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Evolutionary Constrained Multiobjective
Optimization: Test Suite Construction and
Performance Comparisons

Zhongwei Ma and Yong Wang

Abstract—For solving constrained multiobjective optimization
problems (CMOPs), many algorithms have been proposed in
the evolutionary computation research community for the past
two decades. Generally, the effectiveness of an algorithm for
CMOPs is evaluated by artificial test problems. However, after
a brief review of current artificial test problems, we have found
that they are not well-designed and fail to reflect the charac-
teristics of real-world applications (e.g., small feasibility ratio).
Thus, in this paper, we first propose a new constraint construc-
tion method to facilitate the systematic design of test problems.
Then, on the basis of this method, we design a new test suite
consisting of 14 instances, which covers diverse characteristics
extracted from real-world CMOPs and can be divided into four
types. Considering that the comprehensive performance compar-
isons among the constraint-handling techniques (CHTSs) remain
scarce, we choose several representative CHTs and compare
their performance on our test suite. The performance compar-
isons identify the strengths and weaknesses of different CHTSs
on different types of CMOPs and provide guidelines on how to
select/design a CHT in a specific scenario.

Index Terms—Constrained multiobjective optimization,
constraint-handling techniques (CHTs), evolutionary algorithms
(EAs), performance comparisons, test suite.

I. INTRODUCTION
A. Constrained Multiobjective Optimization Problems

ONSTRAINED multiobjective optimization problems
(CMOPs) have received increasing attention during the
past two decades since they widely exist in many real-world
applications, such as scheduling [1], vehicle body design [2],
and systematic deployment optimization [3]. CMOPs are fea-
tured with one or more constraints and multiple conflicting

Manuscript received July 30, 2018; revised November 15, 2018 and
January 16, 2019; accepted January 29, 2019. Date of publication
February 1, 2019; date of current version November 27, 2019. This work was
supported in part by the Innovation-Driven Plan in Central South University
under Grant 2018CX010, in part by the National Natural Science Foundation
of China under Grant 61673397, in part by the Hunan Provincial Natural
Science Fund for Distinguished Young Scholars under Grant 2016JJ1018,
and in part by the Beijing Advanced Innovation Center for Intelligent Robots
and Systems under Grant 2018IRS06. (Corresponding author: Yong Wang.)

The authors are with the School of Information Science and
Engineering, Central South University, Changsha 410083, China (e-mail:
mzw_cemo@csu.edu.cn; ywang@csu.edu.cn).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author. The total size of the file
is 1.39 MB.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2019.2896967

, Senior Member, IEEE

objectives that need to be optimized simultaneously. CMOPs
pose a great challenge to evolutionary algorithms (EAs) due
to the fact that they require EAs to offer tradeoffs among the
conflicting objectives subject to all constraints [4], [5].
Without loss of generality, a CMOP can be formulated as

min F&) = (i@, @), ..., fu@)T
g(x) <0, j=1....p
st { hi@) =0, j=p+1l,....p+q (1)

A< < XY k=1,...,n

where X = (x1,...,x,) € S is an n-dimensional decision vec-
tor, xx(k € {1, ..., n}) is the kth decision variable, S C R” is
the decision space, F is the objective vector consisting of m
objectives, f;(X)(i € {1, ..., m}) is the ith objective, g;(x) <0
is the jth inequality constraint, p is the number of inequality
constraints, 4;(X) = 0 is the (j — p)th equality constraint, g is
the number of equality constraints, and x;"" and x}'** are the
bound constraints of xy.

The constraint violation of X on the jth constraint can be
defined as follows:

o maX(O, gj(?c)),
CV’(X)_{maX(Q ()] - 8), P+a
where § is a very small tolerance value to relax equality con-

straints (e.g., 10_4). Based on this definition, ¥ is a feasible
solution if its total constraint violation, i.e.,

j=1,...,p

j:p+17"’ (2)

ptq

> CVi@
j=1

is equal to 0; otherwise, X is an infeasible solution. The feasible
region is the set of all the feasible solutions, namely Q =
(ZICV(E) =0,X € S).

CV(x) = 3)

B. Classification of CMOPs

In unconstrained multiobjective optimization [i.e., ignoring
the constraints in (1)], glven two solutions a and b a Pareto
dominates b (denoted as a < b) if and only if fi(@ < ﬁ(b) for
every i € {l,...,m} and Jj(a) < ﬁ(b) for at least one index
je{l,....,m}. X* is a Pareto optimal solution if there does
not exist any solution that Pareto dominates it. The set of all
the Pareto optimal solutions is the Pareto set. The Pareto front
(PF) is the image of the Pareto set in the objective space.

Due to the presence of constraints, it is more difficult to
obtain the PF of a CMOP, called constrained PF, than its
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Fig. 1.  Classification of CMOPs. (a) Type 1. (b) Type II. (c) Type IIL
(d) Type IV. For the sake of clarity, in our following discussions, the feasi-
ble region and the boundary of the feasible region specifically refer to their
counterparts in the objective space.

unconstrained counterpart [6]. Compared with unconstrained
multiobjective optimization, some original Pareto optimal
solutions may become infeasible in a CMOP and/or some solu-
tions on the boundary of the feasible region of a CMOP may
become the Pareto optimal solutions. In order to identify the
relationship between unconstrained and constrained PFs, we
classify CMOPs into the following four types.

1) Type I: As shown in Fig. 1(a), the whole unconstrained
PF remains feasible, that is, the constrained PF is the
same with the unconstrained PF. Some CMOPs with
loose constraints often belong to this type, such as the
optimization of biped robot gaits [7], [8].

2) Type II: As plotted in Fig. 1(b), the constrained PF
is a part of the unconstrained PF, since constraints
make a portion of the unconstrained PF infeasible. This
type exists widely in real-world CMOPs and a simi-
lar engineering problem can be found in the topology
optimization of multicell tubes [9].

3) Type III: The constrained PF consists of a part of the
unconstrained PF and a part of the boundary of the fea-
sible region. As shown in Fig. 1(c), constraints make a
part of the unconstrained PF infeasible and some solu-
tions on the boundary of the feasible region become the
Pareto optimal solutions. A real-world CMOP belonging
to this type is the reliability design problem in the field
of automotive body optimization [10], [11].

4) Type IV: As plotted in Fig. 1(d), the unconstrained PF
is entirely located outside the feasible region. Thus, the
constrained PF is composed of a part of the boundary
of the feasible region. A typical CMOP of this type is
the robot gripper optimization problem [12].

When solving CMOPs, it is well known that we need to

seek a balance between objectives and constraints in the search
process [13]. However, there is little awareness on how to
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reasonably apply this principle when facing the different types
of CMOPs mentioned above. In particular, from types I to IV,
the search bias should be gradually switched from the objec-
tives to constraints. For type I, to obtain the Pareto optimal
solutions on the constrained PF, more focus should be placed
on objectives. Instead, for type IV, more emphasis should
be put on constraints since the Pareto optimal solutions are
completely located on the boundary of the feasible region.

C. Present Artificial Test Problems/Suites and Their
Drawbacks

In general, it is impractical to assess the performance of
an algorithm by a specific real-world CMOP [14]. The rea-
son is because this assessment process may require some
domain knowledge and cannot effectively demonstrate an algo-
rithm’s generality. An alternative way is to use the artificial
test problems that cover as many characteristics extracted from
real-world CMOPs as possible. If an algorithm achieves desir-
able results on artificial test problems, we could believe that it
has good potential to solve real-world CMOPs. Some attempts
have been made on the design of artificial test problems for
CMOPs. Examples include SRN [15], TNK [16], OSY [17],
CTPs [18], CFs [19], NCTPs [20], and C-DTLZs [21].

SRN, TNK, and OSY are perhaps the earliest three test
problems and have been frequently considered for performance
comparisons of algorithms. SRN has a continuous constrained
PF that is a part of the unconstrained PF (i.e., type II). TNK
has a disconnected constrained PF that completely lies on
the boundary of the feasible region (i.e., type IV). OSY is
a type-IV CMOP and has six constraints. OSY’s constrained
PF has five parts and each part is the intersection of certain
constraints.

