
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 3, JUNE 2019 473

Variable-Length Particle Swarm Optimization for
Feature Selection on High-Dimensional

Classification
Binh Tran , Member, IEEE, Bing Xue, Member, IEEE, and Mengjie Zhang , Senior Member, IEEE

Abstract—With a global search mechanism, particle swarm
optimization (PSO) has shown promise in feature selection
(FS). However, most of the current PSO-based FS methods
use a fix-length representation, which is inflexible and limits
the performance of PSO for FS. When applying these meth-
ods to high-dimensional data, it not only consumes a significant
amount of memory but also requires a high computational cost.
Overcoming this limitation enables PSO to work on data with
much higher dimensionality which has become more and more
popular with the advance of data collection technologies. In this
paper, we propose the first variable-length PSO representation
for FS, enabling particles to have different and shorter lengths,
which defines smaller search space and therefore, improves the
performance of PSO. By rearranging features in a descend-
ing order of their relevance, we facilitate particles with shorter
lengths to achieve better classification performance. Furthermore,
using the proposed length changing mechanism, PSO can jump
out of local optima, further narrow the search space and focus its
search on smaller and more fruitful area. These strategies enable
PSO to reach better solutions in a shorter time. Results on ten
high-dimensional datasets with varying difficulties show that the
proposed variable-length PSO can achieve much smaller fea-
ture subsets with significantly higher classification performance
in much shorter time than the fixed-length PSO methods. The
proposed method also outperformed the compared non-PSO FS
methods in most cases.

Index Terms—Classification, data mining, feature selection
(FS), high-dimensional data, particle swarm optimization (PSO).

I. INTRODUCTION

RECENTLY, feature selection (FS) has become an essen-
tial technique in data preprocessing especially on high-

dimensional data. With the tremendous growth in data collec-
tion technologies, the number of features collected in many
machine learning applications becomes increasingly larger.
However, the existence of irrelevant and redundant features

Manuscript received March 21, 2018; revised June 28, 2018; accepted
August 22, 2018. Date of publication September 10, 2018; date of current
version May 29, 2019. This work was supported in part by the Marsden
Fund of New Zealand Government under Contract VUW1509 and Contract
VUW1615, in part by the Huawei Industry Fund under Grant E2880/3663,
and in part by the University Research Fund at Victoria University of
Wellington under Grant 209862/3580 and Grant 213150/3662. (Corresponding
author: Mengjie Zhang.)

The authors are with the School of Engineering and Computer
Science, Victoria University of Wellington, Wellington 6140,
New Zealand (e-mail: binh.tran@ecs.vuw.ac.nz; bing.xue@ecs.vuw.ac.nz;
mengjie.zhang@ecs.vuw.ac.nz).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2018.2869405

in these datasets may obscure the relevant ones, which signifi-
cantly degrades the performance of many learning algorithms.
Therefore, with the aim of eliminating irrelevant and redundant
features, FS helps in improving the accuracy and interpretabil-
ity of the learned models, shortening the learning time, and
reducing the storage space of the dataset [1].

Researchers have proposed a large number of FS meth-
ods for classification problems, which can be classified into
wrapper and filter approaches [2]. While a wrapper method
evaluates the goodness of a feature subset using a classifica-
tion algorithm, a filter method is based solely on the intrinsic
characteristic of the training data. Therefore, wrappers can
usually obtain better classification performance than filters, but
with higher computation time. Filter methods are also said to
be more general than wrappers. Therefore, a combination of
these two approaches has also been proposed to combine their
strengths [3].

Although being studied for decades, FS is still a challeng-
ing task especially on high-dimensional data due to its huge
search space. FS is a combinatorial optimization problem with
2n possible combinations, where n is the number of original
features. In other words, the search space grows exponentially
with the number of features.

By ranking features individually, feature ranking or fea-
ture weighting methods [4] usually scale well with high-
dimensional data. Features are ranked based on their degrees
of relevance to the target concept. Then a predefined num-
ber of top-ranked features will be selected to form the final
subset. However, it is difficult to determine an appropri-
ate number of features to select without a certain amount
of domain knowledge or extensive trials. Furthermore, there
can be two-way, three-way, or multiway complex interactions
among features [5]. An individually weakly relevant feature
may become highly useful when combined with other fea-
tures and vice versa. By evaluating features independently,
these methods cannot handle feature interactions. In addition,
the top-ranked features may be redundant, which may degrade
the performance of classification algorithms. An improvement
of feature ranking approaches is to append a second stage,
where a heuristic search is applied to the top-ranked features
to remove less relevant and redundant features [6]. However,
since features are individually ranked in the first stage, this
approach may fail to identify multiway feature interactions.

In contrast with feature ranking, feature subset selection
methods can evaluate the whole feature subset at once, which

1089-778X c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2445-1231
https://orcid.org/0000-0003-4463-9538

474 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 3, JUNE 2019

can better deal with feature interactions. Sequential forward
selection (SFS) [7] and backward FS methods (SBS) [8] are
typical feature subset selection methods. SFS (SBS) gradu-
ally adds (removes) features until no further improvement.
While SFS can be efficient in high-dimensional data, SBS is
too expensive to apply to these datasets [3]. However, using
a greedy search, SFS and similar methods feature subsets
are prone to be stuck in local optima, especially in a search
space with thousands of features. A global search technique
is needed to explore this huge search space better.

Particle swarm optimization (PSO) proposed by Eberhart
and Kennedy [9] is a population-based algorithm which is
well-known with global search ability. Simulating the social
behavior of bird flocking, PSO works by maintaining a swarm
of particles, each of which represents a candidate solution.
By communicating their best found solutions, these particles
can fly toward more fruitful areas and discover better solu-
tions. PSO has been applied and shown promise in many
problems [10], [11]. However, most of its applications are
usually on low dimensionality with tens or hundreds of fea-
tures [12], [13]. Its performance on high-dimensional data
with thousands of features or more is still limited due to
the following limitations which motivate us to propose a new
PSO-based FS method.

A. Motivations

First of all, most of the PSO-based FS methods in the liter-
ature use the fix-length representation. In other words, all the
particles in the population have the length which is equal to
the original number of features. With this representation, PSO
usually requires a significant amount of memory and computa-
tion time when applying to FS on high-dimensional data. This
limitation hinders PSO’s applications on problems with hun-
dreds of thousands of features, which become more popular in
recent years. Furthermore, representation is the main factor in
defining the size of the search space. An effective and flexible
representation can help PSO achieve better solutions. In this
paper, we propose the first PSO-based FS algorithm with a
variable-length representation, so called VLPSO.

Different particles can have different lengths (i.e., numbers
of features). Therefore, they may focus on different areas of the
search space. Based on this ability, we propose a new initial-
ization method called population division, which divides the
population into divisions of particles with different lengths
to provide an appropriate level of diversity for the whole
population.

Furthermore, to encourage the short-length particles to find
good feature subsets, we rearrange features in the descending
order of their importance or relevance to the target concept.
In other words, features are ranked based on a feature ranking
method before applying PSO. In this way, the most important
features can always be selected by any particle in the swarm.
On the other hand, particles with longer lengths will have
the potential to include less relevant features, enabling PSO
to detect possible feature interactions that can lead to better
feature subsets.

To facilitate particles with different lengths to learn from
each other, VLPSO adopts the updating mechanism proposed
in the comprehensive learning PSO (CLPSO) [14], which is a
PSO variant. By allowing any particle to become an exemplar
for others to learn from, CLPSO encourages diversity of the
swarm and eliminates the need for specifying a specific com-
munication topology. Furthermore, different dimensions of a
particle can also learn from different particles. These char-
acteristics of CLPSO enable our variable-length particles to
choose appropriate exemplars easier. CLPSO has achieved sig-
nificantly better results than many other PSO variants on many
complex multimodal functions [14], [15]. However, to the best
of our knowledge, CLPSO has never been applied to FS. In
this paper, we will apply CLPSO to FS with some adjustments.
First, the exemplar assignment in CLPSO needs to be adjusted
to suit the newly proposed representation. Additionally, the
probability used to choose exemplars in CLPSO is based on
the index of the particle, which may limit its performance.
Therefore, VLPSO will use an adaptive learning probability
recently proposed in [15] to overcome this limitation.

Furthermore, we propose a length changing mechanism
to alleviate the premature convergence, which is a common
problem of PSO, especially on high-dimensional data. This
mechanism enables particles to change length during the evo-
lution. It helps PSO escape from local optima and move to
more fruitful areas in the search space.

