particle, i in the swarm of M particles is
the triplet (x;, v;, p;) where x; and p; are D dimensional vectors
in the search space X. x; is the current position, p; (pbest) is
the previous best position achieved (pbest may be equal to
xi), and the velocity v; is the difference between the current
and the immediately prior position. Particles move by adding
an updated velocity to x;. The new position is evaluated with
respect to the objective function and, if that position is better,
or equal, to any position it has found so far, the position is
stored in p;.

Specifically, the velocity update rule is

Vit + 1) = wvi(t) + cur (1) o (ni(t) — x;(1))
+ cua (1) o (pi(1) — xi(1)) 6]

where ) are uniform random variables in [0, 11° and o is
the Hadamard (entry-wise) product. n; is the pbest of the best
neighbor, as determined by the communication topology and
the inertial weight, w, and ¢, are two arbitrary parameters,
chosen to encourage search by moderating convergence whilst
preventing explosion.

The topology typically consists of bidirectional edges con-
necting pairs of particles, so that if j is in i’s neighborhood, i
is also in j’s. Each particle communicates with other particles
in its neighborhood and is influenced by the pbest of the best
neighbor. Population topologies are potentially hugely varied,
but in practice certain types have been used more frequently.
The present paper compares aspects of the two most widely
used topologies.

PSO has two arbitrary components, parameter values and
the choice of network, and each has been the subject of
considerable investigation over the past 20 years.

1) Parameters: Clerc and Kennedy [6] analyzed the system
at stagnation and determined that a constriction coefficient
X, equivalent to the inertial weight of (1) with value 0.7968
along with acceleration constants ¢ fixed at 1.4962 pro-
vided optimal performance. Shi and Eberhart [4] came to
a similar conclusion with slightly different values and a
slightly different algebraic arrangement. Subsequent research
has mostly adopted the Clerc and Kennedy [6] values and
the Shi and Eberhart [4] arrangement of inertia weight, rather
than constriction coefficient. The inertia weight encourages
convergence by gearing the velocity down.

2) Topology: The first PSO paper, published in 1995,
proposed two methods for organizing the particles in order to
manipulate the flow of information through the population [2].
One method, called “Gbest,” allowed every member of the
population to be influenced by the member that had achieved
the best performance so far.

In the second topology, “Lbest,” however, particles were
connected by a sparse network of low connectivity. In a
ring neighborhood, for instance, particle i compares its best
position with particles i — 1 and i+ 1 (with appropriate wrap-
around). Lbest was found to successfully optimize a set of
weights of an XOR neural network and, despite hundreds of
trials, convergence to a local optimum was never seen. The
authors suggested that the good behavior of Lbest could be
attributed to the spontaneous formation of groups of explor-
ing particles. However, they noted that, to meet a given error
criterion, Lbest requires more iterations than Gbest.

B. Central Versus Distributed Population Communication

As discussed above, the present study compares two tradi-
tional particle swarm topologies, Lbest and Gbest.

It is important to bear in mind that while Lbest and Gbest
are two venerable and well-known population topologies, they
are by no means the only ones, or even the best ones [9].
They are extremes in terms of fluency of propagation through
the population and as such represent opposite ideals; in one
case new breakthroughs are shared with the entire population
and adopted immediately and in the other case new problem
solutions are shared locally and compete for adoption against
solutions propagated from other parts of the population. Very
many topological structures have been proposed, blending
these two extremes or innovating in other ways.

The general question has to do with distributed versus cen-
tralized communication. Is it better to give all particles the
very best information known at any time, or is it better to
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spread out the search and let individuals persuade each other,
one by one?

In fact Lbest and Gbest are end-points of a near-continuum
of communication topologies. Besides the large number of
possible bidirectional, fully connected structures, particles can
communicate through weighted edges, probabilistic edges,
fuzzy edges, adaptive links based on an unlimited number of
possible rules, and dynamic links of various types, there can be
disconnected subpopulations, unidirectional connections—the
list is vast. Furthermore, particles can communicate in a large
number of ways through the links; in the standard particle
swarm the best neighbor is selected, but the particle could use
an average of all neighbors [9], or some subset of them, the
individuals could employ any of the recombination methods
used in evolution strategies [10], and so on.

C. Topology—Early Experiments

As has been noted, the first particle swarms used either
Gbest or Lbest topologies. As early researchers were learn-
ing how to control the tendency for trajectories to explode
by damping the velocity and applying some coefficients on
the velocity terms, the question of communication topology
did not receive much of a focus until the publication of
Watts and Strogatz [11] landmark paper on the “small world”
effect in network topologies. Kennedy [5] modified the social
network topology of a particle swarm systematically, and
concluded that small-world effects were not significant in a
population of 20 particles, but needed a larger network. That
paper noted that the effect of the topology seemed to vary with
the function, and subsequently a number of researchers began
looking at aspects of the topology.

Suganthan [12] developed the case that since the Lbest
topology seemed better for exploring the search space while
Gbest converged faster, it would be reasonable to begin the
search with an Lbest lattice and slowly increase the size of
the neighborhood until the population was fully connected—
Gbest—by the end of the run. That same paper also reported
on another kind of topology, where neighbors were defined
by proximity in the search space and the number of neigh-
bors was dynamically increased through the course of the run.
The authors anecdotally reported some improvement using the
neighborhood operator.

Besides Gbest and Lbest, Kennedy and Mendes [13] tested
a “pyramid” topology, based on a 3-D wire-frame triangle; the
star, with one central node exchanging influence with all oth-
ers; a graph created with cliques and isolates, as an example
of heterogeneity; von Neumann neighborhoods, with neigh-
bors above, below, and on each side on a wrapped 2-D lattice
and random graphs having various characteristics. They found
that Gbest was ranked second in all topologies as ranked by
median necessary iterations. However, they concluded that, in
trials where an error criterion was met, Lbest took longer than
Gbest to achieve the specified error, but it met the criterion
more often.

Peram et al. [14] selected an interaction partner for a par-
ticle using a weighted Euclidean distance. They identified the
particle with the highest fitness distance ratio (FDR) for each

vector element, i.e., the ratio of the difference between the tar-
get particle’s fitness and the neighbor’s fitness to the distance
between them in the search space on that dimension. FDR and
Gbest were used to influence the particle. FDR ensured that
the selected neighbor was a good performer and increased the
probability that a particle interacted with a neighbor nearby
in the search space. The new algorithm outperformed the
standard PSO on a set of test functions.

Liang and Suganthan [15] created random subpopula-
tions and occasionally randomized all the connections. Those
researchers obtained good results, especially on multimodal
problems, with subpopulation size n = 3, restructuring every
five iterations.

Janson and Middendorf [16] arranged the particles in a
dynamic hierarchy, with each particle’s own previous suc-
cess and that of the particle directly above it influencing
it. When particles with better performance were moved up
the hierarchy they had more effect on poorer particles. The
result was improved performance on most of the test functions
considered.

Clerc [17] developed a parameter-free particle swarm
system called TRIBES, in which the topology, including the
size of the population, evolved over time in response to
performance feedback. The population was divided into sub-
populations with their own order and structure. “Good” tribes
were hypothesized to benefit by removal of their weakest
member, as they already possessed good problem solutions
and thus could afford to reduce their size; “bad” tribes, on
the other hand, were thought to benefit by addition of a
new, randomly generated member, increasing the possibility of
improvement. In the context of the many modifications to the
particle swarm that comprise the unique TRIBES paradigm,
Clerc [17] reported good results on a number of test functions.