Deb et al. [18] pointed out that the above three test problems
have the following shortcomings: 1) they have few decision
variables; 2) their objectives and constraints are not suffi-
ciently nonlinear; and 3) their difficulties are not tunable in
terms of constraints. Therefore, a general framework is sug-
gested in [18] to design CMOPs with constraints that have
tunable difficulties. Based on the proposed framework, seven
instances are proposed (called CTPs). Most of them have dis-
connected or discrete constrained PFs. Note that, CTPs have
large feasibility ratios.

Following the framework of CTPs, Zhang et al. [19] con-
structed ten test problems (called CFs). CFs have disconnected
geometries of constrained PFs and belong to the type-II and
type-III CMOPs. CFs also introduce complicated variable link-
ages. As a result, when solving CFs, an algorithm always
struggles on convergence. Besides, most of CFs have large
feasible regions.

Inspired by CTPs, Li et al. [20] proposed 18 new test
problems (called NCTPs). Compared with the original CTPs,
these test problems make the following improvements: 1) the
Ronsenbrock function is employed as the distance function
to increase the difficulty of convergence; 2) high-dimensional
decision spaces are considered; and 3) an extra constraint is
added to explicitly decrease the feasibility ratio.

Jain and Deb [21] designed a test suite of five CMOPs
with a scalable number of objectives, which are the extended
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TABLE I
COMPARISON OF CURRENT TEST PROBLEMS AND THE PROPOSED TEST PROBLEMS. “/” AND “x” DENOTE THE PRESENCE AND
ABSENCE OF THE CORRESPONDING CHARACTERISTIC, RESPECTIVELY, AND “x” DENOTES THAT THE
CORRESPONDING CHARACTERISTIC IS SATISFIED PARTIALLY

SRN [15] TNK [16] OSY [17] CTPs [18] CFs [19] NCTPs [20] C-DTLZs [21] MWs
Type 1I v v 1L, 11, IV II, 1T I 0, IV LI, IV ALL
Small Feasibility Ratio Vv Vv Vv X X * * v
Sufficient Nonlinearity of Constraints X v X v v v X v
More Than Two Constraints X X v X X X v Vv
Scalability of the Number of Objectives X X X X X X VA VA
High-dimensional Decision Vector X X X X V4 V4 VA Va
Proper Difficulty of Convergence X X X X X v VA VA
Diverse Geometries of Constrained PFs X X X X X X X v

versions of the DTLZ problems used in the field of uncon-
strained multiobjective optimization. Specifically, three kinds
of constraints are introduced.

1) The first kind of constraints provides an infeasible bar-
rier, and the unconstrained PF remains feasible (i.e.,
C1-DTLZs).

2) The second kind of constraints defines several isolated
feasible regions along the unconstrained PF, and the
constrained PF is a part of the unconstrained PF (i.e.,
C2-DTLZs).

3) The third kind of constraints makes the unconstrained
PF infeasible and the constrained PF is made up of the
boundary of the feasible region (i.e., C3-DTLZs).

According to our classification of CMOPs, C1-DTLZs,
C2-DTLZs, and C3-DTLZs belong to types I, II, and IV,
respectively. It is worth noting that the constraints of C-DTLZs
are not sufficiently nonlinear, because the shape of the feasi-
ble region is regular and simple (e.g., spherical feasible region
in C2-DTLZ2), and the boundary of the feasible region has
very small curvature (e.g., linear boundary in C1-DTLZ1 and
C3-DTLZ1). Besides, the feasibility ratios of some C-DTLZs
(e.g., C1-DTLZ3, C3-DTLZI1, and C3-DTLZ4) are greater
than 30% based on our calculation.

Based on the above discussions, present artificial test prob-
lems fail to comprehensively represent the characteristics of
real-world CMOPs.

1) It is common that real-world CMOPs have very small

feasible regions and complex nonlinear constraints [22],
[23]. However, the feasibility ratios of current test prob-
lems are always large and/or their constraints are not
sufficiently nonlinear. Note that if the feasibility ratio of
a CMOP is very large, it is hard to identify the ability
of a constraint-handling technique (CHT).

2) Most of current test problems have a single con-
straint, which is much less than the number of con-
straints in real-world CMOPs. For example, there are
9 and 11 constraints in the ship parametric design
problem [24] and the speed-reducer design problem [25],
respectively.

3) Real-world CMOPs may have an arbitrary number of
objectives [26]. But current test problems (except C-
DTLZs) are CMOPs with two objectives, which cannot
be scalable in terms of the number of objectives.

4) Some test problems consider few decision variables. For
example, the most commonly used test problems, i.e.,
SRN, TNK, OSY, and CTPs, have no more than six
decision variables.

In addition, some other limitations of current test problems
make them unsuitable for general use. First, some test prob-
lems are unable to provide proper difficulties of convergence.
Second, some special geometries of constrained PFs are not
suggested in current test problems, such as the jagged geom-
etry in the aircraft landing scheduling problem [27]. Third,
there is no test suite containing all the four types of CMOPs
according to our taxonomy.

D. Motivation

Table I summarizes the drawbacks of current test problems.
It is clear from Table I that it is necessary to further investi-
gate the construction of artificial test problems in constrained
multiobjective optimization. Motivated by the above consider-
ation, we propose a new constraint construction method. This
method enables us to design CMOPs with controllable sizes
of the feasible regions and complex geometries of constrained
PFs. Afterward, we suggest three kinds of distance functions
that can provide appropriate difficulties of convergence for
CMOPs. Based on the constraint construction method and
the distance functions, we propose a test suite containing 14
instances. They cover all of the four types of CMOPs.

Besides, we choose several popular CHTs for performance
comparisons on our test suite, since the comparative stud-
ies among CHTs have been scarcely reported. We compare
six and four representative CHTs under the frameworks
of NSGA-II [28] and MOEA/D [29], respectively, which
are two well-known paradigms of multiobjective EAs [30].
The performance comparisons evaluate the performance
of different CHTs on different types of CMOPs and
help us to select/design a suitable CHT for a specific
scenario.

The rest of this paper is organized as follows. Section II
presents the constraint construction method. Section III gives
the details of the distance functions and test suite. The
performance comparisons among CHTs are conducted in
Section IV. Finally, Section V concludes this paper.

II. PROPOSED CONSTRAINT CONSTRUCTION METHOD

The constraint construction method suggested in this paper
provides a way to design CMOPs with desirable constraints.
It consists of two main processes: 1) a global control process
and 2) a local adjustment process. The global control process
aims to control the size of the feasible region in the objec-
tive space, while the local adjustment process helps to adjust



MA AND WANG: EVOLUTIONARY CONSTRAINED MULTIOBJECTIVE OPTIMIZATION

1.6 16

975

1.4 Boundary of the Feasible Region 14
(L,)

Feasible Region 1
«N 0.8 0.8
0.6

0.4 Unconstrained PF
! = Constrained PF

0.2 (L)

0.6

0.2 (L)

Boundary of the Feasible Region
(L
2

04 Unconstrained PF
: = Constrained PF

Boundary of the Feasible Region
( Local Adjustment: LZ )

Feasible Region Feasible Region

Unconstrained PF
= Constrained PF
(L)

0 0.5 1 15 0 0.5

R4y —122=0,(b) Ly : 2 +y2 —

1 15 0 0.5 1 1.5

1.12 = 0, and (c) local-adjusted Ly in (a) with A = —0.15,

(a)
Fig. 2. CMOPs with constraints defined by (a) L, :
B=20,C=1,and D =1.
1.6 1.6
1.4 1.4

Boundary of the Feasible Region 2 )

( Local Adjustment: L2 ) 1.2

0.8

0.6 Constrained PF 0.6{Unconstrained PF

\Boundary of the Feasible Region
(L

Boundary of the Feasible Region 1.2

Boundary of the Feasible Region
(L))
2

Boundary of the Feasible Region

( Local Adjustment: Lz ) ( Local Adjustment: Lz )

+«N 0.8
0.6 Uncon(strained PF

L)
04 ) 0.4 ! 0.4
0.2 Unconsirained PF 0.2 Constrained PF 0.2 Constrained PF
1
0 0 0
0 05 1 15 0 05 1 15 0 05 1 15
f f f
1 1 1
(a) (b) (c)
Fig. 3.  CMOPs with different types generated by similar parameter settings of local adjustment. (a) A discontinuous type-II CMOP and the parameter
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discrete type-IV CMOP and the parameter settings are the same as in (10) except D = 20. The gray area(s) is/are the feasible region(s).

the complexity of the boundary of the feasible region and to
generate different geometries of constrained PFs.