Additionally, PSO is well-known with the capability of
quickly detecting fruitful regions; however, once there, it may
not perform a refined local search well in complex search
space to compute the optimum with high accuracy [16].
Local search has been combined with PSO to overcome
this drawback [3]. Therefore, we also combine VLPSO with
local search to further improve VLPSO performance on
high-dimensional data.

Besides search mechanism, feature evaluation is another
critical component of an FS method.

Although wrapper methods usually obtain better classifi-
cation performance than filters, using classification accuracy
solely may not be sufficiently powerful to distinguish the
subtle difference between feature subsets. When working
on high-dimensional data, classification algorithms require a
much larger number of instances to maintain their performance
due to the curse of dimensionality, which is usually not sat-
isfied in reality. Therefore, we combine the strengths of both
wrapper and filter approaches aiming to provide a smoother
fitness landscape to facilitate the search process.

To avoid adding a notable amount of computation, we use
a hybrid evaluation method of K-nearest neighbor (KNN) and
a distance measure proposed in [3]. Since both use on the
same distance measure in their calculations, the increase in
evaluation time is neglectable.

B. Goals

The main goal of this paper is to propose the first variable-
length representation in PSO for effective and efficient
FS. Specifically, we will investigate the following research
objectives.

TRAN et al.: VARIABLE-LENGTH PSO FOR FS ON HIGH-DIMENSIONAL CLASSIFICATION 475

1) How to design particles with different lengths that can
communicate smoothly with each other.

2) Whether the feature subsets selected by the proposed
algorithm are smaller and achieve similar or better clas-
sification performance than the original feature sets,
and the subsets selected by standard PSO and other
compared PSO-based FS methods.

3) Whether incorporating a local search procedure helps
the proposed method achieve even higher classification
accuracy.

4) Whether the proposed methods significantly reduce the
running time of PSO on high-dimensional data.

5) Whether the proposed methods outperform traditional
FS methods.

6) How effective and efficient the proposed strategies help
PSO improve its performance on high-dimensional data.

II. BACKGROUND AND RELATED WORK

A. Particle Swarm Optimization

As a population-based algorithm, PSO [9] maintains a
swarm of particles. Each particle has a position which rep-
resents a candidate solution and a velocity showing the speed
and direction that the particle should move in the next iteration.
A particle’s position and velocity are encoded in two vectors of
n real numbers where n is the dimensionality of the problem.
Particle’s position is evaluated based on a fitness function.
Then the best position that each particle has explored so far
(pbest) is recorded and shared with other particles. In the con-
ventional PSO, a fully connected topology is used to find the
best position of the whole population (gbest). In other topolo-
gies which do not connect all particles, gbest is replaced with
a local best (lbest). These best positions are used to update a
particle’s velocity which then defines its position as shown

vt+1
id = w ∗ vt

id + c1 ∗ r1i ∗ (pt
id − xt

id)

+ c2 ∗ r2i ∗ (pt
gd − xt

id) (1)

xt+1
id = xt

id + vt+1
id (2)

where vt
id and xt

id are the velocity and position of the ith
particle in dimension d at time t. w is the inertia weight rep-
resenting the moving momentum of the particles. pt

id and pt
gd

are pbest and gbest positions in dimension d at time t. c1 and
c2 are acceleration constants, and r1 and r2 are random values
uniformly distributed in [0, 1].

When applying PSO to FS, each real value ranging from
0 to 1 in the position vector indicates whether the correspond-
ing feature should be selected or not based on a predefined
threshold (e.g., 0.6).

B. Comprehensive Learning PSO

CLPSO proposed by Liang et al. [14] is a variant of con-
tinuous PSO in which a particle can learn from pbest of any
particle. This strategy helps PSO maintain the diversity of the
swarm and hence alleviate the common problem of prema-
ture convergence in PSO. Furthermore, while in standard PSO,
all dimensions of a particle’s velocity are updated based on
its pbest and gbest, CLPSO enables different dimensions to

learn from pbest of different particles including its own. The
decision of choosing itself or another particle as an exemplar
depends on a learning probability called Pc ranging from 0.05
to 0.5. Each particle has its own Pc. Equation (3) is used to
calculate Pc for the ith particle

Pci = 0.05+ 0.45
exp

10(i−1)
S−1

exp10−1
(3)

where S is the population size.
To set an exemplar for a dimension d of the ith particle,

CLPSO generates a random number. If this number is greater
than Pci, d learns from its own pbest; otherwise, a tournament
selection with the size of 2 will be used to choose the exem-
plar for d. Therefore, besides a position and a velocity vector,
CLSPO has another vector to record exemplars, which are the
indexes of the chosen particles, for all dimensions. Exemplars
of a particle remain unchanged until it stops improving for α

iterations. Therefore, each particle also counts how many iter-
ations that its pbest has not been changed. When this count
exceeds α, all exemplars of this particle are renewed. With
these changes, CLPSO uses (4) to update velocity

vt+1
id = w ∗ vt

id + c ∗ rid ∗ (pt
exmplr(id)d − xt

id) (4)

where exmplr(id) returns the exemplar of particle i in dimen-
sion d.

C. PSO for FS in Classification on High-Dimensional Data

PSO has been proposed and shown promise in FS [17].
An increased interest in PSO has shown through a growing
number of papers proposing PSO-based FS methods in the
past ten years [12].

Both filter or wrapper approaches have been proposed in
PSO-based FS methods. In filter methods, different measures
were proposed to evaluate feature subsets, such as rough
set [18], fuzzy consistency [19], mutual information, and
entropy [20]. On the other hand, feature evaluation methods
in wrappers are based on the classification performance of a
learning method [17]. Combination of both approaches has
also been proposed [3].

To improve PSO performance for FS, researchers have
also proposed many improvements in updating mechanisms
of gbest [17], pbest [3] and particles [21], [22], communica-
tion topology [23], initialization [17], and representation [24].
Readers are referred to [12] for more comprehensive survey.
In this section, we only focus on reviewing those methods that
improve PSO representation.

Reducing PSO search space by explicitly eliminating redun-
dant features is an effective way to improve PSO performance.
Lane et al. [24] used a statistical clustering method to group
similar features into the same cluster. Then, during the evo-
lutionary process, some features with the highest probability
(i.e., velocity) from each cluster were selected. Results showed
that these methods could select a smaller number of features
to achieve similar or better classification performance than all
features and the compared methods. However, it is not easy
to choose an appropriate number of features that should be
selected from each cluster.

476 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 3, JUNE 2019

Among the early PSO variants, binary PSO [25] seems to
significantly reduce the search space over continuous PSO (and
also the memory space) when it restricts the position vector
into binary values. However, using velocity solely to update its
position, binary PSO cannot achieve a good performance [26].
Different updating mechanisms have been proposed to improve
its performance [22], [26]. Nevertheless, these methods still
use a fixed-length representation, which cannot scale well
when the number of features reaches hundreds of thousands
or even millions.

To provide a better solution for discrete optimization prob-
lems, Chen et al. [27] proposed a set-based PSO method
(S-PSO) in which a particle is encoded as a crisp set of
elements. Velocity is a set of elements and their corre-
sponding possibilities. Results on the traveling salesman and
multidimensional knapsack problems showed that S-PSO and
its variants [28] were promising in solving discrete problems.
However, the position and velocity representations in S-PSO
require even more memory than standard PSO.

Another set-based representation (named SBPSO) was
proposed by Langeveld and Engelbrecht [29], where the posi-
tion is a set of elements while velocity is a set of operation
pairs representing adding or removing elements. To avoid early
convergence, velocity is updated using not only the pbest and
lbest sets but also two more sets generated by two proposed
operators. One is a random removal of some elements that
appear in current position, pbest, and lbest sets. Another oper-
ator is adding some elements that are not in these three sets
using a k-tournament selection that involves further fitness
evaluations, which may lead to much higher computation time
if the fitness function is costly. Results on knapsack problems
showed that SBPSO performed significantly better than other
three discrete PSO algorithms. However, the sensitivity anal-
ysis of SBPSO showed that its performance is sensitive to
parameters used in the velocity formula [29].

In summary, although many PSO-based FS methods have
been proposed to improve PSO performance in FS, not many
studies addressed the limitation of the PSO representation in
solving FS [12]. A new representation that can improve the
scalability of PSO for FS, especially on high-dimensional data,
is still missing. In the following section, we will propose a
new approach to tackling the limitation of the fixed-length
representation in PSO for FS.