D. Topology—Niching

Interest in niching in genetic algorithms, for the solving of
multimodal problems, brought localized topologies back to the
foreground in particle swarm research. The nomenclature of
niching comes from evolutionary theory, where species narrow
their variation in order to fit to a particular optimum; in the
social jargon of particle swarms it might be better discussed
in terms of conformity and norm formation, where subpopu-
lations of connected particles communicate and influence one
another and eventually converge around optima.

Niching divides the swarm into subpopulations in order to
identify and explore more than one optimal region simulta-
neously. Niching techniques in GA include crowding, fitness
sharing, the sequential niche technique, and species conser-
vation [18]. Generally, particle swarm implementations have
used crowding and fitness sharing techniques. The Lbest
topology naturally encourages parallel search and typically
discovers multiple optima; because neighborhoods overlap the
result is competition between solutions, with one propagating
through the population and another solution being forgotten
and lost.

Li [19] found that an Lbest particle swarm can operate as a
niching algorithm because the pbest of each particle forms a
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stable network retaining the best positions found so far, while
the particles explore the search space more broadly. Also,
Li [19] concluded that the Lbest topology in a reasonably large
population was able to locate dominant niches (optima) across
the search space. This means that particles locate optima that
are approximately equally good. However, if the aim of the
algorithm is to locate optima that are less dominant as well,
a nonoverlapping topology might be recommended.

Liu and Ma [18], in a survey of multimodal particle swarm
techniques, maintained that an Lbest topology can provide
comparable or better performance, and with more consistency,
than niching PSO’s with a fixed niche radius, and without the
introduction of an undetermined parameter.

Crowding is an approach where less-fit population members
are replaced by fitter offspring whilst preserving popula-
tion size. Populations implementing multiniche crowding are
able to converge simultaneously to multiple solutions by
encouraging competition between individuals within the same
locally optimal group. Parrott and Li [20] called their tech-
nique “speciation,” where particles that are similar to one
another were linked topologically, improving on a technique
by Kennedy [21] called “stereotyping” that substituted cluster
centroids as sources of influence. Li [19] found that the Lbest
topology was able to induce more stable niching behavior.

Fitness sharing is intended to model environmental niches
with limited resources by making individuals in the same niche
share their fitness; it modifies the search landscape by reduc-
ing the payoff in densely populated regions. In practice, the
sharing effect is implemented by reducing the fitness of each
individual as a function of the number of similar individuals
in the population. It is a penalty for conformity.

One of the earliest “fitness sharing” approaches was developed
by Parsopoulos and Vrahatis [22]. The method stretches
the fitness landscape to remove local optima. Considering a
minimization problem, when the swarm converges on an opti-
mum, the fitness of that position is stretched so that it becomes
nonoptimal. Thus, the swarm will focus on other areas of the
search space, leading to the identification of other solutions.

Parsopoulos and Vrahatis [23] modified the function-
stretching approach through the application of two other
techniques: 1) deflection and 2) repulsion. The former is
another form of modification of the objective function which
removes optima which have been already located. The repul-
sion technique modifies the PSO algorithm by introducing
a repulsion force in an area surrounding the optima which
have already been found. The combination of these techniques
seems to improve the ability of the method to find multiple
optima.

Brits et al. [24] used a technique of generating subswarms
when a local optimum was discovered, called NichePSO. The
main swarm explores widely without communication among
particles, while the subswarms perform local search of a
region.

Researchers investigating techniques for finding multiple
optima have experimented with particle swarm topologies,
extending the Lbest configuration to give even more indepen-
dence to subpopulations and largely rejecting Gbest because
of its inability to search beyond a single optimal region.

E. Dynamic Topologies

Several investigators have suggested adjusting the topology
over time in order to capitalize on the strengths of the two
approaches.

Clerc continued to experiment with dynamic topologies in
the years following the intriguing TRIBES algorithm; these
explorations culminated in a putative baseline PSO known
as SPSO-2011 [25]. The algorithm contained a novel form
of particle dynamics, and more relevant to this review, an
adaptive and random particle communication strategy of great
interest. The topology, identical to the 2006 version of the
algorithm [26], is modified at the end of each unproduc-
tive iteration by demanding that each particle “informs” K
particles at random, as well as itself. The result is a het-
erogeneous communication graph of degree varying between
1 and the swarm size (although, on average, a particle is
informed by K others) which harmonizes Lbest and Gbest
qualities. However, fully connected particles are rare. Although
not intended as a competitive PSO, and in fact not perform-
ing well on the challenging CEC 2013 benchmark composition
functions, SPSO-2011 showed evidence of scalability to higher
dimension [27].

Suganthan’s early experiments [12] have already been noted.
Bonyadi ef al. [28] developed a time-adaptive topology, based
on the observation that Lbest neighborhoods explore the search
space more widely for optimal regions, while Gbest tends
to find a good point within an optimal region. Thus, they
proposed to change the topology over time from several small
subswarms to the fully connected Gbest topology. They argued
that subswarms with as few as two members explore the search
space very thoroughly, while Gbest more effectively exploits
the better quality regions. They started with small subswarms
and increased their size linearly through the run until the entire
population was fully connected.

Marinakis and Marinaki [29] implemented an expanding
neighborhood topology and in a similar vein, Lim and Isa [30]
decided to balance the particle swarms’ preference for explo-
ration or exploitation by varying the particles’ connectivity
with time in a version they called PSO with increasing
topology connectivity (PSO-ITC). They found that high con-
nectivity topologies favor simple problems whereas Lbest
topologies perform better in complex problems.

Each particle in PSO-ITC is initially connected with one
neighbor that is randomly selected from the population. As
the optimization process evolves, the ITC module gradually
increases the particle’s topology connectivity by randomly
selecting new neighbors until all particles are fully connected.
Interestingly, connections in PSO-ITC are unidirectional; A
may influence B without B influencing A. If a particle fails
to improve for a criterion number of evaluations, then new
neighbors are randomly selected. The algorithm incorporates
many changes, as well, that are outside the scope of this
discussion.

All the cited papers in this review are in agreement that
the communication topology of the particle swarm affects
its performance. In comparing the two “classical” topologies,
most note that Lbest has a tendency for exploration, for finding
good regions of the search space and searching in parallel to
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discover multiple regions, while Gbest excels at exploitation,
at finding the highest quality point in a good region.

F. Rise of Gbest

Despite the early advice, a great majority of published PSO
research uses Gbest swarms. It is difficult to point to a time
when the research paradigm began tipping in favor of Gbest,
because the phenomenon is marked more by the absence of
language than any presence. Over time, through the middle
2000s, many writers stopped referring to population topology
at all, and only described the algorithm in terms of a “personal
best” and a Gbest or “population best” term in the velocity
formula.

It was simply assumed that the algorithm used the pop-
ulation’s best solution to influence all members. For exam-
ple, the 2015 Proceedings of the Congress on Evolutionary
Computation contained 36 papers with particle swarm or
“PSO” in the title. Three of the papers described hierarchical
or “subswarm” structures that are not relevant to the current
discussion. Of the remaining 33 papers, 29, or 91% used the
Gbest topology exclusively. This measure is representative of
the trend in the research.

The continued exclusive use of the Gbest communication
topology in trials of new PSO variants is perplexing given
the considerable evidence that Lbest has greater search capac-
ity. Three reasons can be seen immediately. The Gbest PSO,
compared to, say, a gradient descent algorithm, is easy and
quick to code. The Lbest ring topology is hardly any more
difficult to implement, but other Lbest networks are intricate
and require careful coding. Gbest performs “well enough,” and
since it is the simplest algorithm, it seems a natural choice.
And Gbest runs faster due to fewer look-ups. The speed dif-
ference is not great but might become significant in some
applications. Gbest, therefore, is simple to understand and
code, has acceptable performance and executes efficiently.

