
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 1, FEBRUARY 2019 59

A Learning Automata-Based Multiobjective
Hyper-Heuristic

Wenwen Li , Ender Özcan, Senior Member, IEEE, and Robert John, Senior Member, IEEE

Abstract—Metaheuristics, being tailored to each particular
domain by experts, have been successfully applied to many
computationally hard optimization problems. However, once
implemented, their application to a new problem domain or a
slight change in the problem description would often require
additional expert intervention. There is a growing number of
studies on reusable cross-domain search methodologies, such
as selection hyper-heuristics, which are applicable to problem
instances from various domains, requiring minimal expert inter-
vention or even none. This paper introduces a new learning
automata-based selection hyper-heuristic controlling a set of
multiobjective metaheuristics. The approach operates above
three well-known multiobjective evolutionary algorithms and
mixes them, exploiting the strengths of each algorithm. The
performance and behavior of two variants of the proposed
selection hyper-heuristic, each utilizing a different initializa-
tion scheme are investigated across a range of unconstrained
multiobjective mathematical benchmark functions from two
different sets and the real-world problem of vehicle crash-
worthiness. The empirical results illustrate the effectiveness of
our approach for cross-domain search, regardless of the ini-
tialization scheme, on those problems when compared to each
individual multiobjective algorithm. Moreover, both variants per-
form significantly better than some previously proposed selection
hyper-heuristics for multiobjective optimization, thus signifi-
cantly enhancing the opportunities for improved multiobjective
optimization.

Index Terms—Evolutionary algorithms, hyper-heuristics,
multiobjective optimization, online learning, operational
research.

I. INTRODUCTION

MULTIOBJECTIVE optimization problems (MOPs)
require simultaneous handling of various and often con-

flicting objectives during the search process. The solution
methods designed for MOPs seek a set of “equivalent” solu-
tions, each reflecting a tradeoff between different objectives.

There are distinct complexities associated with MOPs mak-
ing the development of effective and efficient solution methods
extremely challenging (e.g., very large search spaces, noise,
uncertainty, etc.). Metaheuristics, in particular, multiobjective
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evolutionary algorithms (MOEAs) are the most commonly
used search methods in the area of solving MOPs. One of the
main advantages of MOEAs is that they are population-based
techniques, capable of obtaining a set of tradeoff solutions with
reasonable quality even in a single run [1]. Even though “opti-
mality” cannot be guaranteed, empirical results indicate the
success of MOEAs on a variety of problem domains, including
planning and scheduling [2], [3], data mining [4], and circuits
and communications [5]. There are different types of MOEAs,
each utilizing different algorithmic components during the
search process and so perform differently. In the majority
of the previous studies, individual MOEAs are designed and
applied to a particular problem in hand. More on MOEAs and
their applications to various multiobjective problems can be
found in [6].

On the other hand, there is a growing number of studies
on selection hyper-heuristics which provide a general-purpose
heuristic optimization framework for utilizing the strengths of
multiple (meta)heuristics [7]. Selection hyper-heuristics con-
trol and mix low level (meta)heuristics, automatically deciding
which one(s) to apply to the candidate solution(s) at each
decision point of the iterative search process [8]. Raising the
generality level of heuristic optimization methods is one of
the main motivations behind the hyper-heuristic studies. The
idea is, through automation of the heuristic search, to pro-
vide effective and reusable cross-domain search methodologies
which are applicable to the problems with different character-
istics from various domains without requiring much expert
involvement.

Learning is key to develop an effective selection hyper-
heuristic with the adaptation capability. There are some
recent studies looking into the interplay between data sci-
ence techniques, particularly machine learning algorithms
and selection hyper-heuristics leading to an improved over-
all performance. For example, Asta et al. [9], [10] used
tensor analysis as a machine learning approach to decide
which low level heuristics to employ at different stages of
the search process. In [11], the feasibility and effectiveness
of using reinforcement learning to improve the performance
of metaheuristics and hyper-heuristics have been discussed
in depth. Kheiri and Özcan [12] introduced an effective
multistage hyper-heuristic for cross-domain search which first,
reduces the low level heuristics to be used in the following
stage based on a multiobjective learning strategy and then
mixes them under a stochastic local search framework. More
recently, computational intelligence techniques have been used
as components of general purpose methods managing low
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level (meta)heuristics for overall performance improvement.
For example, Zamli et al. [13] introduced a fuzzy inference
selection-based hyper-heuristic which mixed and controlled
four search operators, each derived from a different meta-
heuristic to solve a computationally hard problem of t-way
test suite generation. However, the aforementioned studies
all focus on single objective optimization. There have been
some studies on combining the strengths of multiple MOEAs
with the aim of providing a better overall performance for
multiobjective optimization under a selection hyper-heuristic
framework (e.g., [14] and [15]). From this point onward, we
will refer to such selection hyper-heuristics as multiobjective
hyper-heuristics (MOHHs).

In this paper, we present a new learning automata-
based selection hyper-heuristic framework with implementa-
tion of two variants, learning automata-based hyper-heuristic
(HH-LA) and learning automata-based hyper-heuristic with a
ranking scheme initialization (HH-RILA) for multiobjective
optimization. Both selection hyper-heuristics mix and control
a set of three well-known MOEAs: 1) nondominated sorting
genetic algorithm (NSGA-II) [16]; 2) strength Pareto evo-
lutionary algorithm 2 (SPEA2) [17]; and 3) indicator-based
evolutionary algorithm (IBEA) [18]. The learning automa-
ton acts as a guidance for choosing the appropriate MOEA
at each decision point while solving a given problem. The
proposed two variants of selection hyper-heuristics mainly
differ in their initial set-up process. HH-LA employs all
three low level MOEAs and gives an equal chance ini-
tially to each algorithm making a random start. HH-RILA
applies a ranking scheme which eliminates the relatively poor
performing MOEA(s) and uses the remaining MOEAs in
the improvement process (Section III-A). The performance
of the proposed hyper-heuristics are investigated against a
variety of other multiobjective approaches across a range
of multiobjective problems, including well-known bench-
mark functions and a real-world problem of vehicle crash-
worthiness. The empirical results indicate the effectiveness
and generality of the proposed hyper-heuristics with novel
components.

The rest of this paper is organized as follows. Section II
introduces some essential concepts of MOPs, selection
MOHHs as well as learning automata and provides back-
ground for vehicle crashworthiness. Section III presents the
details of the proposed method which embeds three novel com-
ponents. First, the learning automaton component designed
for multiobjective optimization operates in a nontraditional
way as explained in Section III-B. The second component,
as described in Section III-C supports the development of a
two-stage metaheuristic selection approach based on the infor-
mation obtained from the learning process, enabling the use
of two different metaheuristic selection methods at different
stages. The third component as described in Section III-D
adaptively decides when to switch to another MOEA depend-
ing on a tuned improvement threshold parameter. The param-
eter tuning and setting are included in Section IV, as well
as the discussion and analysis of the experimental results.
Section V concludes this paper and provides directions for
future work.

II. BACKGROUND

A. Related Work on Multiobjective Selection
Hyper-Heuristics

MOEAs and other multiobjective approaches aim to iden-
tify true Pareto fronts (PFs), i.e., equal quality optimal tradeoff
solutions. If the true PFs are unknown, then MOEAs are used
to generate “good” approximations [19]. The majority of the
multiobjective approaches contain certain algorithmic com-
ponents to achieve the following key goals [1]: 1) preserve
nondominated solutions; 2) progress toward the true PFs;
and 3) maintain a diverse set of solutions in the objective
space.