III. PROPOSED METHOD

This section starts with a description of the proposed
variable-length representation along with the exemplar assign-
ment and an adaptive learning probability that are adjusted
based on CLPSO. It then introduces the population division,
feature ranking, and length changing strategies that are enabled
by the variable-length representation. Finally, it presents the
hybrid fitness function, the overall algorithm of VLPSO and
the local search that is combined with VLPSO.

A. Variable-Length PSO Representation

The proposed variable-length representation aims to
improve the scalability of PSO for FS on higher dimensional

Fig. 1. Representation of a VLPSO particle with length L.

problems and reduce the computation time required when
using a fix-length PSO method for FS.

The proposed representation is still vector-based as the tra-
ditional PSO; however, each particle will have a different
length L. VLPSO is developed based on the CLPSO [14]
which was described in Section II-B. Fig. 1 shows the rep-
resentation of a VLPSO particle with length L, which has
three vectors including the position, velocity, and exemplar.
Two additional variables record its learning probability (Pc)
and the renew exemplar count (i.e., the number of iterations
that pbest has not been improved).

The velocity and position updating in VLPSO
follow (4) and (2), respectively.

B. Exemplar Assignment

In the original CLPSO, any particle can be used as an exem-
plar for a dimension of any particle. However, since different
VLPSO particles have different lengths, the exemplar chosen
for a particular dimension needs to have the corresponding
dimension. In other words, the exemplar’s length must exceed
that dimension. Therefore, we propose a new exemplar updat-
ing mechanism for VLPSO, whose pseudocode is shown in
Algorithm 1. The main difference between this method with
the original one in CLPSO is that the two exemplars (p1 and
p2) are randomly sampled (lines 9 and 10) until both of them
satisfy the above-mentioned condition. However, if this con-
dition is not met after a number of attempts, its own pbest
will be used as the exemplar. In this method, the number of
attempts is simply set to the population size.

C. Adaptive Learning Probability

In the original CLPSO, the probability of choosing exem-
plars for each dimension of a particle (Pc) is set based on its
identity or index in the population and kept unchanged during
the evolutionary process. As can be seen from (3), particles
with a smaller index will have smaller Pc than those with a
greater index. Therefore, according to the use of Pc for choos-
ing exemplars in CLPSO, it is more likely that the small-index
particles will follow its own pbest. However, to locate a bet-
ter position or solution, particles should learn from particles
with better fitness. Therefore, only those particles with bet-
ter fitness should have smaller Pc, so that they can continue
to exploit their good direction to find better pbest. In contrast,
the worse particles should learn from the better ones. With this
rationale, Yu et al. [15] proposed to calculate Pc for a particle
based on its fitness rank instead of its index. As shown in (5),

TRAN et al.: VARIABLE-LENGTH PSO FOR FS ON HIGH-DIMENSIONAL CLASSIFICATION 477

Algorithm 1: Exemplar_Assignment
input : Particle i
output: Exemplar for each dimension of Particle i

1 begin
2 L← the length of particle i;
3 for d = 1 to L do
4 Rnd← a random value drawn from a uniformly

distribution;
5 Pci ← Pc of particle i;
6 if (Rnd >= Pci) then
7 exemplar[d]← i;
8 else
9 p1 ← randomly pick a particle that is different

from i and has a length longer than d;
10 p2 ← randomly pick a particle that is different

from i and p1 and has a length longer than d;
11 if (p1.fitness is better than p2.fitness) then
12 exemplar[d]← p1;
13 else
14 exemplar[d]← p2;
15 end
16 end
17 end
18 Return exemplar;
19 end

the proposed strategy assigns a smaller Pc for a particle with
a smaller rank (i.e., a fitter particle). In this paper, we adopt
this strategy since it has shown promise in improving the
performance of CLPSO for function optimization [15]

Pci = 0.05+ 0.45
exp

10(rank(i)−1)
S−1

exp10−1
(5)

where S is the population size and rank(i) is the rank of
particle i. The best particle in the swarm will be ranked 1.

D. Population Division

Based on the variable-length representation, VLPSO enables
particles in the population to have any length that is smaller
than the dimensionality of the problem. However, this may
degrade PSO performance since particles will not learn much
from each other when they are too different. Therefore, instead
of setting a different length for each particle, we divide the
whole population into a predefined number of divisions. In
this way, we divide the search space into smaller subspaces,
which can improve PSO’s performance, especially in such a
large and complex search space as in high-dimensional data.

The number of particles (or size) of each division (DivSize)
is calculated based on the population size (PopSize) and the
number of divisions (NbrDiv) as shown in (6). Particles in
the same division will have the same length. The length of
particles in a division V (ParLenV) is calculated based on (7),
where the maximum length (MaxLen) is the dimensionality
of the problem. Note that within a division, particles with
the same length can represent different feature subsets with
different feature subset sizes. For example, two particles of
length 8 represent two solutions, 10 100 001 and 10 001 111,
which show which features are selected from the first eight
features of the given dataset. They are corresponding to two

Fig. 2. Example of population division for a problem with 5000 features
and the number of division is 5.

feature subsets, {F1, F3, F8} and {F1, F5, F6, F7, F8} which
have the feature subset size of 3 and 5, respectively. Note
that the dth dimension always represents the dth feature in
all particles. This enables particles to learn from each other
despite of their different lengths

DivSize = PopSize

NbrDiv
(6)

ParLenV = MaxLen ∗ V

NbrDiv
. (7)

Fig. 2 shows an example of the particle lengths in a problem
with 5000 features and the number of divisions is set to 5.
The length of all particles in Division 1 will be 1000. They
will search for good feature subsets in the first 1000 features.
Similarly, Division 2 will focus on feature subsets in the first
2000 features.

E. Feature Ranking

To rearrange features in the descending order of their rel-
evance, we can use any measure to evaluate features. In this
paper, we use the symmetric uncertainty (SU) [30] since it
is a nonparametric measure and commonly used in FS meth-
ods [6], [31]. SU is a normalized version of information gain
(IG) to evaluate feature relevance. To rank features, we use SU
as shown in (8) to measure the correlation between a feature F
and the class label C. The higher a feature correlates to the
class label, the better it is

SU(F, C) =
[

IG(F|C)

H(F)+ H(C)

]
(8)

IG(F|C) = H(F)− H(F|C) (9)

where H(F) is the entropy of F and H(F|C) is the conditional
entropy of F given C. The value of SU(F, C) ranges from 0
to 1, where 1 represents the most relevant feature.

F. Length Changing

During the evolutionary process, to help PSO jump out of
possible local optima, we propose a length changing mecha-
nism to direct particles to more fruitful areas in the search
space, enabling PSO to reach better solutions in a shorter
time. Particularly, when gbest does not change for a predefined
number of iterations, we calculate the average fitness of all
particles in each division and resize the particles to scale PSO
search into the best division. In other words, the particle length
of the best division will become the maximum length of the
swarm after length changing. During this process, we keep
the particles in the best division unchanged and resize those
in the other divisions to a shorter length than the new maxi-
mum length. The process automatically changes the particles’

478 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 3, JUNE 2019

Fig. 3. Example of length changing in a swarm with five divisions.

length by cutting or appending more dimensions at the end
of the representation while keeping the learned knowledge in
the other dimensions. The number of dimensions being cut or
appended is dynamically calculated based on the new length
and the current length.

Fig. 3 shows a demonstration of this process on a swarm
with five divisions. Initially, particle length of division 1, 2,
3, 4, and 5 are 1000, 2000, 3000, 4000, and 5000, respec-
tively. Suppose the third division is be the best division with
the highest average fitness, it is kept unchanged and 3000
becomes the new maximum length of the swarm. However,
particle length of division 1, 2, 4, and 5 will be changed to
600, 1200, 1800, and 2400, respectively. Therefore, the last
400, 800, 2200, and 2600 dimensions will be cut in particle
representations of division 1, 2, 4, and 5, respectively.

Algorithm 2 shows the pseudocode of the length changing
procedure. If the current length of particles in a division is
shorter than the new length, then more dimensions will be
appended and randomly initialized (lines 12–16); otherwise,
the exceeding dimensions will be removed (lines 18–21).

Since the maximal length of particles is always getting
shorter every time particles’ length is changed, another bene-
fit of this mechanism is a dramatically reduction in the PSO
computation time.

This length changing is applied when gbest does not
improved for a number of iterations (β). β should be large
enough for PSO to converge, and small enough for PSO to
avoid being stuck in local optima for too long. Therefore, we
conducted a sensitivity analysis as described in Section IV-D
to choose suitable values for β and the number of divisions.