We note, also, that very many papers that assume Gbest as
orthodoxy also go on to mention the particle swarm’s “well
known tendency to converge prematurely.” For example, this
view point is clearly stated in Pant ef al.’s [31] study in 2008,
Van den Bergh and Engelbrecht’s [32] 2010 paper on PSO
convergence, and Han and Wang’s [33] 2013 paper.

At present, because of the preponderance of publications
that literally define the particle swarm in terms of the Gbest
topology, and because much of the easily available software
implements Gbest with no alternative, we presume that many
new researchers are unaware that there is any other way to
implement the algorithm.

G. Engelbrecht’s [3] Study

Engelbrecht [3] found, from a survey of fifteen papers pub-
lished between 2000 and 2013, a general recommendation to
use Gbest on unimodal problems and to otherwise employ
Lbest. However, he concluded, on the basis of an empirical
investigation on 60 hand-picked test functions.

1) Neither algorithm is preferred for unimodal, multimodal,

separable, or nonseparable problems.

2) In terms of accuracy (mean error), G and Lbest are
approximately equivalent.

3) Gbest is slightly more consistent (smaller standard devi-
ation in the error).

These findings allow him to speculate the following.

1) The general recommendation is in error: both Gbest and
Lbest must be tested in order to find the optimal PSO
for an arbitrary problem.

2) Either Gbest or Lbest could be chosen in order to assess
the effect of a specific change to PSO dynamics.
Speculation 1) is a generalization of 1 to all functions and
speculation 2) is strictly unsupported since the interaction
between particle dynamics and particle communication is not

investigated.

Engelbrecht’s [3] results are intriguing but his methods are
somewhat opaque. Conclusions 1 and 2 are particularly sur-
prising since they question the orthodox view that has emerged
over the past 20 years of PSO research. Therefore, it seems
worthwhile to replicate his results.

III. EMPIRICAL STUDY—COMBINED BENCHMARK

This section forms the central part of this paper: the rel-
ative performance of Gbest and Lbest on a comprehensive
benchmark.

A. Combined Benchmark

A set of 25 single-objective optimization test functions
was assembled for a competition at the 2005 Congress on
Computational Intelligence. This benchmark consists of five
unimodal functions, seven basic multimodal functions, two
multimodal complex functions, and 11 hybrid functions, which
were weighted sums of ten basic test problems [34]. This
test suite became the standard for comparing algorithms,
and in subsequent years possible improvements were iden-
tified, resulting in a new benchmark suite being developed
for CEC 2013 [35]. This collection of 28 functions expanded
on the 2005 composite functions and added new test prob-
lems. It includes five unimodal functions, 15 basic multimodal
functions, and eight composition functions, and has become
the more recent default standard for testing and comparing
optimization algorithms.

Engelbrecht’s [3] 2013 study used a benchmark of 37 base
functions, plus rotated, rotated and shifted, and noisy versions
of some of these base functions, totaling 60 problems in all.

The combined benchmark (CEC05 + CEC13 + ENG13),
Table S1 (given in the supplementary material), provides
84 unique problems. Four CECO05 functions, FO1, F03, F09,
and F10 have equivalent versions in the CEC13 set. These
functions were not included. CEC05 F06-F08, however, are
nonrotated, unbounded, and optimum-on-bounds versions of
CEC13 F06-F08, respectively: these functions were retained
on account of their important differences. The ENG13 bench-
mark has several overlaps with CEC 2005 and includes a
duplicate. The overlaps and duplicate were removed from our
combined test set, and two functions were added—shifted and
rotated versions of a couple of base functions. The functions
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are numbered foo—25 (CECOS5), f31—s58 (CEC13), and f451—95
(ENG13).

Table S1 in the supplementary material lists the presence
of 12 independent binary function properties, as reported in
the original documentation [3], [34], [35]. Fourteen proper-
ties are annotated, but two are dependent: a function is either
unimodal or multimodal, and is either separable or nonsepa-
rable. The total number of functions with a given property is
given in the second column of Table S1 in the supplementary
material. The absence of a property in Table S1 in the sup-
plementary material does not indicate that a function does not
have that property, it merely indicates that the documentation
is silent on the matter. The published references omit some
property definitions and hence we cannot confidently make
any inference—for example, the CEC05 composition func-
tions appear, judged by the CEC13 composition functions, to
be asymmetric.

B. Methodology

The canonical PSO algorithm as described in Section II-A
was used for all experiments. A single fully connected topol-
ogy (Gbest) and the ring topology (Lbest) were trialed for
each function of the benchmark. Particles were initialized uni-
formly at random in each function’s search space X for each
run. Particles were allowed to move outside X but were not
evaluated. The pbest update was applied immediately after a
particle moves and not at the end of an iteration (the particle
with the highest index is chosen if there were ties within the
neighborhood).

Each algorithm (Gbest and Lbest) was run 50 times on each
test function. Runs were terminated at 150 000 function eval-
uations (evals), where a function evaluation is the number of
times x;,i = 1, ... M, is evaluated, even if v;(r) = 0.

In order to be commensurate with Engelbrecht’s [3] BRICS
paper, the swarm has M = 30 particles and w = 0.729844 and
¢ = 1.49618. The initial condition v = 0 is also taken from
the BRICS paper. The spatial dimension, constant across runs,
was D = 30.

Three measurements were made: 1) best function value,
known here as the error; 2) the swarm diversity; and 3) the eval
of the last improvement in the run. The actual error (best value
minus f*) was recorded for CEC05 and CEC13. The optimum
value f* is not known for some ENG13 test functions: in these
cases, the best function value was recorded.

The diversity, div, defined here and in [3] as the mean
separation between any two particle pbests is given by

M-2 M—1
av="0 Y -l @
i=0 j=i+1

Each run was considered as a single trial. Analysis of the
84000 trials (84 functions * 50 runs * 2 algorithms) was
grouped by function and by function property.

For tests of aggregated function data, the three measure-
ments were ranked per function to make data commensurate
across functions. Wilcoxon nonparametric tests of significance
(p < 0.05) were considered more appropriate that ¢-tests due
to non-normality of the raw data, as well as of transformed
ranks.
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Fig. 1. Gbest and Lbest mean error rank for each function property. All ranks
are significant at p < 0.05 except for narrow-valley. A lower rank indicates
better performance.

C. Results

The result of Wilcoxon analysis on the trials on each func-
tion is displayed in Tables S2 and S3 in the supplementary
material. This method of analysis obviates data normalization
and imposition of an arbitrary criterion of success. Bold type
indicates significance, p < 0.05. The number of “wins” and
mean rank is reported in Table I where a win is: a significantly
lower function error, a significantly higher last improvement
or a significantly higher terminal diversity. The mean error
ranks are charted in Fig. 1.

Gbest has better error performance than Lbest on 23 func-
tions, Lbest is superior on 37 functions, and the algorithms
are not significantly different on the remaining 24 functions.
Lbest therefore performs no worse than Gbest on 73% of the
functions in the benchmark. Lbest ranks higher than Gbest,
although the difference is small. Lbest improves later in the
run in 39 cases (Gbest improves later in 15 functions), and
has a higher terminal diversity in 71 functions (Gbest is more
diverse in 8). The rankings are again significant, and by a large
difference.

Lbest, as tested on this comprehensive benchmark, is the
better algorithm (lower error). Furthermore, Lbest achieves a
higher diversity and is able to improve at later stages of the
optimization than Gbest. A reasonable inference from these
results is that Lbest searches longer and more widely and, in
consequence, finds better solutions.