WFG [20] and DTLZ [21] are two widely used test suites
in the MOEA literature that provide benchmark functions
with various characteristics. The comparison of different PFs
obtained from different MOEAs is not trivial because multiple
aspects should be considered, such as convergence (how close
the final fronts to the true PFs are) and diversification (how
dispersed the obtained fronts are) capabilities. There are a
variety of performance indicators including the convergence
indicators, such as hypervolume and ε+ [19]. Hypervolume
measures the size of objective space covered by the resul-
tant front with respect to a reference point, while ε+ is the
minimum distance that a solution front needs to move in all
dimensions to dominate the reference front. As for diversifica-
tion, the most commonly used indicators include spread [16]
and generalized spread [22] which extends spread to higher
than two dimensions. Generalized spread is computed based
on the mean Euclidean distance of any nearest pairs of neigh-
bors in the nondominated solution set. The smaller the value,
the better the spread of the resultant front. More analysis and
review of various performance indicators for MOEAs can be
found in [19].

Designing, implementing, and maintaining a (meta)heuristic
for a particular problem is a time-consuming process requiring
a certain level of expertise in both problem domain and heuris-
tic optimization. Once implemented, application of a meta-
heuristic to a new problem domain or even a slight change in
the problem description would often require the intervention of
an expert. This is basically due to the fact that metaheuristics
are often customized for a particular problem domain (bench-
mark). On the other hand, hyper-heuristics have emerged as
automated general-purpose cross-domain optimization meth-
ods with reusable components which can be applied to
multiple problem domains/benchmarks with the least mod-
ification [7]. Dealing with multiple problem domains and
problem instances means dealing with various scales of objec-
tive values, making it extremely difficult to compare the cross-
domain performances of algorithms. Which method to use for
performance comparison of hyper-heuristics across multiple
problem domains (distributions/benchmarks) and how the
performance comparison should be done are still open issues
in the hyper-heuristic research. Currently, there are two com-
monly used metrics in the area: 1) formula 1 ranking [9], [12]
and 2) μnorm [23], [24]. In this paper, we preferred the latter
one (details are in Section IV-B) which is a more informative
metric taking into account of the mean performance of algo-
rithms using normalized performance indicator values over a
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given number of trials on the instances from multiple problem
domains/benchmarks.

The focus of this paper is on selection hyper-heuristics
which choose and apply from a set of low level
(meta)heuristics at each decision point of the search [8]. A key
component in a selection hyper-heuristic is the (meta)heuristic
selection method which should be capable of adapting itself
depending on the situation to choose the appropriate low
level (meta)heuristic at each decision point. Hence, learning
is a crucial component of (meta)heuristic selection meth-
ods. Additionally, move acceptance technique is another key
component of selection hyper-heuristics [25], [26], which
determines whether or not newly generated solution(s) should
be accepted as the input solution(s) to the next step/stage. The
majority of the previous studies on selection hyper-heuristics
focus on optimization of single objective problems. Still, there
are a few studies on multiobjective selection hyper-heuristics
investigating either the use of selection hyper-heuristics con-
trolling multiple operators or mixing multiple multiobjective
metaheuristics.

Hitomi and Selva [27] presented a selection hyper-heuristic
(HH-AP) using an online learning heuristic selection method
based on adaptive pursuit [28] managing five domain-specific
perturbation operators. HH-AP is utilized for solving a
multiobjective design problem for an Earth observation satel-
lite system. Vázquez-Rodriguez and Petrovic [29] proposed
a hyper-heuristic which mixes four different indicators, each
from a well-established MOEA, including NSGA-II, SPEA2,
and two IBEA variants to rank individuals for mating. An
indicator gets selected depending on the associated probability
for each individual and four subpopulations are constructed.
Mating occurs within each subpopulation using binary tourna-
ment selection and eventually, four offspring pools are formed
constituting to the new population. The indicator probabili-
ties are maintained during the search via mixture experiments
based on a statistical model. Kumari and Srinivas [30], [31]
incorporated a roulette wheel-based heuristic selection mech-
anism [32] into their MOHH evolutionary algorithm to select
low level mutation operators. Guizzo et al. [33] developed
a hyper-heuristic based on two heuristic selection methods
(choice function [14] and multiarmed bandit [34]) for choos-
ing from multiple mutation and crossover operators during
the search for the multiobjective integration and test order
problems [35].

Some offline learning techniques have also been seen in
recent MOHHs studies, e.g., genetic programming techniques
in [36]–[40], grammatical evolution in [41] and [42], and top-
down induction of decision trees in [43].

On the other hand, there are a few studies on multiobjective
search methods that make use of multiple MOEAs.
Vrugt and Robinson [44] proposed a multialgorithm geneti-
cally adaptive multiobjective (AMALGAM) method perform-
ing cooperative search using various MOEAs. AMALGAM
executes all MOEAs simultaneously, each with a separate
subpopulation at each step, and a pool of offspring gets gener-
ated by each MOEA. Those offspring pools from MOEAs are
merged to form the new population. Afterwards, fast nondom-
inated sorting is applied to the union of the new and previous

populations to choose the elite solutions surviving to the next
generation. The size of the subpopulation for each MOEA gets
updated adaptively based on the number of surviving solutions
from each MOEA. The search continues until a set of termina-
tion criteria is satisfied. Maashi et al. [14] introduced a power-
ful online learning selection hyper-heuristic for multiobjective
optimization, namely choice function-based MOHH (HH-
CF) and managing NSGA-II, SPEA2, and MOGA [45]. The
proposed choice function maintains an adaptively changing
score for each low level MOEA during the search process
based on two key components: 1) individual performance and
2) time elapsed since the last call of an MOEA. The former
component uses four different indicators, including hypervol-
ume, uniform distribution, ratio of nondominated individuals,
and algorithm effort [46]. It is for exploitation, advocating
the invocation of the most successful MOEA with the highest
score repeatedly, while the other component is for exploration,
giving a chance to the MOEAs which were used the least.
The MOEA with the top score is always chosen and applied
at each decision point. The results in [14] show that HH-CF
outperforms not only the three underlying MOEAs which are
executed individually, but also AMALGAM and a random
hyper-heuristic on the majority cases of bi-objective WFG
benchmark functions.

In this paper, we focus on online learning techniques as a
part of selection MOHHs. It has already been observed that
different MOEAs show strengths with respect to different met-
rics on different MOP domains [47]. The learning ability for
detecting the best performing (meta)heuristic and/or identify-
ing the synergetic (meta)heuristics [10], [48] over time is cru-
cial to design an effective selection hyper-heuristic. Hence, it
is reasonable to incorporate different MOEAs within an online
learning selection hyper-heuristic framework for improving the
cross-domain performance of the overall approach which can
benefit from adaptively switching between those MOEAs over
time.

HH-CF [14] is one of the best performing online learn-
ing MOHHs, to the extent of our knowledge. Similar to
HH-CF, the proposed hyper-heuristics can also perform explo-
ration and exploitation. A major difference is that the
online learning method is based on learning automata within
our selection hyper-heuristics for multiobjective optimization.
Additionally, there is an adaptive mechanism to ensure that
the balance between the exploration and exploitation is main-
tained based on the information gathered by this machine
learning technique during the search. A variant of learn-
ing automata was embedded into a single-objective hyper-
heuristic, i.e., AdapHH [48] which won the CHeSC com-
petition1 across six problem domains: 1) max-SAT; 2) bin
packing; 3) personnel scheduling; 4) flow shop; 5) trav-
eling salesman problem; and 6) vehicle routing problem.
The importance of learning in selection hyper-heuristics
and the success of AdapHH in solving single objective
optimization problems motivated us to employ an online
learning mechanism within our MOHHs for cross-domain
search.