A. Global Control Process
This process first chooses a set of similar functions. For
example, we use the following pair of functions:
L :x*+y*—12=0
22 2 _ “4)
Ly : x4y —12°=0

where Ly and L, are the similar functions since they have
similar mathematical forms and geometrical structures. Then,
we transform L and L, into two functions related to f] and f>

Li=ff+5-1P=0=p=/1-1]
Ly=f+f-122=0

(&)
(6)

where (5) can be used to produce an unconstrained PF
because it provides a conflicting relationship between f; and
f>. From (6), it is easy to obtain an inequality constraint

45 -122<0 0
so, we can construct a CMOP as follows:
[ A® =x
M e = gm
st. cd =f+f—-122<0 (8)

where the distance function g > 1. The unconstrained PF
and the boundary of the feasible region in (8) are defined

by (5) and (6), respectively. As shown in Fig. 2(a), the fea-
sible region in the objective space is the gray area bounded
by (5) and (6), which are derived from L; and L, respectively.
If we replace L in (4) with “@$2 4 y2 —1.12 = 07, as shown
in Fig. 2(b), the CMOP generated through the above process
has a smaller size of the feasible region in the objective space
than the feasible region produced by “x?> +y> — 1.2 = 0. In
other words, the similarity between similar functions deter-
mines the feasibility ratios of the constructed CMOPs. By
choosing appropriate similar functions, we can explicitly con-
trol the size of the feasible region in the objective space, which
enables us to design test problems with very small feasibility
ratios as in real-world CMOPs.

B. Local Adjustment Process

When solving CMOPs by EAs, constraints can cause
difficulties on both convergence and diversity. Moreover,
constraints may increase the hardness of obtaining feasible
solutions and change the feasibilities of the original Pareto
optimal solutions. Therefore, constraints play a critical role in
determining the difficulties of CMOPs.

Inspired by this fact, a local adjustment process is proposed
to enhance the nonlinearity of constraints. In this paper, the
local adjustment process is designed by adding a periodic
function into the constraints constructed in the global control
process. One possible formulation of the periodic function is

A sin(B : I(F)C)D ©)
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TABLE 11
CHARACTERISTICS OF OUR TEST PROBLEMS, WHERE “SCALABILITY” IS THE SCALABILITY IN TERMS OF THE NUMBER OF OBJECTIVES (“NOF”) OrR
THE NUMBER OF DECISION VARIABLES (“N0X”), “NOC” Is THE NUMBER OF CONSTRAINTS, “UPF” IS THE UNCONSTRAINED PF, AND “CPF” IS THE
CONSTRAINED PF. IN ADDITION, A “MIXED” GEOMETRY DENOTES THAT IT INCLUDES BOTH CONVEX AND CONCAVE SEGMENTS

Scalabilit Constraint(s Geometr Feasible Region - . .
Problem | Type NoF Nr)),X NoC Nonli;e)arily UPF 5 CPF Size Cor%nectivity Decision Space | Distance Function
MW1 II No Yes 1 Yes Linear Disconnected < 0.1%0 Disconnected 0,1]" g1
MW2 1 No Yes 1 Yes Linear Linear < 0.1%0 Disconnected 0,1]™ g2
MW3 il No Yes 2 Yes Linear Mixed < 0.1%0 Connected 0,1]" g3
MW4 1 Yes Yes 1 Yes Linear Linear < 0.1%0 Connected 0,1]™ g1
MW5 11 No Yes 3 Yes Concave Discrete = 0.3%o Connected 0,1]" g1
MW6 11 No Yes 1 Yes Concave Disconnected | < 0.1%c0 | Disconnected [0,1.1]™ g2
MW7 111 No Yes 2 Yes Concave Disconnected < 0.1%0 Connected 0,1]™ gs
MWS8 I Yes Yes 1 Yes Concave Disconnected < 0.1%0 Disconnected 0,1]™ g2
MW9 v No Yes 1 Yes Convex Concave < 0.1%0 Connected 0,1]™ g1
MW10 I No Yes 3 Yes Concave Disconnected < 0.1%0 Disconnected 0,1]" g2
MW11 v No Yes 4 Yes Concave Disconnected < 0.1%0 Disconnected [0, v2]" g3
MWI12 v No Yes 2 Yes Mixed Mixed < 0.1%0 | Disconnected [0,1]™ g1
MW13 111 No Yes 2 Yes Disconnected | Disconnected [ ~ 6.5% [ Disconnected [0,1.5]" g2
MWI14 1 Yes Yes 1 Yes Disconnected | Disconnected | =~ 0.1%0 Connected [0,1.5]™ g3

-

where l(I} ) is a function related to the objective vector F.
(9) can produce a series of local shapes. Moreover, it has
four parameters A, B, C, and D to control the local shapes.
Specifically, A controls the magnitude of the local shapes, B
determines the number of the local shapes, C affects the distri-
bution of the local shapes, and D reflects the concave/convex
degree of the local shapes. If we introduce (9) into the con-
straint in (8) with A = —0.15, B=20,C =1, and D = 1, the
following CMOP is generated:

[ =x

T AG = g1 -2
st c(®) =f2 412 — (1.2 —0.155in(200))> < 0

[ = arctan(f>2/f1). (10)

As shown in Fig. 2(c), the constraint has a higher nonlin-
earity than that in (8). By carefully tuning the four parameters
in (9), the local adjustment process enables us to design
CMOPs with different types and diverse geometries of con-
strained PFs, such as the disconnected type-II CMOP in
Fig. 3(a), the continuous type-Ill CMOP in Fig. 3(b), and
the discrete type-IV CMOP in Fig. 3(c) [note that the last
two CMOPs require two constraints, i.e., the constraints in (8)
and (10) with minor modifications].

We would like to give the following remarks to the local
adjustment process:

1) If the constraints constructed in the global control
process are able to provide sufficient difficulties, the
local adjustment process is not necessary. Under this
condition, A can be set to zero.

2) We can also make use of the local adjustment to adjust
the unconstrained PF, with the aim of improving its
nonlinearity. It is because a complex unconstrained PF
can increase the difficulties in finding desirable Pareto
optimal solutions, especially for types I-III.

In summary, the proposed constraint construction method is
able to produce CMOPs with various characteristics, such as
small and controllable feasibility ratio, sufficient nonlinearity
in terms of constraints, and diverse geometries of constrained
PFs. In addition, if the global control process involves sev-
eral similar functions, we can construct test problems that has
multiple constraints, like real-world CMOPs.

III. PROPOSED TEST SUITE

Inspired by Deb [31] and Huband et al. [32], the construc-
tion form of CMOPs is shown as

[i() = gGn) - 51 ()
min
JnX) = gGn) - sm (1)
st. ¢j(X) >0, j=1,...,p (11)
where s; (i € {1, ..., m}) is the shape function of the ith objec-
tive, m is the number of objectives, ¢; (j € {1,...,p}) is the
Jjth constraint, p is the number of constraints, g is the distance
function whose minimum value is 1, and X; = (x, ..., Xu—1)
and Xy = (X, ...,x,) are the subvectors of X. In principle,
the shape functions define the unconstrained PF, the distance
function determines the difficulty of convergence, and the
constraints control the difficulty of constraint handling.

In Section II, we have described the design process of con-
straints and constrained PFs. In this section, to accomplish the
construction of test problems, we will present three kinds of
distance functions that can provide appropriate difficulties of
convergence. After that, we will introduce our newly designed
test problems.

A. Distance Functions

Three kinds of distance functions with different charac-
teristics are considered, namely biased distance function,
multimodal distance function, and distance function with vari-
able linkages. Note that these functions are scalable in terms
of the number of decision variables.