We find significant differences in error between the algo-
rithms for all properties except narrow-valley; all properties
except noise are pertinent with regards to last improvement
and, apart from unbounded and sensitive-direction, we find
that the property groups yield significant run results.

The algorithms have better ranked errors in six (Gbest) and
seven (Lbest) properties. Lbest improves later in all function
groups except narrow valley and high conditioned, and has
a higher terminal diversity in all groups except opt. outside
bounds.

Unimodality and separability indicate simpler problems in
the sense that separable problems can be optimized one
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dimension at a time and unimodal functions can be opti-
mized by any gradient following algorithm. On the other hand,
multimodality, asymmetry, and composition represent more
difficult functions due to the possibility of entrapment in local
optima, the nonuniformity between dimensions, and, in the
case of what is arguably the hardest of all properties, com-
position, a mixture of different characteristics leading to very
high modality, optima in funnels, and very marked anisotropy.

Gbest is the preferred algorithm for the simpler prob-
lems: unimodal (15 Gbest wins and three Lbest wins) and
separable (7-5).

Lbest is the better algorithm for problems featuring each of
these more challenging properties. Lbest is a far better opti-
mizer of composition functions (15-1) and better at multimodal
(34-8), nonseparable (32-16), and asymmetric (11-4) func-
tions. In each case, Lbest improves later in the run, and
maintains a higher diversity.

Neutrality is present in eight functions and Lbest has better
error in seven of these, Gbest in none. This result indicates
that Gbest has problems transversing flat regions, a finding
that is compatible with small diversity.

The correlation between larger diversity, larger improve-
ment, and lower error does not hold for the simpler properties
of unimodality and separability. The correlation also does not
hold for the deception functions although there are only two
deceptive functions in the set and results might be misleading
due to interactions with other properties.

However, the proposition that larger diversity and later
improvement implies lower error, is true for nonseparable
functions, those functions with the global optimum on the
bounds of the search space, functions with plateaus (neu-
tral areas), asymmetric, and composition functions. These
properties are commonly thought to indicate optimization
severity.

Conversely, whenever Lbest is the better algorithm by error,
except for opt. outside bounds, it also has later improvement
and higher diversity. Gbest might or might not have later
improvement if it is the better. It is never the more diverse.

D. Conclusion

The results show that Lbest is the better algorithm for harder
functions and indicates that Lbest achieves its success by being
more diverse and improving for longer. Easier functions, those
that are separable and unimodal, are optimized more efficiently
by the Gbest topology.

Regarding modality, we note that our results are consistent
with Engelbrecht’s [3] 2013 study. He reported that Gbest per-
formed better on 11 unimodal functions compared to Lbest
performing better on 3, and that Gbest performed better on
nine multimodal functions to Lbest’s 19, and concluded, “the
empirical analysis of this paper provides convincing support
in favor of Gbest PSO even for multimodal and nonseparable
problems.” We find the same pattern but conclude the oppo-
site. In sum, Lbest performs better than Gbest, especially on
harder problems, because it retains its population diversity and
continues to search longer.

IV. STAGNATION ANALYSIS

A comparison of last improvements indicates algorithm
activity late in a run. Improvements, however, might be minute
adjustments in the vicinity of a discovered optimum. Late
improvements, if tiny, are inconsequential. In other words,
what matters is the lateness of the last significant improve-
ment. This section considers how significant improvement and
the related concept of stagnation can be quantified and reports
on G/Lbest measurement of these quantities.

A. Defining Improvement and Stagnation

Any attempt to quantify the last significant improvement
(LSI) will involve arbitrary decisions on the nature of f. For
example, a significant improvement for a flat function might
be trivial for a very hilly function. Despite this arbitrariness,
differences in logarithmic, rather than absolute, values seem
cogent since is it is known that PSO converges exponentially
on symmetric unimodal problems such as the sphere func-
tion [36], and it is desirable for PSO convergence on such
minima to be significant at any stage in a run. Furthermore,
a logarithmic sensitivity would ensure that exploration of fine
detail at lower function value will count as significant.

A simple single-parameter measure of LSI-based solely on
the observation of the history of best values f(#) at each eval-
uation ¢ can therefore be defined as follows: an improvement
is regarded as significant at level s if

o) =)o

where E[f(0)] is the expected best initial value of the popula-
tion and fnin is the least value of f over a batch of trials. An
improvement is therefore significant if log(f) changes by more
than a fraction s of the expected overall logarithmic change.

The applicability of this definition of LSI can be clarified by
considering PSO progress inside a symmetric basin with, say,
the optimum at 0: PSO converges to 0 as x(¢) = x(0)e~%' [36].
From (3), an improvement on the threshold of significance
satisfies

G+ 1) flex(0) <E[f(0)])s ~ eomst
J(x(@) f(x(®) Jmin '
The underlying assumption on the nature of f is therefore that f
is homogenous close to each optimum: f(e~™*x) = const X f(x),
i.e., f, in the vicinity of its optima, is a polynomial of homo-
geneous degree. This condition will be true for all continuous
functions.

An algorithm is not expected to improve at every evaluation
of a run. However, a satisfactory algorithm would be expected
to improve over an evaluation interval in an appreciable num-
ber of runs. Suppose that a run is regarded as s-stagnant in
an evaluation interval [ if there is no s-level improvement in
that interval. A stagnation probability can be defined as the
proportion of runs that are s-stagnant in /. An algorithm can
then be said to be improving or nonstagnant at level s in / with
probability at least p if the stagnation probability is less than
or equal to 1 — p. We take, in the following, p = 0.5, so that
an improving algorithm on a given interval with significance
level s does not stagnate on at least half of all runs.
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B. Results—Convergence Plots

Convergence plots of the trials reported in the previous sec-
tion are plotted in Figs. S1-S84 in the supplementary material.
The plots show the logarithm of the error as a function of eval-
vation ¢ for 50 runs of Gbest and Lbest. Only a summary of
the vast amount of information contained in these plots can
be given here. The main features, split according to modality
and separability are as follows.

The wunimodal separable functions (U, S), f =
{31, 35,61,67,68,72,77,78, 89, 90}, are the easiest
optimization class of the benchmark since they corre-
spond to D 1-D unimodal problems. All plots show a power
law f dependence except for f73, a noisy function.

The nonseparable unimodal (U, NS) functions, f =
{2,4,5,32-34,73,76, 85-87, 91}, are more challenging than
the separable unimodal functions since variables interact and
the problem cannot be decomposed into subproblems. The
convergence plots show a mix of behaviors: power law fall-offs
and stagnant runs, as indicated by horizontal regions.

Multimodal ~ separable functions (M, S), f =
{41,52,65,74,79,92-94, 95}, are arguably the next hardest;
decomposition into subproblems is possible, but subproblems
may have suboptimal minima which can potentially trap
optimizers. Once more the convergence curves show either
exponential convergence on an optimum or periods of stagna-
tion with jumps. Some plots show stagnant runs at different
function values—parallel horizontal lines—indicating entrap-
ment in local optima. In other cases, the algorithm chosen to
optimize a single optimum and exponential convergence is

displayed.
The nonseparable multimodal functions M,
NS), f = {6,7,8, 11-25, 3640, 42-51, 53-58, 62—

66, 69, 70, 71,75, 80-84, 88}, form the largest class. Apart
from fgr—64, Which shows Lbest exponential convergence,
the plots display rapid decrease followed by long periods of
stagnation. The stagnant periods may be interspersed with
jumps.

C. Results—LSI

Histograms of numbers of LSI’s per designated interval
essentially provide coarse-grained descriptions of the conver-
gence plots.