1http://www.asap.cs.nott.ac.uk/external/chesc2011/
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B. Learning Automata

Learning automata, introduced by Tsetlin [49] as a rein-
forcement learning method, has been used in a range of fields,
including pattern classification [50] and signal processing [51].
A learning automaton performs an action and then classifies
it as desirable or not based on a reinforcement signal (neg-
ative/penalty or positive/reward) from the environment [52].
The learning scheme then updates the reward or penalty on
this action depending on the reinforcement signal. The set
of actions processed by learning automata is problem depen-
dent and varies from one application to another, for example,
it could be choices of a parameter value in [50], heuristics
in [51], or partitions in [53].

More formally, a learning automaton is defined as a quadru-
ple (A, β, p, and U), where A is the action set, β (equals to 0
or 1) represents the (penalty or reward) feedback or reinforce-
ment signal obtained from the environment after taking the
chosen action ai at a given time t, p is the (action) selection
probability vector, where each entry indicates the probability
of an action being selected, and U is the update scheme. The
action set A is commonly considered to be a finite set, i.e.,
A = {a1, a2, . . . , ar}. Thus, the traditional model of a learning
automaton is referred to finite action learning automaton [52],
which is denoted as LA in this paper. At a given time (t), the
action selection method chooses an action (say, ai) based on
p. After the selected action ai is performed, p is updated by
the scheme U as defined in (1) and (2) using the feedback
β(t) received from the environment. The sum of all selection
probabilities in p is always equal to 1.

If ai is the action chosen at time step t

pi(t + 1) = pi(t)+ λ(1)β(t)(1− pi(t))− λ(2)(1− β(t))pi(t).

(1)

For other actions aj �= ai

pj(t + 1) = pj(t)− λ(1)β(t)(pj(t))

+ λ(2)(1− β(t))

[
1

r − 1
− pj(t)

]
. (2)

The parameters λ(1) and λ(2) are the reward and penalty
rates, respectively. When λ(1) = λ(2), the model is referred as
linear reward-penalty (LR−P). In case of λ(2) = 0, it is referred
to as linear reward-inaction (LR−I). If λ(2) < λ(1), it is called
linear reward-ε-penalty (LR−εP).

C. Vehicle Crashworthiness Problem

In the automotive industry, crashworthiness refers to the
ability of a vehicle and its components to protect its occupants
during an impact or crash [54]. The crashworthiness design of
vehicles is of special importance, yet, highly demanding for
high-quality and low-cost industrial products. The structural
optimization of the vehicle design involves multiple criteria
to be considered. Liao et al. [55] presented a multiobjective
model for the vehicle design which minimizes three objec-
tives: 1) weight (mass); 2) acceleration characteristics (Ain);
and 3) toe-board intrusion (intrusion). More specifically, the
weight of the vehicle is to be minimized for enabling economic

mass production. An important goal of the vehicle design is
to reduce any potential harm to occupant(s). When the front
of a vehicle hits an object, it first begins to decelerate by
the impact. The velocity decreases to zero when the vehicle
comes to a halt. As the vehicle begins to bounce back, the
velocity increases. This acceleration can cause head injuries
to occupant(s) and be dangerous to other road users, because
the vehicle is now moving in the opposite direction. To reduce
the acceleration due to collision and possible head injuries to
occupants caused by the worst scenario of the acceleration
pulse [56], minimizing an integration of collision accelera-
tion between 0.05–0.07 s in the “full frontal crash” is set as
the second objective. Another mechanical injury to occupants
may come from the toe-board intrusion during the crash. It
could hurt the knee trajectories of occupants and influence
the steering of the vehicle. Therefore, minimizing the toe-
board intrusion in the 40% offset frontal crash is chosen as
the third objective. The decision variables are the thickness of
five predefined reinforced points, say x1–x5, around the frontal
structure of a vehicle. Each decision variable is between 1 and
3 mm. The vehicle crashworthiness problem (VCP) model is
formulated as follows:

minimize F(X) = [(Mass, Ain, Intrusion)]

subject to 1.0 ≤ xi ≤ 3.0, i = 1, 2, . . . , 5

X = (x1, x2, . . . , x5)
T (3)

where

Mass = 1640.2823+ 2.3573285x1 + 2.3220035x2

+ 4.5688768x3 + 7.7213633x4 + 4.4559504x5

(4)

Ain = 6.5856+ 1.15x1 − 1.0427x2 + 0.9738x3

+ 0.8364x4 − 0.3695x1x4 + 0.0861x1x5

+ 0.3628x2x4 − 0.1106x2
1 − 0.3437x2

3

+ 0.1764x2
4 (5)

Intrusion = −0.0551+ 0.0181x1 + 0.1024x2

+ 0.0421x3 − 0.0073x1x2 + 0.024x2x3

− 0.0118x2x4 − 0.0204x3x4 − 0.008x3x5

− 0.0241x2
2 + 0.0109x2

4. (6)

Apart from the original problem instance requiring
optimization of all the three objectives, we formed additional
instances by considering pairs of objectives leading to four
VCPs, including VC1: minimize {Mass, Ain, Intrusion}, VC2:
minimize {Mass, Ain}, VC3: minimize {Mass, Intrusion},
and VC4: minimize {Ain, Intrusion} for this paper.

III. METHODOLOGY

The proposed learning automata-based MOHH framework
enabling control of multiple MOEAs operates as illustrated in
Algorithm 1. First, given a set of MOEAs (H), the initializa-
tion process takes place to set up the relevant data structures
(line 1). Our learning automaton requires the maintenance of
a transition matrix (P) which describes the selection prob-
abilities of metaheuristics transitioning from the previously



LI et al.: LEARNING AUTOMATA-BASED MOHH 63

Algorithm 1: Learning Automaton-Based Hyper-Heuristic
Framework

Popcurr : set (population) of input solutions,
Popnext : set of solutions surviving to the next stage,
H: set of metaheuristics (MOEAs) {h1, ..., hi, ..., hr},
P: transition matrix, g: fixed number of generations

1 [A, P, hi, Popcurr] ← Initialise(H) ; // A ⊆ H
2 while (termination criteria not satisfied) do
3 Popnext ← ApplyMetaheuristic(hi, Popcurr, g);
4 Popcurr ← Replace(Popcurr, Popnext);

// Decide whether to switch to
another metaheuristic

5 if (switch()) then
6 LearningAutomataUpdateScheme(P);

// Decision Point for
metaheuristic selection

7 hi ← SelectMetaheuristic(P, A);
end

end

selected metaheuristics. At the end of initialization step, the
transition matrix is set up and a subset or full set of MOEAs
(A) is determined as the input of the following learning
scheme, as well as the input heuristic (hi) and population
(Popcurr) (see Section III-A).

The chosen MOEA (hi) is applied (line 3) to the incumbent
set of solutions (Popcurr) to the problem instance dealt with for
a fixed number of generations/iterations (g), producing a new
set of solutions (Popnext). The new population then replaces
the current population (line 4). If the conditions of switching to
another metaheuristic (line 5) are satisfied, the reinforcement
learning scheme updates the transition matrix (line 6) based on
the feedback received during the search. Afterwards, the selec-
tion mechanism makes use of the updated transition matrix (P)
to decide which MOEA (hi) to run in the next iteration. Then
all those steps are repeated until the termination criteria are
satisfied.