G. Fitness Function

To combine the strengths of the wrapper and filter methods
without significantly increasing the computation time, VLPSO
uses the fitness function proposed in [3] to combine the accu-
racy of KNN and a distance measure [32] using a weight (γ) as
shown in (10). While the classification accuracy can measure
the performance of the feature subset, the distance measure
can approximate how far these features can separate instances
of different classes and unite those of the same class

fitness = (γ · accuracy+ (1− γ) · distance). (10)

To deal with unbalanced data in many high-dimensional
datasets, we used a balanced accuracy [33] calculated based

Algorithm 2: Length Changing Procedure
input : Current swarm
output: New swarm

1 begin
2 NbrDiv← Number of divisions of the current swarm;
3 MaxLen← Max length of particles in the current swarm;
4 Calculate the average fitness of each division;
5 BestLen← Particles’ length of the best division;
6 if (BestLen �= MaxLen) then
7 k← 1;
8 for each division v (different from the best division) do
9 NewLen← BestLen× k ÷ NbrDiv;

10 if (Length of particles in v < NewLen) then
11 Append more dimensions to particles in

dividion v to have NewLen dimensions;
12 Randomly initialise the new dimensions;
13 Calculate fitness of these particles;
14 k = k + 1;
15 else
16 if (Length of particles in v > NewLen) then
17 Remove the last dimensions of particles in

dividion v to have NewLen dimensions;
18 Calculate fitness of these particles;
19 k = k + 1;
20 end
21 end
22 end
23 Calculate Pc for all particles using Eq. (5);
24 Renew exemplar of particles; // Algorithm 1
25 end
26 end

on (11) for the first component in the fitness function. Leave-
one-out cross validation on the training data is used to evaluate
the performance of KNN

balanced_accuracy = 1

c

c∑
i=1

TPRi (11)

where c is the number of classes of the problem, and TPRi is
the true positive ratio or the proportion of correctly identified
instances in class i. Since there is no bias to any specific class,
the weight for each class is set to 1/c.

The distance measure is calculated based on (12), which
aims at maximizing the distance between instances of different
classes (Db) and minimizing the distance between instances of
the same class (Dw)

distance = 1

1+ exp−5(Db−Dw)
(12)

where

Db = 1

M

M∑
i=1

min{j|j �=i,class(Ii) �=class(Ij)}
Dis(Ii, Ij) (13)

Dw = 1

M

M∑
i=1

max
{j|j �=i,class(Ii)=class(Ij)}

Dis(Ii, Ij) (14)

where M is the number of instances in the training set. The dis-
tance between two instances Dis(Ii, Ij) can be measured based
on any distance approximation methods. In this paper, we use
Manhattan measure since it is preferable than Euclidean dis-
tance metric for high-dimensional data [34]. To appropriately

TRAN et al.: VARIABLE-LENGTH PSO FOR FS ON HIGH-DIMENSIONAL CLASSIFICATION 479

apply this distance measure, the training data is scaled to the
range of [0,1].

H. VLPSO Overall Algorithm

Fig. 4 shows the flowchart of VLPSO algorithm. It has
three inputs, the number of divisions (NbrDiv), the maximum
iterations that pbest is not improved to renew exemplars (α)
for a particle, and the maximum iterations that gbest is not
changed (β) to change particles’ lengths. VLPSO starts with
rearranging features based on the feature ranking described in
Section III-E. After that, it initializes all divisions in the first
loop, then calculates the learning probability Pc and assigns
exemplars for each particle. The second loop is the evolution-
ary process. It repeats until reaching the maximum number of
iterations. During this evolution, if gbest is not improved for β

times, length changing procedure is called. Pc is also adapted
based on (5).

The computation time of the proposed method and the base-
line methods can be divided into two parts: 1) time for PSO
updating and 2) time for fitness evaluation, in which fitness
evaluation usually accounts for a much larger portion between
the two. The former can be calculated based on the num-
ber of iterations (I), the number of particles (P), and the
length of the particles which is equal to the number of orig-
inal features (N) for PSO and ECLPSO. By dividing the
population into D divisions, each of which has P/D parti-
cles with the particle length of 1 ∗ N/D, 2 ∗ N/D, . . . , or
D∗N/D = N, the proposed method reduces the time for PSO
updating by half. For the fitness evaluation, the computation
time highly depends on the number of features selected by
each particle, which is hard to estimate and dataset-dependent.
However, in the worse case that all particles select all fea-
tures, the proposed method still takes only half of the time
required by the baseline methods due to its shorter particle
lengths.

I. VLPSO With Local Search

To further improve the performance of VLPSO on high-
dimensional classification problems, we apply local search to
pbest which was proposed in [3]. We call the combined method
of VLPSO with local search as VLPSO-LS. This local search
process aims to find a better solution surrounding the newly
found pbest by randomly removing some redundant features
and adding more relevant ones. The SU measure based on (8)
is also used to evaluate feature relevance and redundancy in
this process.

Given a binary vector corresponding to the feature subset
of pbest, the local search procedure conducts a given num-
ber of tries. The more local search tries, the better solution
can be found. Therefore, we set the number of tries to 100,
which is equal to the maximum number of iterations PSO runs.
However, thanks to the fast fitness evaluation used in the local
search, 100 evaluations will not cost as much as in PSO. Each
local search try considers to flip a random portion of pbest
based on a given flipping size to create a new pbest. The size
of the random portion is dynamically determined and propor-
tional to the current pbest size. 25% is chosen to encourage

Fig. 4. Overall variable-length PSO algorithm.

removing more redundant features and adding more relevant
ones in one local search try. The flipping process will scan
features in this random portion to remove selected features if
they are redundant and add nonselected features if they are rel-
evant. A feature is defined as redundant if it is more correlated
to other selected features than to the class label. A feature is
relevant if it is more correlated to the class than the average
correlation of all the selected features in the random portion.
Therefore, the number of features actually flipped is not only
dynamically determined by the current pbest size but also the
characteristic of the dataset. As a result, the performance of
the local search is not highly sensitive to the values of these
two related parameters.

If a better pbest is found, it will replace the current
one. Each local search try involves an evaluation process.
Therefore, a significant number of evaluations will be
added, which substantially increases the computation time.
Therefore, to speed up VLPSO-LS, we also use the fast
fitness evaluation strategy [3], which calculates the new
distance between instances by adding to or subtracting from
the current distance the value difference in features that are
added or removed from the current pbest, respectively. Since
a small portion of pbest is flipped in one local search try, this
strategy saves a significant amount of computation, leading
to much shorter evaluation time.

The frequency of applying local search can be predefined
to compromise between its effectiveness and efficiency. When

480 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 3, JUNE 2019

TABLE I
DATASETS

the trigger condition is satisfied, VLPSO-LS applies the local
search procedure to the newly found pbest.

IV. EXPERIMENT DESIGN

A. Datasets

We used ten gene expression datasets with thousands
of features that are publicly available on http://www.gems-
system.org. Table I shows the number of features, instances,
classes, and the percentage of instances in the smallest and
largest class of each dataset. As can be seen from Table I, these
datasets have a much smaller number of instances compared to
the number of features. They are also highly unbalanced data.
These characteristics make them become very challenging
problems for both FS and classification.

B. Experiment Setting

Due to the small number of instances in these datasets,
tenfold cross validation is used to create training and test sets
for the experiments (no validation set involved). Onefold is
kept as unseen test data, never used during the FS process. The
remaining ninefold form the training data. Only the training
data is used to during the FS process. After FS is finished, the
training and test sets will be transformed based on the selected
features and put into KNN to evaluate the performance of the
FS method.

C. Baseline Methods

To evaluate the performance of VLPSO and VLPSO-LS,
we compared the classification accuracy of KNN using the
features selected by both methods with the original full fea-
ture sets, and the feature subsets selected by standard PSO
(or PSO for short). They are also compared with the CLPSO
enhanced with the adaptive learning probability [15] described
in Section III-C, which we call ECLPSO for presentation con-
venience. All the compared methods will use the same fitness
function and settings for common parameters. We also com-
pare our methods with a recently proposed PSO-based FS
method for high-dimensional classification using a competi-
tive swarm optimizer (CSO) [21]. In this method, all particles
are divided into two groups where pairwise comparison are
applied and the better particle between the two will be used
as an exemplar for the other. KNN is also used to evaluate

TABLE II
PARAMETER SETTINGS

feature subsets. We run the code provided by the authors on
the same settings as other compared methods.