A biased distance function is defined as follows:

n . 2
i—1
=1 1—- —10{ z; — 0.5 —
a=1+)(1-ew (z, - )
=m
z=x"", x €Xn (12)

g1 reaches its minimum value if z; = 05+ (@ —1)/2n (i €
{m, ..., n}). Note that x] ™" tends to prevent z; from achieving
its optimal value (i.e., 0.5 + (i — 1)/2n). The reason is that
x; "™ is biased toward zero for x; € [0, 1] but the optimal value
of z; is greater than 0.5.
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A multimodal distance function is formulated as follows:

n
0.1
g =1+ Z(].S + 7112 —1.5 cos(27rz,-)>

i=m
i—1\?
zi=1-— exp<—10<xi - ) ), xi €xy.  (13)
g2 1s mapped to the global minimum if z; =0 (i € {m, ..., n}).
zi = l—exp(—10(x;— (i— 1)/n)?) ensures that when g» reaches
the global minimum, the value of each x; (i € {m, ..., n}) is

different.

Besides, the distance function with variable linkages is given
as follows:

1 2

=1+ ZZ(xi + (i —0.5)2 — 1) .

i=m

(14)

g3 gets its minimum value when x; = 1 — (x;—1 — 0.5)2 (i e
{m, ..., n}.

B. Test Problems

Based on the constraint construction method and distance
functions, we design a set of 14 test problems (called MW1—
MW14) in this paper. They cover all the four types of
CMOPs according to our taxonomy and have considerably
small feasibility ratios, sufficiently nonlinear constraints, and
other important characteristics. Table II summarizes the main
characteristics of MWs.

MWI:

A =3
min S
{fz(X) = g1(1 —0.85/1/g1)
st. c® =1—fi —fr+0.5sin7)® >0
1 =~2f, — 2f1.

This test problem is constructed by means of two similar func-
tions: “1 —0.85x —y = 0" and “1 —x —y = 0”. The former is
used to produce the unconstrained PF. In addition, by conduct-
ing the local adjustment process on the latter, the constraint
is generated. MW 1 belongs to type II and has a disconnected
geometry of constrained PF. It uses the biased distance func-
tion [i.e., g1 in (12)]. As shown in Fig. 4(a), the gray areas
are the feasible regions and the red points are the images of
the Pareto optimal solutions in the objective space.
MW2:
- AG) =3
e {fz@) = g2(1—fi/g2)
st. c® =1—fi —f+0.5sin3x)® >0

1= 2 — V2.

In this test problem, the unconstrained PF and the constraint
utilize the same similar function: “1 —x —y = 0”. Moreover,
by conducting the local adjustment process on this similar
function, the constraint is designed. MW2’s constrained PF is
continuous and the same with the unconstrained PF. It adopts
the multimodal distance function [i.e., g in (13)]. As shown
in Fig. 4(b), the gray areas are the feasible regions and the
red points are the images of the Pareto optimal solutions in
the objective space.

(15)

(16)

MW3:

. 1(X) =x;
i {2@) = g3(1 —fi/g3)

st. c1(® =1.05—f —fr +0.45sin(0.7571)°® > 0
c2(®) = 0.85 — fi —f> 4 0.3sin(0.7571)% < 0
I=2f —2A.

This test problem takes three similar functions into account.
The unconstrained PF is produced by “1 —x—y = 0”. In addi-
tion, through the local adjustment process on “0.85—x—y = 0”
and “1.05—x—y = 07, two constraints c| and c; are designed,
respectively. MW3 is a type-III CMOP, that is, its constrained
PF contains a part of the unconstrained PF and a part of the
boundary of the feasible region. The distance function with
variable linkages is employed [i.e., g3 in (14)]. As shown in
Fig. 4(c), the grey areas are the feasible regions and the red
points are the images of the Pareto optimal solutions in the
objective space. Due to the fact that MW3 has some narrow
parts in its feasible region, it is a hard task to find the Pareto
optimal solutions on these parts.

7)

MW4:
A® =g 15 —x)
min | fi=2un—1 (X) = g1Xm—k+1 ”'l]:[k(l —x)
ful) = 11 -
st e@ = (1404sin@.57D%) = fi =+ = fu 2 0
l=fm—fi = —fm-1. (18)

Since our constraint construction method can be extended to
a high-dimensional objective space, it enables us to design
CMOPs with scalable number of objectives. In MW4, the
unconstrained PF is defined by the hyperplane “1 —x —y —
z — --- = 0”. In addition, by applying the local adjustment
process to this function, the constraint is obtained (like MW?2,
the unconstrained PF and the constraint utilize the same sim-
ilar function). MW4 is a type-I CMOP and uses the biased
distance function [i.e., g1 in (12)]. Fig. 4(d) shows the relation-
ship between the mth objective and any two other objectives fi
and f;, from {f1, />, ...,fm—1}. The feasible region is the area
bounded by the gray surface and the blue plane, and the red
points are the samples of the images of the Pareto optimal
solutions in the objective space.
MWS5:

o [AG =g
min
L&) = glm
stoel(® = (1.7—02sin))> —f2 =7 >0
2
@) = (1 + 0.5sin(6z§)) - <0

&3y = (1-045 sin(6z§))2 - <0
Iy = arctan(f> /f1)

I = 0.57 — 2|arctan(f>/f1) — 0.257|. (19)

This test problem takes two similar functions into account:
“l —x2—y* = 0” and “1.7%> —x2 —y? = 0”. The unconstrained
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(2) (b)

®

(® (h)

Fig. 4. Visualization of MWs. (a) MW 1. (b) MW2. (c) MW3. (d) MW4. (e) MWS5. (f) MW6. (g) MW7. (h) MWS. The unconstrained PFs are shown in blue
and the red points are the images of the Pareto optimal solutions in the objective space. In (a)—(c) and (e)—(g), the gray area(s) is/are the feasible region(s), in
(d) the feasible region is the area bounded by the gray surface and the blue plane, and in (h) the feasible regions are the areas bounded by the gray surfaces

and the blue surface.

PF is defined by the former. By applying the local adjustment
process to the former, two constraints ¢ and c¢3 are generated.
In addition, by conducting the local adjustment process on the
latter, the constraint ¢y is generated. MWS5’s constrained PF
contains several discrete Pareto optimal solutions. Its distance
function is gj in (12). MWS5 is plotted in Fig. 4(e), where
the gray area is the feasible region and the red points are the
images of the Pareto optimal solutions in the objective space.
The hardness of MWS5 is that the images of the discrete Pareto
optimal solutions are at the end of the tunnel-like feasible
region.

MW6:

min {fl ) = gox1

L&) = g2y/1.12 — (f1/82)?

st. @ =1— (/0 +0.150)% = (H/(1 +0.75))> > 0
| = cos (6 arctan(f> /f1)4)10 (20)

This test problem is constructed by making use of two similar
functions: “1.1%2 — x> —y* = 0” and “1 — x2 — y2 = 0”. The
former is used to produce the unconstrained PF. Besides, by
conducting the local adjustment process on the latter, the con-
straint is produced. MW6 belongs to type II as the constraint
makes a part of the unconstrained PF infeasible. Its distance
function is g7 in (13). MW6 is plotted in Fig. 4(f), where the
gray areas are the feasible regions and the red points are the
images of the Pareto optimal solutions in the objective space.
MWG6 is a highly disconnected CMOP and its feasible regions
are distributed irregularly.
MW7:

AR = g3
min
£ @) =g3y/1—(fi/g3)?

2
st a1 = (1.2+04s5in@)'%) — 2~ 2 >0

@) = (1.15 —0.2 sin(4l)8)2 ~ff-f<0
| = arctan(f2/f1).
2

This test problem includes three similar functions. “1 — x~ —
y2 = 07 is used to generate the unconstrained PF. In addition,
by conducting the local adjustment process on “1.2 — x* —
y?> = 0” and “1.15 — x> — y?> = 0, two constraints ¢; and
¢y are generated, respectively. MW7 is a type-III CMOP, that
is, its constrained PF contains a part of the unconstrained PF
and a part of the boundary of the feasible region. Its distance
function is g3 in (14). MW7 is plotted in Fig. 4(g), where
the gray area is the feasible region and the red points are the
images of the Pareto optimal solutions in the objective space. It
is difficult to find the Pareto optimal solutions on the boundary
of the feasible region because the feasible region near them is
Very narrow.
MWS:

A@) = g2 17" cos(0.5mx;)
fim2m—1®) = g2 8in(0.57 %4 1) [T7 c0s(0.57x;)
fm(X) = g2sin(0.57x1)

st c(X) = (1.25 -0.5 sin(61)2)2 —ff——f220

l= arcsin(fm/,/fl2 +--- —{-f,,%).