The framework consists of four key components: 1) initial-
ization process; 2) reinforcement learning scheme; 3) meta-
heuristic (action) selection method; and 4) the method decid-
ing when to switch to another metaheuristic. Two MOHHs,
referred to as HH-LA and HH-RILA are designed under this
framework in this paper. HH-LA and HH-RILA differ only in
their initialization processes. The remaining components are
the same. The following sections describe each component in
detail.

A. Initialization

HH-LA utilizes all r MOEAs and the transition matrix P is
initially created so that each MOEA has the same probability
of being selected, i.e., 1/r. The initial population for HH-LA
is generated randomly.

HH-RILA uses a more elaborate initialization process.
We propose a ranking scheme to form a reduced sub-
set of MOEAs, eliminating the ones with relatively poor

performance. The ranking process begins with running each
MOEA successively for a number of stages. The number of
stages is set to the number of low level metaheuristics for
giving each MOEA an equal chance to show its performance.
Initial population is generated randomly. The resultant popu-
lation obtained at the end of each stage is directly fed into
the following stage for each MOEA. The hypervolume val-
ues for all resultant populations obtained at the end of each
stage from each MOEA is computed based on the normalized
objective values, i.e., (fi(x) − f min

i )/(f max
i − f min

i ) for the ith
objective, where the extreme objective values for each dimen-
sion, i.e., f max

i , f min
i are updated using the maximum and

minimum values found so-far by all MOEAs. This process
enables performance comparison of all MOEAs with respect
to hypervolume for all stages. Then we count the number of
stages (frequencies), denoted as Frqbest(hi) (the higher, the bet-
ter) that each MOEA becomes the best performing algorithm
out of all stages. These counts are then used for ranking all
MOEAs. If more than one MOEA has the same rank, ties are
broken using the diversification indicator of generalized spread
(the smaller, the better). Then MOEA(s) that rank worse than
the median MOEA get excluded from the low level MOEA
set. For example, if h3 becomes the top ranking metaheuris-
tic in all three stages, while h1 and h2 do not in any of
the three stages, then Frqbest(h1), Frqbest(h2), and Frqbest(h3)

are 0, 0, and 3, respectively. Consequently, the rank of each
MOEA with respect to normalized hypervolume is 2, 2, and
1. Suppose h1 has a smaller generalized spread value than h2,
then final ranks of h1, h2, and h3 are 2, 3, and 1, respectively.
Eventually, h2 gets excluded from the following stage of the
learning process.

Then HH-RILA operates as HH-LA with a reduced subset
of low level MOEAs for the remaining search process using
the final population from the best ranking MOEA as input.

B. Reinforcement Learning Scheme

The reinforcement learning scheme sits at the core of the
metaheuristic selection process. The system learns a mapping
(or policy) from situations to actions through a trial-and-
error process with the goal of maximizing the overall reward.
To explore the possible cooperation among different action
pairs, the learning scheme in this paper updates the transi-
tion probability (p(i,j)) from a preceding action (ai) to a given
successor (aj), depending on the performance after applying
aj. The chosen heuristics logically form a chain of a heuristic
sequence as the search progresses. Although there are previous
studies [9], [48], [57]–[59] using some notion of transition
probabilities to keep track of the performance of heuris-
tics invoked successively, none of them employed the same
reinforcement learning scheme as we proposed. More impor-
tantly, all the previously mentioned algorithms were tested on
single objective optimization problems under a single point-
based search framework managing move operators rather than
metaheuristics.

In the proposed learning scheme, an action (say hi) corre-
sponds to the selection of an MOEA, and the tth time step
is analogous to the tth decision point when an MOEA is
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selected and applied to the tradeoff solutions in hand. The
linear reward-penalty scheme is used to update the transition
probability from hi to hj at time (t + 1), i.e., p(i,j)(t + 1).
The update is performed as provided in (7) and (8) [52]. The
value of β(t) is set to 1 for positive (or preferable) feedback,
0 otherwise.

If the successor metaheuristic hj of hi is selected

p(i,j)(t + 1) = p(i,j)(t)+ λ(i,j)(t)β(t)
(
1− p(i,j)(t)

)
− λ(i,j)(t)(1− β(t))p(i,j)(t). (7)

For the rest of the metaheuristics that are not chosen,
indexed as l, where l �= j

p(i,l)(t + 1) = p(i,l)(t)− λ(i,l)(t)β(t)p(i,l)(t)

+ λ(i,l)(t)(1− β(t))

[
1

r − 1
− p(i,l)(t)

]
. (8)

We use the “change in the hypervolume value” measured
before and after selecting and applying an MOEA for reward-
ing/penalising during the learning process for two reasons.
First, hypervolume is the only known unary Pareto compliant
indicator [19], [60], i.e., if a PF P1 dominates P2, the indi-
cator value of P1 should be better than that of P2. Second,
theoretical studies show that maximizing the hypervolume
indicator during the search is equivalent to optimizing the over-
all objective leading to an optimal approximation of the true
PF [61], [62].

Due to the nonstationary nature of the search process, it is
reasonable to give more weight to the recent rewards than the
long-past ones. One of the common ways of doing this is to
discount the past reward at a fixed ratio (α) [63]. The reward
is denoted as Q(i,j)(k+1), meaning the estimated action value
of the transition pair (hi, hj) occurring its (k + 1)th times at
the tth decision point

Q(i,j)(k + 1) = Q(i,j)(k)+ α
[
r(i,j)(k + 1)− Q(i,j)(k)

]
(9)

where r(i,j)(k+1) is the current reward obtained by pair (hi, hj)

r(i,j)(k + 1) = vj(t)− vi(t − 1) (10)

where vj(t) is the hypervolume obtained by executing the
action hj at the current tth decision point and vi(t − 1) is
the hypervolume obtained by action hi at the (t − 1)th deci-
sion point. α is commonly fixed as 0.1 [63] as in this paper.
The hypervolume here is computed in the normalized objective
space as described in Section III-A.

Given the varying performance of each MOEA pair (hi, hj)

during the search, instead of fixing the reward and penalty rates
of λ(i,j), it is adaptively updated using the estimated action
value of each transition pair (Q(i,j)) at each decision point.
The calculation of λ is used to update both reward and penalty
rates as follows:

λ(i,j)(t) = 0.1+ mQ(i,j)(k + 1) (11)

where m is fixed as small positive multipliers (e.g., 2) to
amplify the effect of the estimated action value Q(i,j)(t) on
the reward/penalty parameter.

Due to the nature of the search space and amplifying
multipliers, it is possible that the adaptive reward and penalty

rates (λ(i,j)(t)) can get out of the [0, 1] range and so the transi-
tion probabilities. In such cases, the value of λ(i,j)(t) is reset to
the closest extreme value (0 or 1) ensuring that it stays within
the range.