We also compared VLPSO-LS with three traditional FS
methods, which are the linear forward selection (LFS), the
correlation-based FS (CFS) [35], and the fast correlation-based
FS method (FCBF) [6]. We chose these feature subset selec-
tion methods because of their popularity and the ability to
automatically determine the number of selected features as
our proposed methods. LFS is derived from the SFS where
features are gradually added until no further improvement
in classification accuracy. By restricting the number of fea-
tures to be considered in each step, LFS [36] runs faster
and finds smaller feature subsets with better classification
performance than SFS. While LFS uses a wrapper approach,
CFS is a filter FS method using the correlation measure to
bias toward feature subset containing more relevant features
and less redundant ones. Since best-first search is too expen-
sive, especially on high-dimensional data, we ran CFS with
a greedy forward selection. Unlike LFS and CFS, FCBF is
a two-stage FS method where features are first ranked using
the correlation measure and sorted in the descending order of
relevance. Then a heuristic search is used to scan the ordered
list to remove redundant features. Weka [37] was used to run
the three methods with their default settings.

D. Parameter Settings

Table II shows the parameter settings used in the experi-
ments. As can be seen from Table I, the datasets have very
different numbers of features ranging from 2000 to 12 000. To
deal with the large difference in the search space of different
datasets, we set the population size to one twentieth of the
number of features, but limited to 300 due to limited memory
for computation. The parameter settings for the local search in
VLPSO-LS are the same as in [3]. The maximum iterations for
renewing exemplars (α) is set to 7 as suggested in [14]. The
threshold for selected feature is usually set to 0.5 or slightly
larger [17], [38]. Within a reasonable range, e.g., [0.5, 0.7],
the value of this parameter does not significantly influence the
selection process as investigated in [38]. The reason is during

TRAN et al.: VARIABLE-LENGTH PSO FOR FS ON HIGH-DIMENSIONAL CLASSIFICATION 481

Fig. 5. Average results of 60 combinations of two parameters (number of divisions and maximum iterations to change particles’ lengths).

the evolutionary process PSO can automatically update the
particles’ position values to make a feature become selected
or not. PSO position updating is guided by fittest particles
with better feature subsets. Therefore, PSO can adjust particle
position values to make them higher or lower than the given
threshold so that the feature subsets can obtain better fitness.
We chose 0.6 to slightly prefer a smaller number of features
at the early stage of the evolution.

The numbers of divisions and maximum iterations that gbest
stays unchanged before changing particles’ lengths (β) are
new parameters that were proposed for variable-length PSO.
Therefore, we conducted an experiment (sensitivity analysis)
to find the appropriate values of these two parameters. The
DLBCL dataset was used in this experiment because it has a
medium size compared with other datasets. VLPSO-LS was
run with 12 different values for the number of divisions rang-
ing from 3 to 14, and 5 values from 6 to 10 for the maximum
iterations to change particles’ lengths, resulting in 60 combi-
nations of these two parameters. Each combination was run
30 times. Fig. 5 shows the average test results of each com-
bination with the best accuracy marked with an asterisk (*).
The best combination was {12 divisions, 9 iterations} which
VLPSO and VLPSO-LS used for all datasets.

Since PSO is a stochastic algorithm, 30 independent runs
of each method with 30 different seeds are executed on
each training set. As a result, each PSO method is run
300 times (30 runs × 10 folds) for each dataset. The aver-
age classification accuracies are reported and compared using
Wilcoxon statistical significance test [39], with a 5% signif-
icance level. Experiments were runs on PC with Intel Core
i7-4770 CPU@3.4 GHz and a total memory of 8 GB.

V. RESULTS AND DISCUSSION

Table III shows the best and average test accuracy of KNN
using the original feature set (“Full”), and the feature subset
returned by the four PSO-based FS methods on each dataset.
The reported accuracy is the balanced accuracy calculated
using (11). The third and fourth columns show the running
time (in minutes) and feature subset sizes. The smallest run-
ning time, size, and the highest average accuracy obtained on
each dataset are bold. Columns S1 and S2 display the Wilcoxon
significance test results (with a significance level of 0.05)
of the corresponding method over VLPSO and VLPSO-LS,

respectively. “+” or “−” means the result is significantly bet-
ter or worse than the proposed method and “=” means they
are similar in the Wilcoxon tests. In other words, the more −,
the better the proposed methods.

A. VLPSO Results

1) VLPSO Versus Full: As can be seen from Table III, the
numbers of features selected by VLPSO on all datasets were
one to two orders of magnitude smaller than the original size
with the best ratio of 1/398 in Prostate. Among all the com-
pared methods, VLPSO obtained the smallest feature subsets
on almost all datasets. With the smallest size, feature subsets
returned by VLPSO significantly improved the performance
of KNN on eight out of ten datasets. The highest improve-
ment was seen on 9Tumor with 18.4% increase on average
and 25% in the best case. On SRBCT, the proposed method
selected less than 50 features to achieve 100% accuracy in
almost all 300 runs, which is more than 12% improvement
on Full. On Brain1, VLPSO selected about 27 out of 5920
features to obtain a similar classification performance as Full
on average and 7% higher accuracy in the best case.

2) VLPSO Versus Standard PSO: Although PSO reduced
the original feature sets by half, VLPSO still selected at
least an order of magnitude fewer features than PSO on all
datasets and achieved significantly better performance than
PSO on nine datasets with the highest improvement of 12.7%
on Leuk1. The highest dimensionality reduction was seen
in Prostate where VLPSO selected 197 times fewer fea-
tures than PSO and still improved 3.8% on the average PSO
performance. Only on Brain1, VLPSO obtained 2.5% lower
average accuracy than PSO while selected 109 times fewer
features. However, the best accuracy achieved by VLPSO on
Brain1 is still 2% higher than PSO.

3) VLPSO Versus ECLPSO: Although ECLPSO selected
a smaller number of features than PSO on all datasets, its
performance was quite similar to PSO with a maximum 2%
difference in accuracy. Compared with ECLPSO, VLPSO also
selected a much smaller number of features and achieved
significantly better performance on all datasets except for
Brain1.

4) VLPSO Versus CSO: Compared with VLPSO, CSO
selected more features on nine datasets. On Prostate, CSO
selected 357 features while VLPSO selected 26 features only.

482 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 3, JUNE 2019

TABLE III
AVERAGE TEST RESULTS

In terms of classification accuracy, VLPSO achieved a signif-
icantly better or similar classification performance as CSO on
six datasets, and worse on the remaining four datasets.

In summary, VLPSO won 32, draw 4 and lost 4 out of
the 40 comparisons in terms of classification performance
while selecting the smallest feature subsets in almost all
cases. Its results indicated that VLPSO conducted a much
better search than the compared methods. VLPSO effec-
tiveness is contributed by two mechanisms, the population
division and length changing, which are enabled by using
the variable-length representation to encode candidate solu-
tions with different lengths. The population division distributes
particles in the swarm into different areas of the search

space, which effectively ensures the diversity of the swarm.
Furthermore, when there is a sign of being stuck in local
optima, the proposed length changing mechanism enabled par-
ticles to change their search space without throwing away
the knowledge that they have learned so far. This mechanism
also gradually adjusts PSO search to focus on smaller and
more fruitful areas, enabling PSO to find much smaller feature
subsets with better discriminating ability.

B. VLPSO-LS Results

1) VLPSO-LS Versus Full: As can be seen from Table III,
the number of features selected by VLPSO-LS on all datasets
was one to two orders of magnitude smaller than the original
size. The features selected by VLPSO-LS helped KNN obtain
significantly better accuracy than using Full on all datasets
with an increase of more than 10% on seven datasets. On
9Tumor, VLPSO-LS subsets obtained 20% higher accuracy
than Full on average and 33% higher in the best case.

2) VLPSO-LS Versus Standard PSO and ECLPSO: The
results of significance test shown in Column S2 showed that
VLPSO-LS outperformed PSO on all datasets while selected
16 to 92 times smaller number of features. Seven out of ten
datasets witnessed an increase of at least 10% on average
accuracy with the highest improvement of 14% on 9Tumor.

3) VLPSO-LS Versus ECLPSO: Comparison between
ECLPSO and VLPSO-LS yields a similar pattern as with
PSO where VLPSO-LS selected 14 to 85 times smaller num-
ber of features than ECLPSO to achieve significantly better
performance on all datasets.