This test problem is scalable in terms of objectives and
it is constructed by making use of two similar functions:
“l1—x?—y?*—z2—-..=0"and “1.25° x> —y* 72— .. = 0",
The unconstrained PF is defined by the former. In addition,
through the local adjustment process on the latter, the con-
straint is defined. MWS is a disconnected type-II CMOP
and uses the multimodal distance function [i.e., g> in (13)].
Fig. 4(h) shows the relationship between the mth objective
and any two other objectives f; and fj, from {f1, />, ..., fu—1}-

21

min

(22)
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The feasible regions are the areas bounded by the gray sur-
faces and the blue surface, and the red points are the samples
of the images of the Pareto optimal solutions in the objective
space.

MW9:

. [AG) =g1x
i {fz(fc) =g1(1 = (fi/gn*%)
st. ¢ =min{T,T» - T3} <0

Ty = (1 — 0.64f2 —f2> (1 — 0.36f2 —fz)
T, = 1.35% — (fi +0.35)> — f5
T3 = 1.15%> — (fi + 0.15)> — f>.

This test problem considers five similar functions. The uncon-
strained PF is defined by “1 —x%%—y = 0” and the constraints
are produced by “(1 + a)? — (x + @) — y = 0” and
“1 — bsz —y = 07, where a; € {0.35,0.15}(0 = 1,2) and
b; € {0.64,0.36}(G =1, 2). MWO is a type-IV CMOP because
its constrained PF is a part of the boundary of the feasible
region. Besides, its distance function is g in (12). As shown
in Fig. 5(a), the gray area is the feasible region and the red
points are the images of the Pareto optimal solutions in the
objective space.
MWI0:

(23)

[ AG) = g
i {fz(}) =g (1 — (fi/g2)?)

st 1) = (2 — 42 —f2> (2 — 82 —fz) >0
a® = (2-27 ) (2= 167 —f) <0
a®=(1-2-p)(12-122-5)=0. @4

This test problem is constructed based on six similar functions.
The unconstrained PF is defined by “1 —x?> —y = 0” and the
constraints are produced by “2 — aix*> —y = 0” and “bj —
bjx2 —y = 07, where a; € {2,4,8,16}(i = 1,...,4) and
bj € {1.0,1.2}(G = 1,2). MWI1O0 is a disconnected type-III
CMOP and adopts the multimodal distance function [i.e., g»
in (13)]. As shown in Fig. 5(b), the gray areas are the feasible
regions and the red points are the images of the Pareto optimal
solutions in the objective space. MW 10 has island-like feasible
regions and the polynomial bias in f; prevents an algorithm
from finding them.
MWII:

[ A = g3
min
£ =g3\/2 — (fi/83)*

st a®=(3-2-1)(3-22-£) =20

(3 0.6252 — )(3 7f2 fz) <0

() = (1 62 — 0.18f2 fz)(1.125 — 0.125f2 —fz) >0
(

2.07 — 0.23f2 f2> (0.63 —0.07/2 — fz) <0
(25)

() =

ca(X) =

This test problem includes nine similar functions. The uncon-
strained PF is produced by “2 — x> —y> = 0” and the
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Fig. 5. Visualization of MWs. (a) MW9. (b) MW10. (c) MWI11. (d) MW12.
(e) MW13. (f) MW 14. The unconstrained PFs are shown in blue and the red
points are the images of the Pareto optimal solutions in the objective space.
In (a)—(e), the gray area(s) is/are the feasible region(s), and in (f), the feasible
region is the area bounded by the gray surface and the surfaces that define
the unconstrained PF (i.e., the four blue parts).

constraints are generated on the basis of “3 — gix> —y = 0”
and “c; — sz —y = 07, where q; € {0.625,1,2,7}(i =
4, by € {0.23,0.18,0.125,0.07}( = .,4), and
¢j € {2.07,1.62,1.125,0.63}(j = .,4). MWI11’s con-
strained PF consists of an isolated point (1, 1) and a part of
the boundaries of the feasible regions. In addition, its distance
function is g3 in (14). As shown in Fig. 5(c), the gray areas
are the feasible regions and the red points are the images of
the Pareto optimal solutions in the objective space. It is an
important task for an algorithm to find the isolated optimal
solution because it Pareto dominates one patch of the feasible
regions.
MWI2:

min {fl (X) = g1x1

L&) = 81(0 85 —0. 8f1/g1 0.08] sin(3.27fi/g1)|)

st. c1(X)=T1-T4 <0, (X)) =T>-T3 >0
T, =1-— 0.8f1 —f2+0.08 sm(Zn(fz —f1/1.5))
T, =1—0.625f1 — fo + 0.08 sin(2z (f, — f1/1.6))

T3 = 1.4 — 0.875f1
T4 = 1.8 — 1.125f;

— f +0.08sin2r (/1.4 — f1/1.6))
— 5 +0.08sin27(f>/1.8 — £1/1.6)).
(26)
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This test problem is constructed through five similar func-
tions: “0.85 — 0.8x —y = 0’ and “@; — bix — y =
07, where ¢; € {1,1,1.4,1.8}(¢ = 1,...,4) and b; €
{0.8, 0.625,0.875,1.125}(i = 1,...,4). By conducting the
local adjustment process on the first one, the unconstrained
PF is generated. Furthermore, by conducting the local adjust-
ment process on the others, the constraints are generated.
MWI12 is a type-IV CMOP and uses the biased distance
function [i.e., g1 in (12)]. As shown in Fig. 5(d), the gray
areas are the feasible regions and the red points are the
images of the Pareto optimal solutions in the objective

13

space.
MWI3:
min {fl(J:C) = g2x1
£ @& = g2(5 — exp(fi/g2) — 0.5| sin(37f1/g2)])

st. c1@)=T1-T4 <0, () =T2-T3 >0
T1 =5 —exp(fi) — 0.5sin(3f1) — f>
Ty=5— (1 i+ o.5f12) —0.5sin(31f1) — >
T3 =5—(140.7f1) — 0.5sin(37f1) — f2

Ty =5 — (1 +04f) — 0.5sin37f) — fo. 7)

The Taylor’s expansion, i.e., “e* = 1 +x/1!+x%/2! +x3/3! +
---”, is considered in this test problem to form a set of simi-
lar functions. They are defined by “5 — «;(x) —y = 07, where
ai(x) € {5, 1 +x+0.5x%, 14+0.7x, 1+0.4x}(i = 1, ...,4). By
conducting the local adjustment process on “5 —¢* —y =07,
the unconstrained PF is defined. In addition, by conducting
the local adjustment process on all the similar functions, the
constraints are produced. MWI13 is a type-IIl CMOP and
has a disconnected geometry of constrained PE. It adopts
the multimodal distance function [i.e., g in (13)]. As shown
in Fig. 5(e), the gray areas are the feasible regions and the
red points are the images of the Pareto optimal solutions in
the objective space. When approximating the Pareto optimal
solutions of MW 13, an algorithm will encounter infeasible
barriers.
MWI14:

i ] fe=tm—1 () =
fn® = ga/(m—1) X051 (6 — exp(fi) — 1.5sin(1.17£2))
m—1
st c®=1/m—1)Y (6.1 —a(@)) —fu =0
i=1

o) =1+f+052+15 sin<1.1nf,2). (28)

This test problem is scalable in terms of objectives and it is
constructed based on two similar functions: “6 — e* —y = 0”
and “6.1 — (14-x40.5x*) —y = 0”. By implementing the local
adjustment process on the former, the unconstrained PF is pro-
duced. In addition, by applying the local adjustment process
to the latter, the constraint is generated. MW 14 is a type-I
CMOP and has a disconnected geometry caused by Pareto
dominance. The distance function with variable linkages is
employed [i.e., g3 in (14)]. Fig. 5(f) shows the relationship
between the mth objective and any two other objectives fi
and f; from {f1, />, ..., fm—1}. The feasible region is the area
bounded by the gray surface and the surfaces that define the

unconstrained PF (i.e., the four blue parts), and the red points
are the samples of the images of the Pareto optimal solutions
in the objective space.