C. Metaheuristic Selection Method

In reinforcement learning, in order to take an action (i.e.,
choosing a metaheuristic), a selection method is required. This
method is normally based on a function of the selection prob-
abilities (utility values) to select an action at a given certain
point. Several selection methods are commonly used in the
scientific literature, such as roulette wheel, or greedy [63].
Those methods differ when exploring new actions and exploit-
ing the knowledge obtained from the previous actions. The
roulette wheel selection method chooses an action with a prob-
ability proportional to its utility value. The advantage of this
method is its straightforwardness and it does not introduce
any extra parameters. However, it has less chance to exploit the
best-so-far actions when compared to the other selection meth-
ods, in particular when the selection probabilities of actions
are similar. The greedy selection method only chooses the
action with the highest selection probability. As a drawback,
this method could overlook the other potentially good per-
forming actions which might give higher rewards in the later
stages. Further details on different selection methods can be
found in [63]. Each selection method has its strengths and
weaknesses. To exploit the merits of both roulette and greedy
selection methods, we propose a new selection method, named
as ε-RouletteGreedy selection. The main idea is that the selec-
tion method first focuses on exploring different transition pairs
by performing a certain number of trials to get a better view of
the pairwise performances of metaheuristics at the early stage.
Then, the selection method becomes more and more greedy
exploiting the accumulated knowledge.

The proposed selection method works as follows. The
exploration phase parameter τ is fixed to a value in [0, 1].
During the first τntotalIter iterations, where ntotalIter is the total
number of iterations, roulette wheel selection is solely used
to choose an action (say, hj) out of all the possible succes-
sors of action hi based on the transition probability p(i,j).
Following this exploration phase, the probability ε of applying
the greedy selection method is increased linearly by the for-
mula τ+(1.0−τ)niter/ntotalIter, where niter denotes the number
of iterations has passed since the beginning of the algorithm.
We randomly generate a value between 0 and 1. If that value
is less than or equal to ε, the best action (with the highest
transition probability from the previously selected action) is
chosen to be performed at the next decision point. If the ran-
dom value is greater than ε, the next action is selected by
roulette wheel selection method.

D. Switching to Another Metaheuristic

In this paper, we propose a threshold method to stop the
application of a selected MOEA (hi) repeatedly, enabling
the hyper-heuristic to switch to another MOEA, adaptively.
A selected metaheuristic is applied as long as there is an
improvement in the hypervolume as compared to the previous
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iteration above an expected level. Hence, application of the
selected MOEA halts if the hypervolume improvement δ(viter)

is less than a threshold value of �v at a given iteration, or the
maximum number of iterations (denoted as K) for applying
a low level MOEA is exceeded. The hypervolume improve-
ment (change) δ(viter) is computed as (viter−v(iter−1))/v(iter−1),
where viter is the hypervolume of the tradeoff solutions
obtained after the application of hi at the current iteration, and
v(iter−1) is the hypervolume obtained from hi at the previous
iteration.

IV. COMPUTATIONAL EXPERIMENTS

The proposed multiobjective selection hyper-heuristics,
HH-LA and HH-RILA controlling three low level MOEAs
{NSGA-II, SPEA2, and IBEA} are studied using a range of
three-objective benchmark functions from the WFG [20] and
DTLZ [21] test suites. The number of stages in the initializa-
tion for HH-RILA is set to 3. The performances of HH-LA
and HH-RILA are not only compared to each individual
low level MOEA, but also to random choice hyper-heuristic
(HH-RC) serving as a reference approach utilizing no learning
as well as the online learning hyper-heuristic of HH-CF [14]
using the same set of low level MOEAs. The jMetal software
platform [64] embedding implementations of the WFG and
DTLZ problems and three low level MOEAs are used for the
development of all the algorithms experimented within this
paper.

A. Experimental Settings

Each experiment with an algorithm is repeated for 30 times
on each problem instance. The WFG and DTLZ benchmark
functions are all parameterized. Each WFG benchmark func-
tion has 20 distance and four position (total 24) parameters,
while DTLZ1, DTLZ2–DTLZ6, and DTLZ7 have 7, 12, and
22 parameters, respectively. Those parameter values are fixed
as in [20] for the WFG and [21] for the DTLZ problems.

It is commonly known that the performance of meta-
heuristics can be improved through parameter tuning, that is,
detecting the best settings (configuration) for the algorithmic
parameters [65], [66]. Considering the large set of parameters
and their values associated with the proposed hyper-heuristics
and MOEAs used in this paper, it is not feasible to test all the
combinations of settings considering the immense amount of
required computational budget. Instead, parameters of HH-LA
and HH-RILA are tuned based on the Taguchi experimental
design [67]. Whereas, the recommended configurations and
parameter settings are used for all the other algorithms, includ-
ing MOEAs [16], [17], [68], [69] and HH-CF [14] from the
scientific literature. Simulated binary crossover and polyno-
mial mutation [70] are used as the MOEA operators. The
distribution parameters of the crossover and mutation operators
are fixed as {ηc = 20.0} and {ηm = 20.0}, respectively. The
crossover and mutation probabilities are set to {pc = 0.9} and
{pm = 1/np}, where np is the number of parameters. Parents
are selected using the binary tournament operator [71]. The
maximum number of solution evaluations for each WFG and
DTLZ problem is set to 50 000 and 100 000, respectively [68].

This particular setting is always maintained for all algorithms
tested in this paper for a fair performance comparison between
them. The population and archive sizes are both fixed as 100
for MOEAs. The number of iterations for HH-CF and HH-
RC is set to the recommended value of 25, and intensification
parameter of HH-CF to 100 [14]. The number of generations
for each iteration is fixed as g = 10 for HH-LA and HH-RILA.

For a fair comparison, the number of evaluations used for
the initialization in HH-RILA are deducted from the total. As
mentioned above, parameters of the proposed hyper-heuristics
are tuned for an improved performance. The parameter tuning
experiments and sensitivity analysis of each parameter for HH-
LA and HH-RILA are provided in the following section.

B. Parameter Tuning of HH-LA and HH-RILA and
Sensitivity Analysis

Our multiobjective selection hyper-heuristics contains four
main parameters: 1) exploration phase τ ; 2) reward/penalty
multiplier m; 3) maximum number of iterations K for apply-
ing a low level MOEA; and 4) hypervolume improvement
threshold �v. Five different values for each parameter are
considered: τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, m ∈ {1.0, 1.5,
2.0, 2.5, 3.0}, K {1, 2, 3, 4, 5}, and �v ∈ {0.0, 0.0025,
0.005, 0.0075, 0.01}. Even with this sample of five settings for
each of the four parameters, 625 parameter tuning experiments
would have been required for testing all combinations of the
parameter settings. In this paper, the Taguchi orthogonal arrays
experimental design method [67], [72] is used for parameter
tuning. Sampling the configurations based on the orthogonal
array, denoted as L25, reduces the number of parameter tuning
experiments to 25 configurations for each algorithm, which
are tested on the benchmark functions.

The measurement used during the tuning experiments is
μnorm. The original μnorm is defined for the minimization
problems. Since we are maximizing hypervolume, we slightly
modify the formulation of μnorm as follows. Let S(x,n) be the
set of hypervolume (30 hypervolume values in our case result-
ing from 30 trials) obtained by an algorithm x, where x ∈ X on
a problem n, where n ∈ N; X and N are the sets of algorithms
and problems, respectively. Let Smin

n = MIN∀s∈S(x,n),∀x∈X be
the minimum and Smax

n = MAX∀s∈S(x,n),∀x∈X be the maximum
hypervolume obtained by all the algorithms on a problem n.
The normalized hypervolume of an algorithm x on a problem n
is computed as f norm

(x,n) = ([Smax
n −AVGs∈S(x,n)

(s)]/[Smax
n −Smin

n ]).
The average of f norm

(x,n) defined as μnorm(x) = AVG∀n∈N(f norm
(x,n) )

serves as the measurement for the tuning experiments. The
lower the μnorm(x) value, the better the performance of the
algorithm x.