4) VLPSO-LS Versus CSO: Although CSO selected a much
smaller number of features than PSO and ECLPSO, its fea-
ture subsets were still up to 6.3 times larger than VLPSO-LS
on eight datasets. VLPSO obtained significantly better clas-
sification performance than CSO on six datasets that had up
to 6.4% higher average accuracy, similar on one and worse
on the remaining three datasets, namely 9Tumor, Brain1, and
Brain2.

5) VLPSO-LS Versus VLPSO: As shown in Table III,
VLPSO-LS selected slightly more features than VLPSO on
almost all cases to further improve the performance of VLPSO
on six datasets. The highest improvement was on DLBCL
with 9.6% higher accuracy. On Leuk2, VLPSO-LS selected
20 features less than VLPSO while increased VLPSO accu-
racy by 6.5% on average and 9.6% in the best case. While
VLPSO obtained a similar or worse performance than Full
and other PSO methods on Brain1, VLPSO-LS significantly
outperformed the others on this dataset.

In summary, VLPSO-LS won 42, draw 5 and lost 3 out of
50 comparisons. The results of VLPSO-LS indicated that by
removing redundant features and adding more relevant ones,
the local search strategy helped VLPSO fine tune its solutions
to achieve the highest accuracy on all the datasets.

C. Computation Time

As can be seen from the third column of Table III, the fastest
algorithm among all the five compared methods is VLPSO.
Although VLPSO-LS performed more fitness evaluations, it

TRAN et al.: VARIABLE-LENGTH PSO FOR FS ON HIGH-DIMENSIONAL CLASSIFICATION 483

Fig. 6. Average feature subset size of the whole swarm from iteration 10 to 100 in both scenarios with and without using length changing.

is the second-fastest method with only a slightly longer time
than VLPSO. PSO and ECLPSO, in third place, are similar
with their running time 5 to 8 times longer than VLPSO on all
datasets. Finally, CSO required the longest running time at 14
to 109 times longer than VLPSO. This may be due to the strat-
egy of recording the historical fitness values of all previously
selected feature subset in an archive to avoid re-evaluating the
same solution. This strategy has been shown to be effective
in [21] where the largest dataset had 1588 features. However,
when the number of features increases to tens of thousands
of features, the evaluation time saved seemed to be affected
by the time needed for matching the archived solutions which
used a fix-length representation with its length equal to the
original number of features.

In summary, the variable-length PSO-based methods
required a much shorter running time than the traditional fix-
length ones. Section VI will further investigates the differences
in evolutionary processes that contribute to the effectiveness
and efficiency of the proposed methods.

D. Effect of Length Changing

To investigate the effect of length changing, we analyze the
results of VLPSO-LS with (W) and without (WO) applying
length changing mechanism, which is shown in Table V given
in the Appendix. Compared to WO, W obtained up to 10 fewer
features on all datasets except for Lung where it selected 1.8
more features on average. In terms of the classification accu-
racy, W results were significantly better than WO on DLBCL
and similar on the remaining datasets. Furthermore, W saved
up to 14% of WO running time on all datasets. Fig. 6 shows the
average feature subset size of the whole swarm from iteration
10 (i.e., just after the first time length changing is applied in
the evolutionary process) to 100 in both scenarios. The fig-
ure shows that length changing dramatically reduced particle
lengths, which required a shorter time for PSO updating.

E. Comparisons With Traditional Methods

To see if the proposed methods performed better than the
traditional FS methods, we compared the results of VLPSO-LS
with those returned from LFS, CFS, and FCBF, all of which
can automatically determine the number of features that should
be selected. Table IV showed the running time, the returned
feature subset size, and the best and mean accuracy of each

TABLE IV
VLPSO-LS VERSUS TRADITIONAL METHODS

method. Column S showed the results of Wilcoxon significance
test compared the corresponding method over VLPSO-LS
using the same symbols and meanings as in Table III. The
smallest size, the highest average, and best accuracy obtained
on each dataset are bold.

1) VLPSO-LS Versus LFS: As can be seen from Table IV,
LFS selected less than 20 features on all datasets, obtaining the
smallest feature subset of all the compared methods. However,
these smallest subsets obtained significantly lower accuracy
than VLPSO-LS on nine datasets with more than 10% differ-
ence on five cases. On 9Tumor, VLPSO-LS selected 52 more

484 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 3, JUNE 2019

Fig. 7. Average feature subset size of the whole swarm in 100 iterations.

features to achieve 30% higher accuracy than LFS on average
and 43% higher in the best case. Only on Brain2, VLPSO-
LS obtained a lower average accuracy than LFS, but in the
best case, VLPSO-LS still achieved more than 5% higher
accuracy than LFS. The results indicate that the linear for-
ward search in LFS was trapped in local optima in a very
early stage, resulting in minimal but low performance feature
sets.

2) VLPSO-LS Versus CFS: Compared with CFS, VLPSO-
LS selected fewer features on eight datasets to obtain signifi-
cantly better accuracies on five, and similar on two. Although
both had a similar classification performance on 9Tumor,
VLPSO-LS still obtained 14% higher accuracy in the best
case. On Brain1 and Lung, VLPSO-LS had 1%–3% lower
average accuracy; however, with much smaller feature sub-
sets and could achieve better accuracy in the best case. We
also note that although CFS is a deterministic and filter FS
method, its running time is two times longer than VLPSO-
LS on the small SRBCT dataset, and nine times on the large
11Tumor dataset. This indicates that VLPSO-LS better scale
to high-dimensional data than CFS.

3) VLPSO-LS Versus FCBF: The fourth column of
Table IV showed that the difference in feature subset size
between VLPSO-LS and FCBF was very small on all datasets
except Lung, where VLPSO-LS selected about a half of FCBF.
With a similar size, feature subsets of VLPSO-LS obtained a
significantly better accuracy than FCBF on five datasets, and
similar on two. Selecting 11 more features on Leuk1, VLPSO-
LS achieved 3.9% higher accuracy than FCBF on average and
5.6% higher in the best case. On Brain2, although VLPSO-LS
had 4.3% lower average accuracy, its best accuracy is still $5.4
higher than FCBF. We also note that FCBF scaled very well
to high-dimensional data and it is the fastest method among
the four, which is an advantage of a filter and ranking FS
method. However, the inferior results of FCBF suggested that
the heuristic search of FCBF in the second stage might get
stuck in local optima while the global search helped PSO
overcome this problem to obtain better results.

In summary, among 30 comparisons with the three meth-
ods, VLPSO-LS won 19 cases, drew 6 and lost 5. The
results showed that VLPSO-LS achieved a significantly bet-
ter performance than the traditional methods in reasonable
running time.

VI. FURTHER ANALYSIS

We have shown so far that in most cases, VLPSO and
VLPSO-LS achieved much better performance than the com-
pared FS methods in terms of classification accuracy, dimen-
sionality reduction, and computation time. In this section,
we will further investigate their performance to reveal the
contributions of different components to improving PSO
search capability. Specifically, we will investigate the effect of
variable-length representation and the local search. Note that
the results shown in all figures of this section are averaged
over the 30 runs.

A. Efficiency of Variable-Length PSO Representation

First of all, we will investigate the effect of variable-length
representation on the tremendous reduction of computation
time. Since all the four PSO-based FS methods used the same
population size, the maximum number of iterations, and the
fitness function, their running time difference is contributed
by the feature subset size which affected the fitness eval-
uation time and the length of particles which affected the
particle updating time. To investigate these differences, we
plot the average feature subset size of a particle in each
iteration of all the four methods and the particles’ maxi-
mum length of the two proposed methods in Figs. 7 and 8,
respectively.

As can be seen from Fig. 7, the subset sizes of PSO and
ECLPSO particles started quite large and slightly increased
over the whole evolutionary process. On the other hand, start-
ing at about half size of PSO, VLPSO witnessed a steady
decrease in the first 40 iterations and then a slight decline in
the remaining stage. Starting at the same point as VLPSO,
VLPSO-LS dramatically dropped to a very small size in the
first several iterations and kept stable till the end. These fig-
ures clearly showed that the fitness evaluation time in VLPSO
and VLPSO-LS are significantly reduced thanks to the small
subset sizes of all particles.

In addition to the small evaluation time, the particle updat-
ing time of the variable-length PSO is also much smaller.
With a fix-length representation, PSO and ECLPSO spent a
fixed amount of time to update particles with the length of the
original number of features in every iteration. On the other

TRAN et al.: VARIABLE-LENGTH PSO FOR FS ON HIGH-DIMENSIONAL CLASSIFICATION 485

Fig. 8. Average particle maximum length in 100 iterations.