Remark 1: In our test suite, MW4, MWS, and MW 14 are
scalable in terms of the number of objectives, and all MWs
are scalable in terms of the number of decision variables since
the distance functions adopted in MWs can be extended to any
number of decision variables.

Remark 2: To the best of our knowledge, over 80 research
papers have focused on solving current artificial test problems
(e.g., CTPs, CFs, and C-DTLZs) during the past two decades.
Some recent studies [33]-[35] have reported highly competi-
tive results on these test problems. Compared with current arti-
ficial test problems, our test problems can provide new chal-
lenges to constrained multiobjective EAs (CMOEAs), which
have been introduced in Tables I and II and Figs. 4 and 5, and
will be further validated in Section IV.

IV. EXPERIMENTAL STUDY

In this section, several representative CHTs under the
frameworks of NSGA-II and MOEA/D are compared on the
proposed test problems. Furthermore, we systematically ana-
lyze the performance of different CHTs and briefly discuss the
advantages of our test problems.

A. Performance Metrics

In our experiments, three performance metrics were used,
namely inverted generational distance (IGD) [36], maxi-
mum spread (MS) [37], and generational distance (GD) [38].
Specifically, IGD measures the convergence and diversity of
an algorithm, and MS and GD evaluate the degree of coverage
and convergence of an algorithm, respectively. In this paper,
our analysis was mainly based on IGD, whereas MS and GD
were taken as the auxiliary metrics. Note that all the metrics
only considered the feasible solutions in the final population.

Suppose that P is an obtained approximation in an imple-
mentation and P* is a set of sampling points evenly distributed
on the true PF. IGD is calculated as follows:

1 .
P 'Z d(i, P)
ieP*

IGD = (29)

where |P*| is the cardinality of P*, and d(i, P) is the mini-
mum Euclidean distance between the ith member in P* and all
the members in P. If P* is large enough, it can well represent
the whole PF. For our test problems (except MWS5), over 1000
samples are provided in P*. It is apparent that the smaller the
IGD value, the better the performance.

MS is defined as follows:

s l m min(ﬁ,@—max(&f,&) ?
"= P _P_lf

(30)

where P} and P are the maximum and minimum values

of the kth objective in P*, respectively, and Px and Py are
the maximum and minimum values of the kth objective in P,
respectively. The larger the MS value, the better the coverage
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of P. In addition, for CMOPs with multiple and separated
feasible regions, this metric can reflect whether P covers these
feasible regions widely.

GD is formulated as follows:

GD = LZ d(i, P¥) (31)
|P| ieP

where |P| is the cardinality of P, and d(i, P*) is the mini-
mum Euclidean distance between the ith member in PP and all
the members in P*. The smaller the GD value, the better the
convergence performance.

Remark 3: In particular, if all the members in P are evenly
distributed on the true PF, the values of IGD, MS, and GD
will be zero, one, and zero, respectively.

B. Representative Constraint-Handling Techniques

Several popular CHTs were chosen for performance com-
parisons in our experimental studies. Under the framework of
NSGA-II, six CHTs were selected.

Constrained dominance principle (CDP) is the simplest and
the most commonly used CHT in constrained multiobjective
optimization. CDP is first proposed to solve CMOPs in the
constrained version of NSGA-II [28]. In CDP, feasible solu-
tions are considered to be consistently better than infeasible
ones.

Penalty functions have shown great potential for constrained
single-objective optimization. This kind of methods always
tunes the penalty factors to provide a proper degree of penalty.
However, the penalty factors are generally problem-dependent.
This limitation promotes the development of self-adaptive
penalty functions, denoted as SP, whose penalty factors are
adjusted adaptively based on the feedback information from
the search. Woldesenbet et al. [39] designed a new SP for
CMOPs and achieved competitive results.

In stochastic ranking (SR) [40], when an infeasible solution
is compared with another solution, a user-defined parameter
(i.e., Pr) is utilized to determine the comparison criterion,
that is, comparing their constraint violations with the prob-
ability (1 — Py) or comparing their objective values with the
probability Py. Geng et al. [41] proposed an infeasible elitists
and SR-based algorithm. Considering that the objective values
may be incomparable based on Pareto dominance between two
solutions, this algorithm assigns each solution a scalar value
based on its ranking in nondominated sorting and its crowding
distance.

In e-constrained method [42] (called ¢ in this paper), a
decreasing e-level is defined to relax the constraint viola-
tions of infeasible solutions. When ¢ reduces to zero, the
e-constrained method is equivalent to CDP. Under this condi-
tion, infeasible solutions will be eliminated. Qian et al. [43]
exploited this kind of CHT to solve CMOPs.

By taking constraints as one or more extra objectives,
researchers proposed some multiobjective optimization-based
CHTs (called MO in this paper). A successful attempt is the
infeasible driven EA proposed by Ray et al. [44]. When not all
solutions are feasible, this algorithm maintains a certain num-
ber of desirable infeasible solutions during the search, aiming

to guide the population toward the boundary of the feasible
region from both feasible and infeasible sides.

Researchers have developed some hybrid CHTs that com-
bine several popular CHTs together [45]. An example is the
adaptive tradeoff model (ATM) presented by Wang et al. [46].
ATM divides the search into three scenarios. If there is
no feasible solution, the population is ranked by nondomi-
nance sorting with an extra objective defined by constraint
violation, and the first half of nondominated solutions are
selected in ascending order of constraint violation. This pro-
cess is repeated until the population reaches its predefined
size. If the population contains both feasible and infeasible
solutions, ATM adopts a penalty function to select solu-
tions for the next generation. When the population is entirely
feasible, the solutions are compared based only on their
objective values. Despite that ATM is originally designed
for constrained single-objective optimization, its performance
is still investigated by combining it with NSGA-II in this
paper.

To make the comparisons fair, the above six CHTs
(i.e., CDP [28], SP [39], SR [41], € [43], MO [44], and
ATM [46]) employed the original NSGA-II as the optimization
algorithm, and the corresponding CMOEAs were denoted
as CDP-NSGA-II, SP-NSGA-II, SR-NSGA-II, e-NSGA-II,
MO-NSGA-II, and ATM-NSGA-II, respectively. Note that,
some special operators were not considered, such as the elitist
preservations in [41] and [43].

Besides, some CHTs are developed under the frame-
work of MOEA/D [29] or MOEA/D-DE [47]. For instance,
Jan and Zhang [48] introduced a new SP into the Tchebycheff
aggregation function. They also compared two CHTs, ie.,
CDP and SR in [49]. Yang et al. [50] improved the
e-constrained method and investigated its performance in
MOEA/D-DE. Similarly, these four CHTs (i.e., CDP [49],
SP [48], SR [49], and € [50]) adopted the original MOEA/D
in our comparison, and their corresponding CMOEAs were
denoted as CDP-MOEA/D, SP-MOEA/D, SR-MOEA/D, and
€-MOEA/D, respectively.

C. Parameter Settings

Our experiments were implemented under the following
parameter settings.

1) Number of independent runs: 100.

2) Maximum generation number: G = 600.

3) Population size: Np = 100.

4) Number of decision variables: n = 15.

5) Number of objectives for MW4, MWS, and MW 14:

m=3.

6) Number of objectives for MW1-MW3, MW5-MW7,

and MWO-MW13: m = 2.

Both NSGA-II and MOEA/D used simulated binary
crossover (SBX) [28] and polynomial mutation (PM) [28] as
the reproduction operators.

1) SBX: Crossover probability p. = 0.9 and distribution

index n, = 20.
2) PM: Mutation probability p,, = 1/n and distribution
index n,, = 20.
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In addition, some preliminary experiments show that the
parameter settings of e-NSGA-II provided in [43] seem not to
be effective for our test problems. Therefore, we tuned them
as follows.