The LSI at level s = 0.001 frequency histograms were com-
puted by counting the LSI’s in bins of width 37500 (Figs.
S1-S84 in the supplementary material). The intervals can be
conveniently labeled I; = 37500 x [i—1, i] for i = 1-4. In order
for the logarithm to be defined, function values for ENG13
functions with fiin < 0 have been shifted up by |finin| and zero
values have been excluded. Logs were then taken to base 10.

The majority (7 out of 10) of the U, S histograms consist of
a single bar at 4, indicating improvement to termination, or a
single bar at an earlier interval, corresponding to convergence
within the bounds of finite precision arithmetic. 7 of the 12 U,
NS histograms are single barred; the lower proportion indicates
the increased severity of this class. The center of mass (CM) of
the Lbest M, S histograms is predominantly to the right of the
CM of the corresponding Gbest histograms (the sole exception

if fo2). The M, NS histograms show a similar relative Lbest
CM bias (the situation for f’s 6, 21,46, 75, and 85 is not so
clear cut). This right bias is indicative of Lbest’s ability to
significantly improve later in the run.

In summary, the main features of the convergence plots
are represented by the histogram distributions, validating the
choice of s = 1073,

Tables S5 and S6 in the supplementary material provide
the mean LSI, the number of runs with improvements in I
(the algorithm is nonstagnant if this number is at least 25)
and which algorithm, if either, had significant (Wilcoxon,
p < 0.05) later LSI’s, for s = 1073, a very weak crite-
rion, corresponding to minute improvements, s = 1073, a
moderate criterion, and a very tough criterion, 10™!, equiv-
alent to very large jumps. s = 1077, 10" were chosen as
extremes; 1073 corresponds to the smallest noticeable jumps
on the convergence plots.

These tables are summarized in Table II. As expected, stag-
nation increases from s = 1077 to s = 107! for either
algorithm. Lbest is evidently the later improver at all three
levels. In particular, Lbest improves later in 66 functions at
s = 1073 compared to Gbest’s 7.

Nonstagnant runs in /4 will presumably continue to improve
beyond termination. For example, although Lbest is the
weaker, in terms of error, algorithm for fg7, Fig. S56 in the
supplementary material suggests that the poorer performance
is a matter of run duration. Lbest is simply slower.

Focusing on s = 1073, we find that Lbest is nonstagnant in
14 in 13 of the 22 functions with better Gbest error (59%) and
Gbest is nonstagnant on 5 of Lbest’s 37 preferred functions
(14%). Assuming that a nonstagnant algorithm will continue
to improve, Lbest is stuck on only 22—13 = 9 Gbest-preferred
functions whereas Gbest is stuck on 37 — 5 = 33 Lbest-
preferred functions. Lbest is either equivalent (tied error),
better (lower error than Gbest), or slower (higher error than
Gbest, but significantly improving) on 84 —9 = 75 functions.

D. Conclusion

On the combined benchmark of 84 functions: Lbest is the
later significant improver, provides a lower error and is more
diverse at termination. Choosing Lbest above Gbest would
not be detrimental for 84 — 13 = 71 or 85% of problems
with an evaluation budget of 1.5 x 103, and for larger bud-
gets, the stagnation analysis suggests the number could rise
to 75 (89%).

V. MOBILITY ANALYSIS

Although LSI is a guide to an algorithm’s rate of conver-
gence on a function, it fails to identify an important property:
the ability to discover new optima. Improvements might be
significant even if the algorithm is converging on a subopti-
mal point. Ideally, we wish to measure mobility, i.e., the ability
to jump between optima.

A. Defining Mobility

Suppose, borrowing the language of dynamical systems, a
downhill basin of attraction B of an attractor x* (the basin’s
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TABLE I
COMPARISON OF FUNCTION PROPERTIES. THE TABLE SHOWS THE NUMBER OF WINS FOR EACH MEASUREMENT AND THE MEAN RANK OVER EACH
OF THE FOURTEEN FUNCTION PROPERTIES. A WIN ON A TEST FUNCTION IS DEFINED AS LOWER ERROR, AND HIGHER LAST IMPROVEMENT AND
TERMINAL DIVERSITY. SIGNIFICANCE WAS DETERMINED BY A WILCOXON RANKED TEST. THE MEAN RANKS WERE DETERMINED BY A WILCOXON
TEST ON THE POOLED RANKS OF EACH FUNCTION IN A GIVEN PROPERTY CLASS. BOLD TYPE INDICATES SIGNIFICANCE AT THE 0.05 LEVEL

Error Last Improvement Diversity
Gbest Lbest Gbest Lbest Gbest Lbest

Property Total #Wins | Mean rank | #Wins | Mean rank #Wins | Mean rank | #Wins | Mean rank #Wins | Mean rank | #Wins | Mean rank
All 84 23 51.1 37 499 15 433 39 57.7 8 333 71 67.7
Unimodal 22 15 36.9 3 64.1 6 48.6 5 524 4 352 18 65.8
Multimodal 62 8 56.1 34 449 9 41.4 34 59.6 4 32.6 54 68.4
Separable 18 7 46.3 5 54.7 3 39.8 11 61.2 5 394 13 61.6
Non-separable 66 16 524 32 48.6 12 443 28 56.7 3 31.7 59 69.4
Noisy 3 1 452 1 55.8 1 514 0 49.7 0 25.5 3 75.5
Opt. on bounds 4 0 57.2 2 43.8 0 46.5 1 54.5 0 31.4 3 69.6
Opt. in narrow valley 3 1 50.9 2 50.1 2 555 0 455 0 36.6 3 64.4
Opt. outside init vol 2 0 61.5 1 39.5 0 38.7 1 62.3 1 49.9 1 51.1
Neutral 8 0 64.6 7 36.4 0 435 3 57.5 0 31.7 8 69.3
High conditioned 2 1 43.4 1 57.6 2 62.6 0 384 0 25.7 2 75.3
Sensitive direction 2 1 38.0 0 63.0 0 384 1 62.6 1 46.6 1 54.4
Asymmetry 20 4 53.8 11 47.2 3 42.8 9 58.2 0 26.9 19 74.1
Deceptive 2 1 453 0 55.7 0 34.2 2 66.8 0 25.5 2 75.5
Composition 19 1 59.9 15 41.1 2 453 6 55.7 0 31.8 16 69.2

TABLE II

SUMMARY OF LSI STUDY. THE TABLE SHOWS THE NUMBER OF FUNCTIONS WHERE EITHER ALGORITHM WAS NONSTAGNANT AT LEVEL s IN THE
FINAL 25% OF THE AVAILABLE EVALUATIONS, AND THE NUMBER OF FUNCTIONS WITH SIGNIFICANTLY (p < 0.05) LATER LSI.
THE STATISTICS ARE GROUPED BY ERROR PERFORMANCE

s = 1E-5 1E-3 1E-1
Gbest Lbest Gbest Lbest Gbest Lbest
non-stagnant | later | non-stagnant | later | non-stagnant | later | non-stagnant | later | non-stagnant | later | non-stagnant | later
G better error 14 2 16 7 11 7 13 9 0 9 0 1
L better error 4 0 11 32 0 0 5 35 0 8 0 20
Neither better 10 1 13 20 1 0 8 22 0 7 0 6
P 28 3 40 59 12 7 26 66 0 24 0 27

optimum position) is the set of points such that any down-
hill path starting at a point x in B will inevitably lead to
x*. This definition fits with the action of non gradient opti-
mizers such as PSO and enables, in simple cases such as
2-CONES (defined below) the tracking of an algorithms’s
progress between basins. The relative mobility of one algo-
rithm with another can be gauged by the number of jumps
between basins.
The 2-CONES function

Sc(x) = min(ma|x — xa| + da, mp|x — xp| + dp)

where cones A and B have depths d4, dp and positive gradients
my and mp, is a bimodal version of the more general cone
landscape [37], [38].