The main effects plots in Fig. 1 indicate the mean effect
of each parameter setting on the performances of HH-LA
and HH-RILA. The parameter setting that achieves the low-
est mean μnorm averaged across all trials using that setting
regardless of the remaining parameter settings would be the
best value for that parameter. Thus, the best configuration for
HH-LA is {τ = 0.5, m = 2.5, K = 3,�v = 0.0075}, and for
HH-RILA is {τ = 0.9, m = 3.0, K = 3,�v = 0.0075}. Both
settings are used in this paper for the rest of the experiments.



66 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 1, FEBRUARY 2019

Fig. 1. Main effects plots for HH-LA (left) and HH-RILA (right) for each
parameter: exploration phase (τ ), multiplier (m), maximum iterations (K) for
applying a low level MOEA, and hypervolume improvement threshold (�v).

TABLE I
ANOVA TEST TO IDENTIFY THE CONTRIBUTION (%) OF EACH

PARAMETER FOR HH-LA AND HH-RILA (DOF: DEGREES OF FREEDOM,
SS: SUM OF SQUARES, MS: MEAN SQUARES, AND F: VARIANCE RATIO)

Analysis of variance (ANOVA) [73] test is performed to
observe how sensitive the performance of proposed hyper-
heuristics to the parametric settings is by looking into the
significance and contribution (in percentage) of each parame-
ter. Table I shows that exploration phase parameter τ has the
most significant influence on the performance of both HH-LA
and HH-RILA at a significance level of 5% (i.e., p-value <

0.05). The parameter τ has the highest percentage contribu-
tion of 43.93% and 53.61% to the performance of HH-LA
and HH-RILA, respectively. The reward/penalty multiplier m
also significantly contribute to the performance of HH-LA
with the second largest percentage contribution of 25.75%,
while this parameter has almost no contribution (3.16%) to
the performance of HH-RILA. The remaining two parameters
are not significantly influential on the performance of either
proposed hyper-heuristics.

C. Experimental Results on WFG and DTLZ

In this section, we use hypervolume as the main
performance indicator. One-tailed Wilcoxon rank-sum test
(also known as Mann–Whitney U test) is applied based on the
raw hypervolume values obtained from 30 trials of each algo-
rithm to test if there is a statistically significant performance

difference between a pair of algorithms. The significance level
is set to 5%. The reference (or nadir) point (denoted as r) for
the WFG and DTLZ benchmark problems are chosen as fol-
lows. For each WFG problem, the reference point is set as
ri = 2i + 1, where i = 1, 2, . . . , k is the index of the objec-
tive and k is the total objective number. Thus, for each WFG
problem, the reference point is (3, 5, 7). The reference point for
DTLZ problems is set as ri = 0.5 for DTLZ1, ri = 1.0 for
DTLZ2–DTLZ6, and ri = 1.0 if i < k, otherwise, rk = 2k
for DTLZ7.

The convergence indicator ε+ is utilized as an additional
performance comparison indicator. We notice that in some
cases, the performance differences between algorithms are
not distinguishable if the raw values are plotted directly.
Here only for the visualization purposes, we map the raw
hypervolume/ε+ value into the range of [0, 1] via normal-
ization using the extreme (minimum and maximum) values
collected from all algorithms over 30 trials on each instance,
then the mean hypervolume and ε+ values are plotted in
Fig. 2. Higher the hypervolume or lower the ε+ value means
a better performance.

Fig. 2 shows that IBEA performs the best on WFG bench-
mark with respect to both hypervolume and ε+ in the overall.
HH-RILA and HH-LA follow the performance of IBEA
closely. NSGA-II clearly performs the worst on WFG. The
performance of IBEA gets much poorer and becomes overall
the worst approach for the DTLZ benchmark functions with
respect to both metrics. SPEA2 performs the best on over half
of DTLZ benchmark. HH-RILA and HH-LA always achieve
the second best performance on most DTLZ benchmark or
even the best on DTLZ7. In addition, the hypervolume-based
performance ranking of all algorithms on each benchmark
problem is almost fully consistent with the ε+-based rank-
ing except for WFG1. On WFG1, IBEA achieves the best
rank with respect to hypervolume; however, IBEA performs
slightly worse than SPEA2 on WFG1 with respect to the ε+
indicator. This inconsistency, also discussed in [60], is possibly
due to the different working principles of both indicators.

One-tailed Wilcoxon rank-sum test at 5% significance level
is conducted on the performance of each pair of algorithms
with respect to hypervolume. The statistical test results are
summarized in Table II and we have the following observa-
tions.

In the overall, both of our MOHHs deliver a better
performance than any of the individual MOEAs run on its
own on the WFG and DTLZ benchmarks. The statistical
test results show that HH-LA and HH-RILA outperform
NSGA-II on all nine WFG benchmark functions while three
out of seven DTLZ problems, including DTLZ1, DTLZ2, and
DTLZ5. HH-RILA additionally performs significantly better
than NSGA-II on DTLZ6 and DTLZ7. HH-LA and HH-RILA
perform significantly better than SPEA2 on the same eight
out of nine WFG benchmark functions including WFG1 and
WFG3–WFG9. HH-RILA additionally outperforms SPEA2 on
DTLZ2 and DTLZ7. Although IBEA delivers a good over-
all performance on the WFG benchmark, both our algorithms
still manage to outperform IBEA on five out of seven DTLZ
problems including DTLZ1, DTLZ3, and DTLZ5–DTLZ7.
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Fig. 2. Performance comparison of all the algorithms with respect to hypervolume and ε+ on 3-D WFG and DTLZ problems.

TABLE II
ONE-TAILED WILCOXON RANK-SUM TEST AT 5% SIGNIFICANCE LEVEL ON WFG AND DTLZ BENCHMARK PROBLEMS WITH RESPECT TO

HYPERVOLUME. “W” AND “D” ARE SHORT FOR “WFG” AND “DTLZ,” RESPECTIVELY. “>” MEANS THE SIGNIFICANTLY

BETTER THAN, “<” SIGNIFICANTLY WORSE THAN, AND “∼” NO SIGNIFICANT DIFFERENCE

HH-RILA also performs significantly better than IBEA
on WFG2.

Both HH-LA and HH-RILA outperform HH-CF and HH-
RC. Specifically, both of our hyper-heuristics perform sig-
nificantly better than HH-CF on 11 benchmark functions
out of total 16, including the same eight WFG benchmark
functions (WFG1 and WFG3–WFG9) and three DTLZ bench-
mark functions (DTLZ1–DTLZ3 for HH-LA, while DTLZ1,
DTLZ2, and DTLZ6 for HH-RILA). The performance dif-
ference between each of the proposed hyper-heuristics and

HH-RC is statistically significant with respect to hypervol-
ume on ten out of 16 problems which include the same seven
WFG benchmark functions (WFG3–WFG9) and three slightly
different DTLZ problems: HH-LA outperforms HH-RC on
DTLZ1, DTLZ2, and DTLZ5, while DTLZ1, DTLZ2, and
DTLZ7 for HH-RILA. HH-CF only outperforms HH-RC on
DTLZ7, while they perform similarly on eight out of 16 prob-
lems (WFG2, WFG9, and DTLZ1–DTLZ6). HH-CF delivers
a significantly worse performance than HH-RC on the rest of
the seven problems (WFG1 and WFG3–WFG8).
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Fig. 3. Mean utilization rate of each metaheuristic by HH-LA (left), HH-
RILA (middle), and HH-CF (right) over 30 trials on WFG (W) and DTLZ (D).