1) 6 =0.1Np and T, = 0.6G.

2) cp = (—5 —logep)/1og(0.05), as suggested in [50].

D. Comparisons Under the Framework of NSGA-I1

First, we compared the results obtained by six CHTs under
the framework of NSGA-II. Tables S-R-I-S-R-III in the sup-
plementary file show the results in terms of IGD, MS, and GD,
respectively, including the average and standard deviation over
100 independent runs. In these tables, the best result of each
test problem was highlighted in boldface.

As shown in Table S-R-I, the results in terms of IGD
are quite divergent, that is, different CHTs show promising
performance on different types of CMOPs. To be specific,
€-NSGA-II obtains better results than other compared algo-
rithms on five test problems (i.e., MW1, MW2, MW6, MWS,
and MW10), which are mainly type-II CMOPs; SP-NSGA-II
performs the best on MW3, MW7, and MW13 that belong
to type III; MO-NSGA-II significantly outperforms others on
the type-IV test problems (i.e., MW9, MW11, and MW12);
and ATM-NSGA-II wins on MW4 and MW 14 that are type-I
CMOPs. In addition, SR-NSGA-II approximates the con-
strained PF well on MWS5, which is the only one with a
discrete geometry.

As shown in Table S-R-II, the cases on MS are roughly sim-
ilar to those on IGD. e-NSGA-II obtains the best results on
seven test problems (i.e., MW1-MW3, MW6, MW8, MW 10,
and MW14), for which e-NSGA-II also exhibits superior
performance in terms of IGD. SP-NSGA-II outperforms the
five competitors on MW4, MW7, and MW13, and gets near-
best result on MW3. MO-NSGA-II achieves the best on MWS5,
MW9, MW11, and MW12. Despite that ATM-NSGA-II is not
the best algorithm on MW4 and MW 14, it still has competitive
results in terms of MS.

It can be observed from Table S-R-III that e-NSGA-II
performs the best in terms of GD on a majority of test prob-
lems (i.e., MWI-MW4, MW6, MW7, MW9, MW10, and
MW14), which implies that it shows better performance of
convergence than others in most cases. On MW8 and MW11,
CDP-NSGA-II can well converge toward the constrained PFs.
In addition, SP-NSGA-II, MO-NSGA-II, and ATM-NSGA-II
beat others on MW 13, MW12, and MWS5, respectively. The
above results also indicate that sometimes good values of GD
do not correspond to good values of IGD.

From the above discussions, for each test problem, an algo-
rithm that performs the best in terms of IGD generally has the
best or near-best result of MS. This demonstrates that a good
spread of population will facilitate an algorithm to approxi-
mate the whole constrained PF. It is mainly attributed to the
fact that the feasible regions of our test problems are gener-
ally narrow and separated; thus, some parts of the constrained
PF will be lost without exploring the feasible regions widely.
In addition, under the framework of NSGA-II, different CHT's
have their advantages on different types of CMOPs, which will
be further discussed later.

TABLE III
RANKINGS OF CHTS UNDER THE FRAMEWORK OF NSGA-II BASED ON
THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL

Type Problem Ist (b/e/w) 2nd (b/e/w)

MW2 € (5/0/0) CDP, SP, ATM (1/3/1)

I Mw4 ATM (2/3/0) CDP, €, MO (1/4/0)
MW14 ATM (2/3/0) CDP, SP, € (1/4/0)
MW1 € (5/000) SP (2/2/1)

- MW5 SR @/071) MO (27310)
MW6 < (5/0/0) SP (173/1)
MW8 € (4/1/0) CDP (1/4/0)
MW3 SP (5/0/0) € (4/0/1)

I MW7 SP (5/0/0) SR (3/1/1)
MW10 € (5/0/0) SR (2/2/1)
MWI13 SP (5/070) CDP, ATM (3/1/1)
MW9 MO (5/0/0) SP (1/3/1)

v MWI11 MO (5/0/0) € (1/3/1)
MW12 MO (5/0/0) SP (1/3/1)

TABLE IV

RANKINGS OF CHTS UNDER THE FRAMEWORK OF MOEA/D BASED ON
THE WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL

Type Problem Ist (b/e/w) 2nd (b/e/w)
MW2 € (2/1/0) SP (0/3/0)
I MWw4 CDP, € (2/1/0) SP, SR (0/1/2)
MW14 € (3/0/0) CDP, SP, SR (0/2/1)
MW1 € (3/0/0) SR (2/0/1)
I MW5 € (3/0/0) CDP, SP (1/1/1)
MW6 < 271/0) SP, SR (072/1)
MWS < (3/0/0) CDP, SP, SR (072/1)
MW3 € (3/0/0) CDP (1/1/1)
I MW7 € (3/0/0) CDP, SP (1/1/1)
MW10 € (1/2/0) SP (0/2/1)
MW13 CDP, SP (2/1/0) € (1/0/2)
MW9 CDP, SP (2/1/0) € (1/0/2)
v MWI11 € (3/0/0) CDP, SP (1/1/0)
MWI12 SP (3/0/0) CDP (2/0/1)

E. Comparisons Under the Framework of MOEA/D

This section compared the results derived from four CHTs
combined with MOEA/D. Tables S-R-IV-S-R-VI in the sup-
plementary file provide the results in terms of IGD, MS, and
GD, respectively. They include the average and standard devi-
ation over 100 independent runs. Similarly, the best result of
each test problem was highlighted in boldface.

As shown in Table S-R-1V, e-MOEA/D provides better
results than other compared algorithms on ten test problems
(i.e., MWI-MW3, MW5-MWS§, MW10, MW11, and MW 14).
Thus, e-MOEA/D can provide feasible solutions with good
convergence and diversity on most of test problems, mainly
including types I-III. In addition, CDP-MOEA/D achieves the
best results on MW4 and MW9, and SP-MOEA/D shows
encouraging performance on MW12 and MW13.

Again, similar phenomenon can be observed from
Table S-R-V in terms of MS. e-MOEA/D obtains the best
results on nine test problems (i.e., MW1-MW3, MW5-MWS,
MW11, and MW14), and very near-best result on MW 10. In
addition, CDP-MOEA/D performs the best on MW4, MW9,
and MW10, and SP-MOEA/D outperforms others on MW 12
and MW13.

From Table S-R-VI, it can be seen that e-MOEA/D per-
forms the best in terms of GD, which suggests that it has a
better overall ability of convergence. It achieves better results
than other compared algorithms on 11 test problems (i.e.,
MWI1-MW8, MW11, MW13, and MW14). With regard to
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the remaining three test problems (i.e., MW9, MW10, and
MW12), SP-MOEA/D surpasses others. It is interesting to note
that although CDP-MOEA/D has the best results on MW4 and
MW?O in terms of both IGD and MS, the corresponding results
provided by CDP-MOEA/D are not good in terms of GD.

In summary, e-MOEA/D has the best overall performance
under the framework of MOEA/D, especially on types I-III.
Similar to NSGA-II, on each test problem, the best IGD
value is supported by the best or near-best MS value, which
means that maintaining a good spread of population plays an
important role in solving our test problems.

F. Performance Analysis

In order to further analyze the performance of CHTs, the
Wilcoxon’s rank-sum test at a 0.05 significance level was
implemented to demonstrate whether the result obtained by
an algorithm is significantly different from that resulting from
another compared algorithm in terms of IGD on each test
problem. In this paper, “b/e/w” indicate the number of CHTSs
that the current one is significantly better than, equivalent to,
and significantly worse than, respectively. Then, CHTs are
ranked in the lexicographical order: a CHT that has a higher
“b” will have a better ranking; if two CHTs have the same
“b”, their values of “e” will be compared, and so forth; and
if two CHTs have the same “b/e/w”, they will share the
same ranking. Clearly, a CHT with a better ranking indicates
that it has better performance. The rankings of different
CHTs under the frameworks of NSGA-II and MOEA/D are
shown in Tables IIl and IV, respectively. Due to the space
limitation, these tables only show the CHTs that rank the
first (i.e., 1st) and the second (i.e., 2nd). First, based on the
rankings in Table III, we provide the following analysis on
the performance of different CHTs under the framework of
NSGA-II.