Define L = |xg — xa| and d = dg — d4 > 0 (so that the
global optimum is at x4). The equal value contours from the
two cones meet on the line joining the centers at a distance

d+ mpL
- my + mp
from the global optimum x4. A point x is therefore in By if
|x—xa| < ra, and in Bp if [x—xp| < L—r4 = rp. The difficulty
of an instance of 2-CONES, as perceived by an optimizer, can
be controlled with the parameters my p,d and L. A simple
difficulty measure, p can be defined as the ratio (r4/ rg)P of
optimal to suboptimal basin volumes. Smaller relative volumes
indicate harder problems.

L\

B. Experiments

A series of experiments was performed with seven 2-
CONES instances. The gradients, my, of the optimal cone
ranged from 0.85 to 1.15. Otherwise, mp = 1, dy = —450 and
d = 1. The optima x4, xp were placed symmetrically either
side of O on the diagonal 1” at a separation of L = 500.
The search space X = [ — 1000, 1000]D ; particles were initial-
ized in X \ (Ba U Bp). Error, diversity, the number of jumps
between basins, the eval of the last jump, and the basin of the
best position on each run were recorded for 1000 runs of each
algorithm on each function instance. The number of runs is far
higher than is customary in order to improve the significance
of the nominal measurements.

C. Results

The results are tabulated in Table S7 (given in the supple-
mentary material) and Table III.

The tables report on one degree of freedom chi-square tests
of success at finding the optimal basin. The chi-square test for
independence calculates the expected number of cell observa-
tions in a table of nominal-scale data based on row and column
sums. The probability of obtaining the observed frequencies,
given expectations is then estimated. A significant (p < 0.05)
outcome suggests that there is dependency between the row
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TABLE III
2-CONES. MEAN NUMBER OF BASIN JUMPS AND NUMBER OF RUNS IN THE BATCH OF 1000 THAT ENDED WITH THE BEST FOUND POSITION IN THE
OPTIMAL BASIN. THE TABLE ALSO SHOWS THE RELATIVE VOLUME OF THE OPTIMAL BASIN TO THE SUBOPTIMAL BASIN. BOLD TYPE SIGNIFIES

SIGNIFICANCE (p < 0.05) IN WILCOXON (JUMPS) AND x-SQUARED (OPTIMAL BASIN) TESTS

Jumps Optimal basin

ma rel. vol Gbest Lbest Gbest | Lbest
1.1SE+00 | 1.69E-02 1.00E+00 + 0.00E+00 | 1.06E+00 + 8.30E-01 11 17
1.10E+00 | 6.43E-02 1.00E+00 4+ 0.00E+00 | 1.44E+00 + 2.79E+00 58 65
1.0SE+00 | 2.60E-01 1.00E+00 + 0.00E+00 | 2.16E+00 + 4.15E+00 152 273
1.00E+00 | 1.13E+00 1.00E+00 4+ 0.00E+00 | 3.14E+00 + 5.39E+00 527 733
9.50E-01 5.27E+00 1.00E+00 £ 0.00E+00 | 2.32E+00 + 4.54E+00 844 965
9.00E-01 | 2.68E+01 1.00E+00 + 0.00E+00 | 1.38E+00 + 2.32E+00 967 996
8.50E-01 1.49E+02 1.00E+00 4+ 0.00E+00 | 1.06E+00 + 7.91E-01 992 1000

and column variables. In this case, populations were tabu-
lated for each cones environment, dichotomized by whether
they succeeded or failed at finding the optimal basin, by
topology and bold type in the tables indicates significance
at p < 0.5.

The error, for Gbest and Lbest decreases as o increases,
confirming that a relatively larger optimal basin is easier to
optimize. Lbest is significantly better in each case and has a
later final basin jump.

The diversity distribution, in each instance, was unimodal
for Gbest with near-zero variance but Lbest had a marked
bimodal distribution that extended both below and above
Gbest’s values. The great difference in the distributions means
that nonparametric group tests are problematic. Instead, nom-
inal significance tests were employed. The bimodal Lbest
distributions were characterized by a tight cluster in the
interval [10713,10712] and a second subdistribution with
diversities > 1. There were no diversities in [10712, 1] for any
function instance. Nominal categories “low” (div < 10712y
and “high” (div > 100) were chosen. Low diversity indicates
a very tight swarm, and high diversity means that the swarm
is spread over a distance of 20% of the separation between
the optima. Table S7 in the supplementary material shows the
far higher diversity of the Lbest swarm.

Gbest jumped just once—from the initialization region to
either 54 or Bg—in every run of every cones instance. Lbest,
on the other hand, was found to be more mobile, with frequent
jumps between By and Bp. The mobility was at a maximum
when the basins were near equal volume (p = 1.13), and fell
away for decreasing p, presumably due to the increased diffi-
culty of finding the optimum basin. Mobility also decreased for
p increasing beyond 1.13 since jumps from A are disfavored
due to the smaller size of B, and indeed become algorithmi-
cally impossible when function value falls below f(xp). Lbest
finds the optimal basin significantly more often in the five
easier functions.

D. Conclusion

Lbest performs better on 2-CONES, a simple bimodal
function. This performance enhancement is correlated with
increased mobility and diversity. Lbest finds the optimal basin
more often and jumps later in the run. This experiment pins
down a key property of Lbest swarms.

VI. REAL WORLD PROBLEMS

A small number of global optimization problems deriv-
ing from problems in the human domain were also tested.
These functions have been chosen for their diversity of ori-
gin and structure: the FM synth problem (FM), originating in
the design of virtual electronic instruments, is low-dimensional
and highly multimodal [39]; the design of a gear train (GT), an
integer programming problem, is also low-dimensional [40];
the 3-D configuration of molecules as modeled by the fun-
nel structured Lennard Jones (LJ) potential [41]; the control
of a continuous stirred tank reactor, arising in the control of
industrial chemical mixing, is a system of ordinary differen-
tial equations [39]; the spread spectrum radar problem is an
NP-hard minimax electrical engineering problem (but can be
rewritten as a system with constraints) [39] and the recon-
struction of images by tomography (TR), an important inverse
problem in medical and industrial imaging, is an underde-
termined system, which implies that the global optimum is
degenerate [42]. The dimensionality of the problems ranges
from 4 to 100 and the global minimum is sought in all cases.

TR is a novel test function in this context. It is con-
structed from a downsampled standard test image, the
Shepp—Logan [43] image phantom. In this case, the phantom
was downsampled to a 10 by 10 matrix, y;;. The downsam-
pling is necessary in order to control the high dimensionality
of the problem. The aim is to reconstruct y from knowledge
of the row and column sums, ri(y) = > ;yj, ¢ci = > ;Vij-
Suppose that x;; is a trial image. Then the objective function
is ||r(x) — rM|12 +|]c(x) —c()||*>. A 12 atom LJ problem was
chosen so that the dimensionality, 30, is commensurate with
the combined benchmark.

Table S4 in the supplementary material displays the results
of Gbest and Lbest trials using the experiment design of
Section III-B. Lbest achieves a significantly lower function
value on FM Synth, GT, and TR. The algorithms perform
equally well on the remaining three. Lbest has the higher
terminal diversity throughout the real world test set and
improves later on three functions. Interestingly, Lbest is
superior on the lower and higher dimensioned problems.