Fig. 9. Average feature subset size of gbest in 100 iterations.

Fig. 10. Average fitness of gbest in 100 iterations.

hand, using the size division strategy, VLPSO and VLSPO-
LS spent much shorter time to update their particles from
the first iteration to the end. Furthermore, after each length
changing, the particle lengths even get significantly shorter.
Fig. 8 showed the maximum length of particles in VLPSO
and VLSPO-LS changing during the evolutionary process of
all datasets. The figures showed that the maximum length
dramatically dropped in the first 40 iterations and slightly
decreased after that. The significant impact of particle lengths
on the running time can be shown in the Lung dataset. In this
dataset, while the average feature subset sizes of VLPSO-LS
were much smaller than VLPSO in the first 40 iterations as
shown in Fig. 7, the particles’ maximum length in VLPSO-LS
is much larger than VLPSO as shown in Fig. 8, which makes
VLPSO-LS had a much longer running time than VLPSO as
shown in Table III.

B. Effectiveness of Variable-Length PSO Representation

Second, we will investigate the effect of variable-length rep-
resentation on the size and accuracy of the returned feature
subsets. Figs. 9 and 10 show the changing of gbest size and
fitness during the evolutionary process. Note that the fitness
values are calculated based on (10), which is a combination
of KNN accuracy and the distance measure. Therefore, these
values hardly reached the value of 1.

As shown in Fig. 9, from the beginning of the run, gbest
size of the two variable-length PSO methods was already way
smaller than the fixed ones. By dividing particles into dif-
ferent length divisions, the swarm in the proposed methods
could have a higher diversity than the baseline methods. This
enabled them to find much smaller feature subsets from the
early stage of the evolutionary process. By removing redun-
dant features from pbest, VLPSO-LS had an even smaller

486 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 3, JUNE 2019

TABLE V
COMPARED RESULTS OF VLPSO-LS IN BOTH SCENARIOS WITH (W)
AND WITHOUT (WO) USING THE LENGTH CHANGING MECHANISM

gbest size than VLPSO from the beginning and kept nearly
unchanged to the end. On the other hand, VLSPO’s gbest
maintained a gradual decrease over the whole evolutionary
process and reached a smaller subset size than VLPSO-LS at
the end.

As shown in Fig. 10, with a small subset size, VLPSO’s
gbest obtained a much higher fitness than the baseline meth-
ods from the first iteration and continued to improve to the
end. Using an informative local search to remove redun-
dant features and add more relevant ones, VLPSO-LS’s gbest
even had much better fitness than VLPSO. The gap between
gbest’s fitness of both methods varied in different datasets;
however, with the same trend which is getting closer at the
end. The gap’s magnitude may reflect the complexity of
the corresponding search space. For example in SRBCT, a
small dataset with 2038 features, this gap is quite small, and
the significance test on 30 runs showed that both methods
obtained a similar classification accuracy while VLPSO-LS
selected 20 more features than VLPSO. On the other hand,
on such datasets with a greater number of classes and fea-
tures as 9Tumor and 11Tumor, the gap is quite large even at
the end.

VII. CONCLUSION

This paper aims to propose a new PSO representation that
can have a variable and dynamic length for FS on high-
dimensional data. The goal was achieved by proposing a new
variable-length PSO-based FS method, where particles in a
swarm can have different lengths which can also be changed
during the evolutionary process. The results showed that the
proposed variable-length PSO-based methods achieved a much
smaller feature subset with better classification performance
in a shorter time than the traditional fixed-length methods.
By having shorter and dynamic lengths to encode parti-
cles, PSO maintains a better diversity in the swarm and
requires a much smaller number of updating operations. The
proposed length changing mechanism also helped PSO jump

out of local optima and focus its search on a more fruitful
area.

The proposed variable-length PSO-based method has shown
promise in FS. It can also be applied to other tasks. In
the proposed representation, each dimension is updated sep-
arately without taking into account other dimensions. This
may limit the performance of PSO in FS on problems which
have strong interactions between features for target prediction.
Taking this information into account when selecting features
may help PSO obtain even better results, but it is very hard
to achieve. This direction will be considered in our future
work.

APPENDIX

See Table V.

REFERENCES

[1] M. Dash, “Feature selection via set cover,” in Proc. IEEE Knowl.
Data Eng. Exchange Workshop, Newport Beach, CA, USA, Nov. 1997,
pp. 165–171.

[2] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Mar. 2003.

[3] B. Tran, B. Xue, and M. Zhang, “A PSO based hybrid feature selec-
tion algorithm for high-dimensional classification,” in Proc. IEEE Congr.
Evol. Comput., Vancouver, BC, Canada, 2016, pp. 3801–3808.

[4] Y. Sun, “Iterative RELIEF for feature weighting: Algorithms, theories,
and applications,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6,
pp. 1035–1051, Jun. 2007.

[5] A. Jakulin and I. Bratko, “Testing the significance of attribute interac-
tions,” in Proc. 21st Int. Conf. Mach. Learn. (ICML), Banff, AB, Canada,
2004, pp. 52–59.

[6] L. Yu and H. Liu, “Feature selection for high-dimensional data: A fast
correlation-based filter solution,” in Proc. 20th Int. Conf. Mach. Learn.
(ICML), Washington, DC, USA, 2003, pp. 856–863.

[7] A. W. Whitney, “A direct method of nonparametric measurement
selection,” IEEE Trans. Comput., vol. C-20, no. 9, pp. 1100–1103,
Sep. 1971.

[8] T. Marill and D. M. Green, “On the effectiveness of receptors in recog-
nition systems,” IEEE Trans. Inf. Theory, vol. IT-9, no. 1, pp. 11–17,
Jan. 1963.

[9] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. 6th Int. Symp. Micro Mach. Human Sci., Nagoya, Japan,
1995, pp. 39–43.

[10] C. Sun, Y. Jin, R. Cheng, J. Ding, and J. Zeng, “Surrogate-assisted coop-
erative swarm optimization of high-dimensional expensive problems,”
IEEE Trans. Evol. Comput., vol. 21, no. 4, pp. 644–660, Aug. 2017.

[11] C. Yue, B. Qu, and J. Liang, “A multi-objective particle swarm
optimizer using ring topology for solving multimodal multi-
objective problems,” IEEE Trans. Evol. Comput., to be published,
doi: 10.1109/TEVC.2017.2754271.

[12] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolu-
tionary computation approaches to feature selection,” IEEE Trans. Evol.
Comput., vol. 20, no. 4, pp. 606–626, Aug. 2016.

[13] X. Li and X. Yao, “Cooperatively coevolving particle swarms for
large scale optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 2,
pp. 210–224, Apr. 2012.

[14] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive
learning particle swarm optimizer for global optimization of multimodal
functions,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281–295,
Jun. 2006.

[15] X. Yu, Y. Liu, X. Feng, and G. Chen, “Enhanced comprehensive learning
particle swarm optimization with exemplar evolution,” in Proc. 11th Int.
Conf. Simulat. Evol. Learn. (SEAL), 2017, pp. 929–938.

[16] P. J. Angeline, Evolutionary Optimization Versus Particle Swarm
Optimization: Philosophy and Performance Differences. Heidelberg,
Germany: Springer, 1998, pp. 601–610.

[17] B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimisation
for feature selection in classification: Novel initialisation and updating
mechanisms,” Appl. Soft Comput., vol. 18, pp. 261–276, May 2014.

http://dx.doi.org/10.1109/TEVC.2017.2754271

TRAN et al.: VARIABLE-LENGTH PSO FOR FS ON HIGH-DIMENSIONAL CLASSIFICATION 487

[18] H. H. Inbarani, A. T. Azar, and G. Jothi, “Supervised hybrid fea-
ture selection based on PSO and rough sets for medical diagnosis,”
Comput. Methods Programs Biomed., vol. 113, no. 1, pp. 175–185,
2014.

[19] B. Chakraborty and G. Chakraborty, “Fuzzy consistency measure
with particle swarm optimization for feature selection,” in Proc.
IEEE Int. Conf. Syst. Man Cybern., Manchester, U.K., 2013,
pp. 4311–4315.

[20] R. Tahmasebifar, M. K. Sheikh-El-Eslami, and R. Kheirollahi, “Point
and interval forecasting of real-time and day-ahead electricity prices by
a novel hybrid approach,” IET Gener. Transm. Distrib., vol. 11, no. 9,
pp. 2173–2183, Jun. 2017.