As for the performance comparison between HH-LA and
HH-RILA, HH-LA is slightly better than HH-RILA in the
overall on the WFG problems. This performance difference
is statistically significant on four WFG problems including
WFG1, WFG3, WFG6, and WFG8, while HH-RILA performs
significantly better than HH-LA on three WFG problems:
WFG2, WFG4, and WFG7. However, considering DTLZ
benchmark, HH-RILA performs slightly better than HH-LA in
the overall. This performance difference is statistically signif-
icant on DTLZ1 and DTLZ6, while HH-LA only outperforms
HH-RILA on DTLZ5.

D. Analysis of Hyper-Heuristics on WFG and DTLZ

1) Utilization of Low Level Metaheuristics: The “utilization
rate” of a low level metaheuristic is the number of invocations
of this metaheuristic divided by the total number of meta-
heuristic selection decision points in a given trial. The mean
utilization rates of the three MOEAs, i.e., NSGA-II, SPEA2,
and IBEA averaged over 30 trials on the WFG and DTLZ
benchmark functions produced by HH-LA, HH-RILA, and
HH-CF [14] are illustrated in Fig. 3.

Fig. 3 shows the differences in learning characteristics
of these three online learning MOHHs. First, HH-LA and
HH-RILA provide a bias toward using the best perform-
ing MOEA with respect to hypervolume. Specifically, both
HH-LA and HH-RILA choose IBEA and SPEA2 more fre-
quently while solving the WFG and DTLZ problems, respec-
tively. This is not surprising, considering that hypervolume
serves as the main guidance in the learning mechanisms
of our hyper-heuristics. Second, in certain cases, such as
WFG4–WFG8 and DTLZ6, HH-RILA almost exclude NSGA-
II which is the worst performed MOEA on those problems.
Interestingly, HH-CF generates a similar utilization rate for
low level MOEAs across different problem sets. On aver-
age, HH-CF uses NSGA-II, SPEA2, and IBEA for 40%,
40%, and 20% of all the decision points, respectively, on the
WFG benchmark. Similarly, HH-CF uses NSGA-II, SPEA2,
and IBEA for 34%, 38%, and 28%, respectively, on the
DTLZ benchmark. This might indicate that the adaptation
mechanism in HH-CF has some issues controlling these

Fig. 4. Averaged transition probability matrices (over 30 trials) produced by
HH-LA (left column) and HH-RILA (right column) while solving WFG7 and
DTLZ3. The lighter the color, the higher the transition probability.

three low level metaheuristics properly on different problem
instances.

2) Analysis of the Transition Probabilities: The proposed
hyper-heuristics embed a learning mechanism which maintains
the transition probabilities between any pair of MOEAs. Fig. 4
provides the final transition probability matrices obtained by
HH-LA and HH-RILA averaged over 30 trials for the sample
cases of WFG7 and DTLZ3.

Fig. 4 illustrates that both HH-LA and HH-RILA yield
higher probability entries preferring transitions to IBEA than
to other MOEAs for WFG7. This is consistent with the
performance assessment of each individual MOEA (Fig. 2),
which shows that IBEA performs the best on WFG7.
Moreover, HH-RILA excludes the worst performing MOEA,
i.e., NSGA-II after the initialization stage for solving WFG7.
This is likely the reason why HH-RILA performs significantly
better than HH-LA on WFG7.

DTLZ3 is an interesting case. IBEA delivers a better
performance in the early stages, but stagnates and even dete-
riorates later during the search process. Due to the misleading
performance of IBEA in the early stage, HH-RILA rewards
IBEA more than the other MOEAs, while excluding the
ones with potentially good performance, such as SPEA2.
Consequently, HH-RILA ends up performing significantly
worse than HH-LA on DTLZ3.

In summary, the proposed learning mechanism is capable of
adaptively updating the transition probabilities between pairs
of MOEAs giving bias toward the right algorithms (with good
performance) during the search process in an online manner.
Moreover, the ranking initialization scheme is, in some cases,
capable of improving the overall performance significantly by
detecting and excluding potentially poor performing MOEA(s)
in the early stages of the search.

3) Analysis of Approximate Pareto Fronts: So far, IBEA
is a strong competitor of HH-LA and HH-RILA with respect
to hypervolume. To get more insights on the distribution of
solutions from IBEA and the proposed hyper-heuristics, PFs
obtained from HH-RILA and IBEA for WFG7 and DTLZ3
are illustrated in Fig. 5. HH-LA produces PFs very similar
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(a)

(b)

Fig. 5. Approximate PFs produced by HH-RILA (left column) and IBEA
(right column) on (a) WFG7 and (b) DTLZ3.

to HH-RILA on almost all problems, and so we focus on
HH-RILA here.

Fig. 5 demonstrates that IBEA is prone to be trapped at
a local optimum. IBEA produces uneven solution distribu-
tion for WFG7, leaving clear gaps between the boundary and
inner regions, whereas HH-RILA reaches a better solution
distribution for this problem.

IBEA performs poorly on DTLZ3. All the solutions are
clustered around the “corner” points which suggests that the
performance of IBEA degrades during the search process.
This interesting behavior of IBEA has also been observed
previously by Tušar and Filipic̆ [69, Fig. 7] and Li et al. [74].
More importantly, solutions from HH-RILA clearly spread
much more evenly on the front than IBEA, possibly due to
the utilization of multiple MOEAs.

4) Analysis of Search Dynamics: To have a further under-
standing of the search progress induced by each low level
MOEA at each trial under the proposed hyper-heuristics,
we recorded which MOEA was chosen and applied at each
iteration of 30 trials. Fig. 6 provides plots based on that data
as a representative of the search dynamics for HH-LA and
HH-RILA on WFG7 and DTLZ3. Each tick on the plot indi-
cates the total number of trials that the relevant MOEA is
selected and invoked by the indicated hyper-heuristic at a
given iteration. For example, HH-LA calls NSGA-II, 11 times,
SPEA2, 7 times, and IBEA, 12 times at the first iteration out
of 30 trials when solving WFG7.

As observed from Fig. 6, HH-LA slowly reduces the usage
of poor performing MOEAs which are NSGA-II and SPEA2
for WFG7 during the exploration phase which corresponds
to the first half of the search process (τ = 0.5). Then the
best performing MOEA; i.e., IBEA is predominately used
for the remaining iterations. Meanwhile, HH-RILA excludes
NSGA-II after the initial ranking stage (first nine iterations).
Following the exploration phase, HH-RILA prefers invoking

Fig. 6. Number of invocations of each MOEA at each iteration over 30 trials
on WFG7 and DTLZ3 obtained from HH-LA (left column) and HH-RILA
(right column).

IBEA more and more while SPEA2 less and less as the search
progresses. This behavior is also reflected on the transition
probability matrix (Fig. 4). The transition probabilities from
any MOEA to IBEA are higher than to the other MOEAs for
both HH-LA and HH-RILA. Moreover, the transition prob-
abilities to and from NSGA-II are all 0s for HH-RILA on
WFG7.