This test set is too small and the problems are too struc-
turally diverse for any firm conclusion, but the indication is
that Gbest is not the first choice PSO algorithm for complex
real world optimization.
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TABLE IV
RESULTS OF Lk VERSUS GBEST WILCOXON (p < 0.05) ERROR TRIALS FOR THE COMBINED BENCHMARK. COLUMNS HEADED L2-L 16 SHOW THE
SIGNIFICANTLY LOWER ERROR RANKED ALGORITHM ON EACH FUNCTION. THE Lk ALGORITHM WITH THE LME IS TABULATED—OLDEN TEXT
INDICATE THAT THE RANKING OF ERRORS DIFFERED IN AT LEAST ONE GROUP IN A KW (p < 0.05) FOUR-WAY TEST

f L2 L4 [L8|Li6 [LME || f [L2 |14 [L8 [L16 | LME || f [ L2 [ L4 [ L8 [Ll6 [ LME || f [ L2 [ L4 | L8 | L16 | LME
2l 6|6 |G| 6 e |[a]cg|c|=1]=1_16[[49]r2]rsa|r8|L6| Lt |[ 11| =]L4a][1L8[LI6| L8
4| G| G |L8|L6| L6 ||[9%4]| G |G| =| = L8 || 51 |12 |L4]| = | = L2 |12 =1]=]=]-= L2
6| G| G| G| G 12 || 15|12 |14 |18 |Ll6| L4 | 54|L2| L4 |L8|LI6| L8 || 13| = | =|0L8|Ll6| Li6
|6 |G| =] = L8 || 16| 12 | L4 | L8 |Ll6| L4 |[55|L2| L4 |L8|Li6| Li6 || 14| = | = | L8| = L8
|G| G| G| = | L6 |[18|L2|14|L8|LI6| L4 |[56 |12 |L4|L8|Ll6| L2 |[17| = | L4 | L8| Ll6| L4
8| G |G| G| G | L |[19|L2|14|L8|LI6| L2 |[58|L2|L4]| = | = L2 || 33| =] =| = |Ll6| L6
4| G| G| =|L6| L6 |[20| L2 |14 | L8 |Li6| L4 |62 |L2| L4 |L8|Ll6| L2 [[35] === | = L4
52| G| G| = |L6| L6 |[21 | L2 |14 | L8 |Ll6 | L4 | 63| L2 | L4 | L8 |Ll6| L2 |[39| =] =] = | = L4
61| G| G |L8 |Ll6| L6 |[ 22 | L2 | L4 | L8 |Li6 | L8 | 64 | L2 | L4 | L8 |Ll6| L4 |[40| = | G | = | = L2
67| G| G| G| G | L6 || 23| L2 |14 | L8 |Li6| 14 | 69| L2 | L4 | L8 |Ll6| L2 |[ 45| = | L4 | L8| = L8
72| G| G| G| G | L6 |[24 |12 |14 |18 |Li6| L2 || 70|12 | L4 |L8|Ll6| L2 |[50| = | L4 | L8| LI6| LI6
Bl 6| =|=]|= L4 |[25| 12|14 | L8 |[Ll6| L4 |[71 |L2|L4| = | = L2 |[53| = | L4 | L8| = L4
76| G| G| G| G | L6 |[31 | L2 |14 |18 |Li6| L8 | 78|12 |14 | L8 |Ll6| L8 |[57| = | = | L8| Li6| Li6
771 G| G| G| G | L6 |[36|12|G| =] = L4 |80 |12 |L4 | L8 |Ll6| L8 |[65] = | = | = | = L8
sl | G| G| G| G L8 || 37|12 |14 |18 |Ll6| L8 |[8 |L2| L4 |L8|Li6| L4 |66 = | = | = | = L4
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VII. OTHER LOCAL TOPOLOGIES degrees (k = 2(Lbest), 4, 8, 16, 30(Gbest)) and flow times

Any particle communication topology that is not global—
one in which particles do not have immediate access to every
pbests—is, by definition, local. However, some topologies are
more local than others.

The number of edges connecting each vertex, or degree, k of
a regular graph is perhaps the simplest measure of (inverse)
locality. It is simply the number of neighbors in a regular
particle topology. Another measure is the minimum flow time
(number of iterations) t for information to become global.

Consider a sequence of topologies constructed from a ring
topology by adding links to next-nearest neighbors and to next-
next-nearest neighbors and so on. The result is a degree k
topology, denoted Lk, where the neighborhood of particle i is
{ieok/2),....ielLi®l,...,i®(k/2)}, ©, @ are arithmetic
operators modulo the swarm size, N, and k is an even integer.
Lbest = L2 lies at one extreme and Gbest = L(2[(N/2)]) lies
at the other (i © (N/2) is identified with i @ (N/2) when N is
even). The flow time in an Lk topology is related to the degree
by T = [(N/k)]. It is an even coarser measure of locality. For
example, topologies with k between 2[(N/4)] and N —1 share
a flow time of two iterations.

The Lk topologies can be employed to explore how PSO
behavior varies along a spectrum of localities from Lbest to
Gbest.

A. Experiments

Local neighborhoods L4, L8, and L16 were tested using
the methodology of Section III-B in order to assess the
impact of locality on swarm performance over the com-
bined benchmark. The data from the Lbest and Gbest trials
reported in Section III was added to provide a span of

(t =15,8,4,2, 1).

B. Results

Table IV shows the Lk versus Gbest Wilcoxon tests for
each function, organized by Gbest preferred, Lbest preferred
and tied functions where preference is according to the error
results reported in Section III. The table shows the winning
topology in each comparison and the Lk topology with the
lowest mean error (LME).

1) Gbest Preferred Functions: Gbest loses to L16 (L16 <
G) in seven functions, L8 < G in two functions and Gbest ties
with L8 or L16 in ten functions. The Kruskal-Wallis (KW)
test failed to distinguish the Lk algorithms in three of the 23
functions. L16 returned the LME in 17 cases—however the
KW test only indicates that the there is a significant differ-
ence in error in at least one, and not necessarily in all four,
algorithms.

In summary, Gbest beats any local topology in only ten of
the 23 functions in this group.

2) Lbest Preferred Functions: The trials in this group tell a
contrasting story. Gbest optimizes better than an Lk topology
in just two cases (f36 and f46). L4 < Gbest in 36 out of 37
functions in this group and even L16, the most distant topology
from Lbest, is equalled by Gbest just four times and beaten
once. The KW test failed to distinguish any Lk in 13 cases;
of the remaining 24, L2 recorded the LME 11 times.

In summary, Gbest beat a local topology in two out of 148
comparisons. Lbest is confirmed as the algorithm of choice in
this function group.

3) Tied Functions: The functions remain tied for ten of
the 24 functions in this group. Otherwise, an Lk topology
optimizes better, or is equivalent to, Gbest in all but two
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(f8 and f40) functions. The KW test fails to distinguish an
Lk algorithm in 50% of the tied functions.

4) All Functions: The number of Wilcoxon winners per
degree over the entire benchmark of 84 functions is tabulated
as follows.

L2 L4 L8 L1e6

G<Lk 23 24 13 12
Lk <G 37 42 43 47
Lk=G 24 18 28 25
LME 21 18 18 27

Although exhaustive tests are required to differentiate the
Lk algorithms, the local versus Gbest tests show that choos-
ing a local topology can reduce the number of functions where
Gbest was superior to a mere 12. Of particular interest, the
replacement of Gbest with a topology that is only marginally
local can improve PSO performance in many cases where
Gbest was previously found to be superior to Lbest.