[21] S. Gu, R. Cheng, and Y. Jin, “Feature selection for high-dimensional
classification using a competitive swarm optimizer,” Soft Comput.,
vol. 22, no. 3, pp. 811–822, 2018.

[22] H. Banka and S. Dara, “A hamming distance based binary particle
swarm optimization (HDBPSO) algorithm for high dimensional feature
selection, classification and validation,” Pattern Recognit. Lett., vol. 52,
pp. 94–100, Jan. 2015.

[23] A. Moaref and V. S. Naeini, “A particle swarm optimization
based on a ring topology for fuzzy-rough feature selection,”
in Proc. 13th Iran. Conf. Fuzzy Syst. (IFSC), 2013, pp. 1–6,
doi: 10.1109/IFSC.2013.6675598.

[24] M. Lane, B. Xue, I. Liu, and M. Zhang, “Gaussian based particle
swarm optimisation and statistical clustering for feature selec-
tion,” in Evolutionary Computation in Combinatorial Optimisation
(EvoCOP), vol. 8600. Heidelberg, Germany: Springer, 2014,
pp. 133–144.

[25] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle
swarm algorithm,” in Proc. IEEE Int. Conf. Syst. Man Cybern., vol. 5.
Orlando, FL, USA, 1997, pp. 4104–4108.

[26] B. H. Nguyen, B. Xue, and P. Andreae, “A novel binary particle swarm
optimization algorithm and its applications on knapsack and feature
selection problems,” in Proc. 20th Asia–Pac. Symp. Intell. Evol. Syst.
(IES), Canberra, ACT, Australia, 2017, pp. 319–332.

[27] W.-N. Chen et al., “A novel set-based particle swarm optimization
method for discrete optimization problems,” IEEE Trans. Evol. Comput.,
vol. 14, no. 2, pp. 278–300, Apr. 2010.

[28] T. Hino, S. Ito, T. Liu, and M. Maeda, “Set-based particle swarm
optimization with status memory for knapsack problem,” Artif. Life
Robot., vol. 21, no. 1, pp. 98–105, 2016.

[29] J. Langeveld and A. P. Engelbrecht, “Set-based particle swarm
optimization applied to the multidimensional knapsack problem,” Swarm
Intell., vol. 6, no. 4, pp. 297–342, Dec. 2012.

[30] W. H. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical
Recipes in C, vol. 1. Cambridge, U.K.: Cambridge Univ. Press, 1988,
p. 3.

[31] Q. Song, J. Ni, and G. Wang, “A fast clustering-based feature sub-
set selection algorithm for high-dimensional data,” IEEE Trans. Knowl.
Data Eng., vol. 25, no. 1, pp. 1–14, Jan. 2013.

[32] H. Al-Sahaf, A. Al-Sahaf, B. Xue, M. Johnston, and M. Zhang,
“Automatically evolving rotation-invariant texture image descriptors by
genetic programming,” IEEE Trans. Evol. Comput., vol. 21, no. 1,
pp. 83–101, Feb. 2017.

[33] G. Patterson and M. Zhang, “Fitness functions in genetic programming
for classification with unbalanced data,” in Proc. 20th Aust. Joint Conf.
Artif. Intell. (AI), 2007, pp. 769–775.

[34] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising
behavior of distance metrics in high dimensional space,” in Proc. Int.
Conf. Database Theory, London, U.K., 2001, pp. 420–434.

[35] M. A. Hall, “Correlation-based feature selection for discrete and numeric
class machine learning,” in Proc. 7th Int. Conf. Mach. Learn., 2000,
pp. 359–366.

[36] M. Gutlein, E. Frank, M. Hall, and A. Karwath, “Large-scale attribute
selection using wrappers,” in Proc. IEEE Symp. Comput. Intell. Data
Min., 2009, pp. 332–339.

[37] M. Hall et al., “The WEKA data mining software: An update,”
ACM SIGKDD Explorat. Newslett., vol. 11, no. 1, pp. 10–18,
2009.

[38] G. Azevedo, G. Cavalcanti, and E. Filho, “An approach to feature
selection for keystroke dynamics systems based on PSO and fea-
ture weighting,” in Proc. IEEE Congr. Evol. Comput. (CEC), 2007,
pp. 3577–3584.

[39] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bull., vol. 1, no. 6, pp. 80–83, 1945.

Binh Tran (S’14–M’18) received the B.E. degree
in computer science from Can Tho University,
Can Tho, Vietnam, in 1998, the M.Sc. degree in
applied computer science from the Free University
of Brussels, Brussels, Belgium, in 2002, and the
Ph.D. degree in computer science from the Victoria
University of Wellington, Wellington, New Zealand,
in 2018.

She is currently a Post-Doctoral Research Fellow
with the School of Engineering and Computer
Science, Victoria University of Wellington. Her cur-

rent research interests include evolutionary computation, feature manipulation
including feature selection and construction, high-dimensional data, and
machine learning.

Ms. Tran has been serving as a Reviewer for over ten international
journals and conferences in the field, such as the IEEE TRANSACTIONS

ON EVOLUTIONARY COMPUTATION, the IEEE TRANSACTIONS ON

CYBERNETICS, Applied Soft Computing, IEEE CEC, GECCO, SEAL, and
AAAI. She is a member of the IEEE Computational Intelligence Society.

Bing Xue (M’10) received the B.Sc. degree from
the Henan University of Economics and Law,
Zhengzhou, China, in 2007, the M.Sc. degree in
management from Shenzhen University, Shenzhen,
China, in 2010, and the Ph.D. degree in computer
science from the Victoria University of Wellington,
Wellington, New Zealand, in 2014.

She is currently a Senior Lecturer with the School
of Engineering and Computer Science, Victoria
University of Wellington. She has over 100 papers
published in fully refereed international journals and

conferences and most of them are on evolutionary feature selection and
construction. Her current research interests include evolutionary computa-
tion, feature selection, feature construction, multiobjective optimization, image
analysis, transfer learning, data mining, and machine learning.

Dr. Xue is currently the Chair of the IEEE Task Force on Evolutionary
Feature Selection and Construction, IEEE Computational Intelligence Society
(CIS), the Vice-Chair of the IEEE CIS Data Mining and Big Data Analytics
Technical Committee, and the Vice-Chair of IEEE CIS Task Force on Transfer
Learning and Transfer Optimization. She is also an Associate Editor/member
of Editorial Board for five international journals and a Reviewer of over
50 international journals. She is the Finance Chair of IEEE Congress
on Evolutionary Computation in 2019, the Program Co-Chair of the 31st
Australasian AI in 2018, ACALCI 2018, and the 7th International Conference
on SoCPaR2015, and she is also a tutorial chair, a special session chair, or a
publicity chair for many other international conferences.

Mengjie Zhang (M’04–SM’10) received the B.E.
and M.E. degrees from the Artificial Intelligence
Research Center, Agricultural University of Hebei,
Hebei, China, in 1989 and 1992, respectively, and
the Ph.D. degree in computer science from RMIT
University, Melbourne, VIC, Australia, in 2000.

He is currently a Professor of computer science,
the Head of the Evolutionary Computation Research
Group, and the Associate Dean (Research and
Innovation) with the Faculty of Engineering, Victoria
University of Wellington, Wellington, New Zealand.

He has published over 350 research papers in refereed international jour-
nals and conferences. His current research interests include evolutionary
computation, particularly genetic programming, particle swarm optimization,
and learning classifier systems with application areas of image analysis,
multiobjective optimization, feature selection and reduction, job shop schedul-
ing, and transfer learning.

Prof. Zhang is currently chairing the IEEE CIS Intelligent Systems and
Applications Technical Committee, and the immediate Past Chair for the
IEEE CIS Emergent Technologies Technical Committee and the Evolutionary
Computation Technical Committee, and a member of the IEEE CIS Award
Committee. He is the Vice-Chair of the IEEE CIS Task Force on Evolutionary
Feature Selection and Construction and the Task Force on Evolutionary
Computer Vision and Image Processing, and the Founding Chair of the IEEE
Computational Intelligence Chapter in New Zealand. He is also a Committee
Member of the IEEE NZ Central Section. He is a fellow of the Royal
Society of New Zealand and have been a Panel member of the Marsden
Fund (New Zealand Government Funding). He is also a member of ACM.

http://dx.doi.org/10.1109/IFSC.2013.6675598

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