On DTLZ3, HH-LA tends to prefer employing, first,
NSGA-II and then SPEA2 more than IBEA after the explo-
ration phase. Nevertheless, HH-RILA cannot detect the
degrading performance of IBEA rapidly enough during the
search, and this results in excluding SPEA2 or NSGA-II in
some trials. Therefore, the performance of HH-RILA becomes
worse than HH-LA with respect to hypervolume. This behavior
is also consistent with the mean utilization rates as provided
in Fig. 3, which shows that HH-LA uses NSGA-II and SPAE2
more than HH-RILA does on DTLZ3.

E. Experimental Results for Vehicle Crashworthiness

HH-LA and HH-RILA are also tested on the real-world
problem of VCP. The same experimental settings as in [14]
are used for a fair performance comparison. The population
size is fixed as 30 in these experiments. Each iteration consists
of 50 generations. Each algorithm terminates whenever 75 000
solution evaluations are exceeded. The reference point for each
VC instance is set to ri = znadiri + 0.5(znadiri − zideali), where
i is the index of an objective, znadiri and zideali are the nadir
(highest) and ideal (lowest) value of objective i, respectively.
The performances of each algorithm with respect to hypervol-
ume and ε+ are provided in Table III. The results show that
NSGA-II performs the best (with the highest hypervolume and
lowest ε+) on VC1 and VC2, while HH-RILA performs the
best on VC3 and VC4 based on both performance indicators
when compared to the other algorithms including each MOEA
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TABLE III
MEANSTD HYPERVOLUME AND ε+ VALUES FOR THE VCPS, AVERAGED OVER 30 TRIALS AND THEIR STANDARD DEVIATIONS PROVIDED AS

SUBSCRIPT ENTRIES. THE BEST MEAN HYPERVOLUME AND ε+ ON EACH PROBLEM INSTANCE IS HIGHLIGHTED IN BOLD

TABLE IV
ONE-TAILED WILCOXON RANK-SUM TEST AT 5% SIGNIFICANCE LEVEL

ON VC PROBLEMS WITH RESPECT TO HYPERVOLUME. > MEANS THE

SIGNIFICANTLY BETTER THAN, < SIGNIFICANTLY WORSE THAN, AND ∼
NO SIGNIFICANT DIFFERENCE

used on its own. The proposed hyper-heuristic exploits the syn-
ergy between MOEAs with different performances leading to
an improved overall performance.

The one-tailed Wilcoxon rank-sum test comparing the
performance difference of all pairs of multiobjective
approaches are summarized in Table IV. The results suggest
that both NSGA-II and SPEA2 perform significantly better
than IBEA. HH-RILA outperforms HH-CF on two out of
four VC problem instances (VC3 and VC4), and HH-RC on
three out of four VC problem instances (VC2–VC4), and beats
IBEA on all four VC problems. HH-LA performs similar as
HH-CF, significantly better HH-RC on VC2, and also outper-
forms IBEA on all four VC problems. HH-RILA outperforms
HH-LA on VC2–VC4.

F. Generality Analysis

Different approaches perform the best on different problems.
The cross-domain search performance of algorithms indicating
which algorithm is more general and the best across a range of
problems is often of interest [7]. As mentioned before, μnorm is
used in this paper to assess the generality level of an algorithm
across different problems including the benchmark functions
and VCPs.

The empirical results based on μnorm are presented in
Table V. We also rank all the algorithms with respect to
μnorm values. The lower μnorm value is, the better the rank
of an algorithm. From Table V, we have the following

TABLE V
HYPERVOLUME μnorm FOR EACH ALGORITHM ON EACH TEST PROBLEM

INSTANCE. x̄W , x̄D , x̄VC, x̄WD, AND x̄All DENOTE THE MEAN μnorm ON

WFG, DTLZ, VC, AND BOTH WFG AND DTLZ, AS WELL AS ALL

THREE PROBLEM DOMAINS, RESPECTIVELY. THE BEST MEAN μnorm
ON EACH BENCHMARK IS HIGHLIGHTED IN BOLD, THE

SECOND BEST IS IN GRAY BOX

observations. There is no single MOEA performing well
across all three problem domains even though each uses
the same perturbative operators. The performance of each
individual MOEA varies vastly on different domains. IBEA,
SPEA2, and NSGA-II deliver the best performance on WFG,
DTLZ, and VC, respectively. Although HH-RILA is always
the second best performing approach on each domain, it has
the best cross-domain performance and so the most general
approach among all algorithms tested in this paper with a
mean μnorm of 0.2089 based on the results from all 20 problem
instances. Moreover, HH-LA turns out to be the second best
approach with a mean μnorm of 0.2571. The cross-domain
performance of our selection hyper-heuristics are followed by
IBEA, SPEA2, HH-RC, HH-CF, and NSGA-II in that order.
If we consider only WFG and DTLZ benchmarks ignoring
the VCP and compare the cross-domain performance of all
algorithms, HH-RILA and HH-LA still rank the best and
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the second best based on the mean μnorm values averaged
over all benchmark functions, yielding 0.2024 and 0.2154,
respectively.

V. CONCLUSION

In this paper, we proposed two variants of a learn-
ing automata-based multiobjective selection hyper-heuristic:
HH-LA and HH-RILA. The performance and generality of
HH-LA and HH-RILA controlling three MOEAs are investi-
gated on three multiobjective continuous optimization problem
domains, including two sets of benchmark functions (WFG
and DTLZ) and the real-world problem of vehicle crash-
worthiness. The experimental results show that the different
MOEAs perform the best on different problem domains.
However, HH-RILA and HH-LA perform the best and sec-
ond best, respectively, across all test problem instances
based on the μnorm indicator. In addition, both HH-LA
and HH-RILA outperform a state-of-the-art online learning
hyper-heuristic and a random choice hyper-heuristic. The
results also suggest that the proposed hyper-heuristics are
indeed capable of exploiting the strengths of the low level
MOEAs delivering an improved performance via a learn-
ing automata in this paper. The proposed component for
metaheuristic (action) selection, that is the ε-RouletteGreedy
method adaptively balances exploration and exploitation
of the use of MOEAs by combining the merits of two
regular selection methods of roulette wheel and greedy
selection.

In future work, both HH-LA and HH-RILA will be applied
to other discrete and continuous real-world problems and
their performance as well as the level of generality will be
assessed. In single objective optimization, it has been observed
that the performance of selection hyper-heuristics might vary
depending on the set of low level heuristics [25], hence
another interesting research direction would be investigating
the performance of the proposed hyper-heuristics using differ-
ent sets of low level multiobjective metaheuristics. Moreover,
there is a growing interest into many-objective (problems
with more than three objectives) optimization and recent stud-
ies show that many-objective optimization requires different
approaches from multiobjective metaheuristics [75]. The tests
that we performed in this paper is somewhat at the bound-
ary of multi and many-objective optimization considering
that three objective problems are used in the experiments.
Therefore, the low level metaheuristics used in the proposed
multiobjective selection hyper-heuristic framework can be
replaced by other state-of-the-art many-objective metaheuris-
tics (such as NSGA-III [76] and AGE [68]), and tested on
a range of many-objective optimization problems. Although
hypervolume is utilized in this paper as the main indicator
for guiding the search and combining strengths of differ-
ent MOEAs for multiobjective optimization, the proposed
framework allows the use of different indicators. It would
be worth investigating the behavior of the proposed selec-
tion hyper-heuristics when other convergence/performance
indicators are used for guidance, such as the ε+
indicator.
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