C. Conclusion

It is likely that there is an optimal amount and pattern of
connectivity for each function, and perhaps an optimal amount
and pattern for general use. Indeed, the trials on several Lk
networks indicate that a judicious choice of local topology can
improve Lbest performance in many cases. We find that Gbest
beats a local topology in just 14% of functions.

Although the investigation of the aspects of communication
topology is an excellent topic for future research, this paper
focuses on Gbest’s standing as the default topology for PSO—
a position that is demonstrably in error.

VIII. CONCLUSION
A. Message From the Results

The conclusion is easily stated: whenever canonical PSO is
used, Lbest and other Lk local topologies perform better on
more difficult problems because particles spread out and keep
looking after Gbest has collapsed. Gbest can perform well on
some functions, but in the face of multimodality and other
difficulty factors, local PSO pulls out ahead.

Lbest performs better or equally to Gbest on 85% of the
wide-ranging benchmark of 84 test functions in a budget of
150000 evaluations. A study of significant improvements in
the last quarter of the run suggests that this figure could be
extended to 89%. Apart from improved performance, the series
of trials and analyses presented here show that Lbest improves
later in the run, that the improvements are significant, that it
has higher terminal diversity and that it has a higher mobility
between optimum basins. Lbest performs equally or better then
Gbest on a selection of real world problems.

We find that Gbest beats any local Lk topology for 14%
of the test functions. Even adding a small amount of locality
(from global to L16) can significantly improve performance.

In order to cast doubt on the current practice of employing
Gbest canonical PSO as the default version, it is sufficient to
find a single alternative topology that performs better. This has
been accomplished.

The categorization of problem by binary property gives an
indication of which type of canonical PSO to utilize on a new
problem in the case that some knowledge of that problem type
is available. Gbest can certainly be employed if the problem
is unimodal or separable. Noisy, high-conditioned, deceptive,
and problems with a sensitive/dominant variable could ben-
efit from Gbest (although examples of these categories were
not numerous in the combined benchmark). A local topol-
ogy should be applied to multimodal, nonseparable problems
and problems with neutrality (plateaus), asymmetry and with
a combination of difficulties (as manifest by the composi-
tion functions). There is evidence that local canonical PSO
is preferable in situations where the optimum is on or out-
side the search bounds (but once more, these types were not
prevalent in the test set).

Since nonseparable, multimodal and combination functions
represent the harder problem type, and unimodality and sepa-
rability the easier type, local canonical PSO is generally to be
picked if the problem is suspected to be complex. In particular,
real world problems are invariably complex and an application
of canonical PSO would benefit, as witnessed from tests on
six wide-ranging real world problems, from a local topology.

These conclusions are drawn from a comprehensive series
of trials on the canonical PSO, a version that includes particle
dynamics and communication in their purest forms and is his-
torically and, arguably, conceptually, the basis of subsequent
PSO development. It is probable that the conclusions transfer
to many PSO variants: PSO research that ignores the signif-
icant role of interparticle communication risks underselling
any claimed advantage; comparative evaluation between a new
variant and only Gbest canonical PSO has dubious validity.

B. Measuring Significant Improvement and Mobility

A general method for coarse-graining the information con-
tained in a batch of runs has been advanced: the LSI. LSI
depends on a level, s, defined as a proportion average total
logarithmic function change in the course of a run. The LSI
is placed within a small number of equal evaluation intervals
I; that cover the total evaluation budget. The number of LSI’s
in a given interval can then be used for algorithm compari-
son. The probability that an algorithm is not stagnant in the
final interval can be used to define an improving algorithm.
We argued that an improving algorithm in /4 can be expected
to continue to find better function values if the run budget
were extended. This enables us to distinguish algorithms that
become stuck, from those that are merely optimizing slowly.

The downhill basin of attraction of an optimum has been
defined and computed for a bimodal problem. This function
(2-CONEY) is the superposition of two cone base functions.
Different instances of 2-CONES are obtained by tweaking
cone parameters. A simple difficulty measure, defined as the
ratio of basin volumes, is found to match canonical PSO
performance. The ability of an algorithm to jump between
basins—the mobility—is then observable.

C. General Conclusion

The Gbest population converges rapidly, which may be ben-
eficial when a problem is simple but, as the present results
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show, it tends to perform relatively poorly when there are fea-
tures in the function landscape blocking its way or attracting
it toward local optima. Local topologies offer a much richer
dynamic, with individuals interacting locally to form sub-
populations clustered in the search space, exploring multiple
regions before converging, one by one if at all, on a supe-
rior solution. Each particle must be persuaded, in a sense,
that a solution is better than the one it has been develop-
ing, and good problem solutions flow through the population
with greater or less speed, depending on the connectivity; one
particle persuades its neighbor, and if the solution is good
then that neighbor persuades its neighbor on the other side,
and so on. This amounts to a distributed marketplace of com-
peting problem solutions. A particle in one part of the ring
has no information about what is happening in other parts,
and eventually better problem solutions spread through the
population.

Let us emphasize that Lbest and Gbest are only two pos-
sible topologies for a particle swarm, and the space between
them is rich with potential, as demonstrated in Section VII.
Besides holding a key position in the particle-swarm literature,
they establish a pair of end-points that enable contrast between
highly centralized and widely distributed swarm communica-
tion patterns. In the centralized Gbest topology all influence
flows from the one individual particle that has found the best
solution so far. The sense of this is that the entire popula-
tion acquires the best information available at any time; the
problem is that the first decent guess at a solution is unlikely
to be the best one, and by betting the whole population’s
efforts on early candidates, pretty soon the entire population
is trapped in an inferior part of the search space.

The Lbest and Lk topologies can have many parallel
searches going on, as pairs and groups of particles entrain and
influence one another in one region or another. In practice,
better solutions begin to attract adherents, and small subpopu-
lations eventually, but not always, tend to dissolve and merge
as superior solutions become the neighborhood best for one
after the other. There is not much ambiguity in the present
results. There are some functions where Gbest performs bet-
ter than any local topology. If a researcher is working with a
problem that is known to be unimodal or separable, or that has
previously been satisfactorily solved with a Gbest approach,
or when a speedy and merely adequate solution is required,
then it may be sensible to choose the faster and simpler Gbest.
And it may perform well on certain more difficult problems, as
well, with lesser probability. If a researcher knew in advance
what the fitness landscape looked like, then the choice of a
solution strategy would be simple and a precise, nonstochastic
approach would likely be appropriate.

It is hoped that the present results will lead researchers
to focus on the dimensions of particle swarm communica-
tion topologies and their effects on performance. Particles are
unable to solve any problem alone, but through communica-
tion they are very powerful. And now, after more than 20
years of research, the effects of the communication topology
are still not very well understood. Learned patterns of thought
guide our attention to the particles, to the “items” compris-
ing the system, but only a holistic analysis of the population

can reveal how the algorithm works and how to improve it.
Besides dynamic and adaptive approaches, there is a need to
understand the effects of speeding and damping the flow of
information through the population during the search process.
These effects will interact with other aspects of the algorithm;
for instance, though it is customary to have a particle select
its best neighbor, this is not necessary; good results can be
attained by choosing a neighbor at random Pea et al. [44], or
averaging across all neighbors Mendes and Kennedy [9], and
the effect of the communication topology will depend on the
interaction rule. Most of all, it is hoped that the particle swarm
research community will show itself to be robust and will re-
evaluate the choice of topology used in everyday research. It is
painful to read papers that mention the well-known weakness
of the particle swarm for being trapped in local optima, and
then to realize that the author is unaware that the weakness is
an effect of the topology that has been implemented.
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