1) On the type-I CMOPs, the e-constrained method
performs the best. This method relaxes the constraint
violations of all infeasible solutions in the early search
process; thus, some infeasible solutions satisfy the
e-level and are considered as feasible solutions (called
pseudo-feasible solutions). Under this condition, these
pseudo-feasible solutions will be evolved toward the
unconstrained PF. Due to the fact that the constrained
PF of each type-I CMOP is a part of the uncon-
strained PF, the population will promptly approach
the constrained PF. As ¢ reduces to zero, the found
objective-optimal solutions that are in the infeasible
region will be eliminated and the real feasible solutions
are maintained in the population. In a word, the
e-constrained method switches from “optimality prior-
ity” to “feasibility priority”. This property makes the
e-constrained method suitable for this type of CMOPs.
In addition, SR outperforms others on MW5 (i.e., the
test problem with the discrete constrained PF). SR
defines a certain probability that an infeasible solution
is compared with others based on objectives. Therefore,
some infeasible solutions with good objective values
are likely to be preserved. This property encourages

the infeasible solutions near the discrete Pareto optimal
solutions. In contrast, the e-constrained method will
eliminate the promising infeasible solutions with good
objective values after € reduces to zero. As a result, it
is not as competitive as SR on MWS5.

2) ATM performs the best on the type-I test problems.
Since their feasible regions contain some narrow parts,
it is difficult to find feasible solutions in these narrow
parts. For ATM, as the feasibility proportion of popula-
tion rises, the degree of penalty on infeasible solutions
decreases (i.e., [46, Property 3]). That is, the infeasible
solutions with relatively small constraint violations are
likely to survive if there exist enough feasible solutions
in the population, which encourages the search around
these narrow parts. The e-constrained method obtains
competitive results on these test problems. The reason
is similar to that explained in type II. But this method
cannot well exploit infeasible solutions, making it not
as good as ATM.

3) On the type-III CMOPs, SP outperforms others. SP
prefers those solutions with better objective values
and lower constraint violations. Therefore, during the
evolution, the population is capable of approaching
the unconstrained PF and the boundary of the feasible
region simultaneously. Moreover, in the later stage of
evolution, contrary to ATM, SP increases the degree of
penalty with the increase of the feasibility proportion
of population [39]. This property ensures the feasibil-
ities of solutions. Besides, the e-constrained method
achieves the best result on MW10. It is because over
three-fourths of the constrained PF is the unconstrained
PF. Therefore, this method has an advantage in solving
MWI10, as illustrated previously.

4) MO clearly surpasses others on the type-IV CMOPs.
There are two main reasons:

a) When not all solutions are feasible, this method
always preserves a certain number of infeasible
solutions.

b) It considers the constraint violation as an extra
objective when infeasible solutions are compared
with each other, which supports the infeasible
ones with lower constraint violations.

As the constrained PF is a part of the boundary of
the feasible region in each of these test problems,
the population can approximate the boundary of the
feasible region from both feasible and infeasible sides
by utilizing such infeasible solutions.

Subsequently, based on the rankings in Table IV, we analyze
the performance of the compared CHTs under the framework
of MOEA/D in the following.

1) Obviously, the e-constrained method shows the best
performance on types I-III, for which the constrained
PFs entirely/partly come from the unconstrained PFs.
As analyzed previously, the e-constrained method has
natural advantages in approaching the unconstrained PF.
Different from e-NSGA-II, e-MOEA/D achieves good
performance on type III. This is mainly attributed to
MOEA/D’s ability of maintaining diversity via a set of
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evenly distributed weights. As € decreases, the infeasible
solutions close to the unconstrained PF can be pulled to
the boundary of the feasible region through the weights
(note that these infeasible solutions are directly elimi-
nated under the framework of NSGA-II). Actually, when
the boundary of the feasible region is not very com-
plicated, this mechanism is also effective, even on the
type-IV test problems (e.g., MW11).

2) However, for the type-IV CMOPs, the superiority of the
e-constrained method degrades because the nonlinear-
ity of the boundary of the feasible region increases. For
these test problems, overall, CDP and SP perform better
than the e-constrained method. This phenomenon can
be explained in the following. SP maintains two penalty
factors and gives a stronger punishment to the infea-
sible solutions with higher constraint violations than
those with lower constraint violations. This property
enables the population to converge toward the bound-
ary of the feasible region from both the feasible and
infeasible sides. In addition, with the aid of uniformly
distributed weights, CDP can concentrate on the search
of the boundary of the feasible region.

G. Comparisons Cross Two Frameworks

The comparisons cross two frameworks (i.e., NSGA-II and
MOEA/D) were conducted in this section. The four CHTSs
used in both NSGA-II and MOEA/D in the previous exper-
iments were considered: CDP, SP, SR, and €. As shown in
Table S-R-VII in the supplementary file, for each CHT, the
results of IGD obtained under the frameworks of NSGA-II
and MOEA/D were compared on each test problem, and the
better one was highlighted in boldface. Note that the results
in Table S-R-VII were directly taken from Tables S-R-I and
S-R-IV.

It can be seen from Table S-R-VII that NSGA-II performs
better than MOEA/D on most test problems, which are mainly
CMOPs with disconnected/discrete constrained PFs. While,
MOEA/D is better than NSGA-II on MW4, and similar to
NSGA-IT on MW9, MWI11, and MW12, which are mainly
CMOPs with connected constrained PFs. Therefore, MOEA/D
is sensitive to the geometry of the constrained PF. The reason
is straightforward: the disconnected constrained PF contains
some disconnected segments caused by the infeasible regions
and/or Pareto dominance; thus, the weight vectors distributed
outside these disconnected segments have no intersection with
the constrained PF. This will result in several weight vectors
corresponding to the same Pareto optimal solution. In this way,
there exist many duplicates in the final population, leading to
two consequences: 1) the computational resources are wasted
and 2) the population cannot cover the constrained PF as well
as that obtained by NSGA-II.

H. Comparisons Under the Framework of NSGA-III on
MWs With Higher Numbers of Objectives

As pointed out in [51], the proportion of nondominated solu-
tions in the population grows exponentially with the increase
of the number of objectives. Therefore, multiobjective EAs

(e.g., NSGA-II [28]) that employ Pareto dominance as a
major selection criterion are not able to provide sufficient
selection pressure to guide the population toward the true
PE. Due to this fact, a well-known many-objective EA, i.e.,
NSGA-III [52], was considered as the optimization algorithm
on MW4, MW8, and MW 14 with higher numbers of objec-
tives. Under the framework of NSGA-III, five representative
CHTs (i.e., CDP [28], SP [39], SR [40], € [42], and ATM [46])
were compared. The corresponding algorithms were denoted
as CDP-NSGA-III (i.e., the constrained version of NSGA-III
in [21]), SP-NSGA-III, SR-NSGA-III, e-NSGA-III, and ATM-
NSGA-III, respectively. NSGA-III works with a set of weight
vectors that are predefined according to the number of
objectives and the population size. For the CHT based on
multiobjective optimization (i.e., MO [44]), the population is
divided into a feasible subpopulation and an infeasible subpop-
ulation, and they are sorted separately. Note that, the infeasible
subpopulation has a varying size and an extra objective mea-
sured by the constraint violation of an infeasible solution.
Therefore, MO is absent in the comparison, since NSGA-III is
not able to process these two subpopulations simultaneously
using one set of weight vectors. Besides, as a hybrid CHT,
ATM treats the constraints as an extra objective if there is no
feasible solution in the population. For the same reason, we
used CDP as the replacement in this scenario.

For MW4, MWS8, and MW 14, we tested five numbers of
objectives, i.e., m = 3, 5, 8, 10, and 15, and the number of
decision variables was set as n = m — 1 + k, where k = 13.
According to the suggestions in [52], the number of weight
vectors (Nw) and the population size (Np) for different num-
bers of objectives were summarized in Table S-R-VIII in the
supplementary file. For other parameter settings, they were
consistent with the suggestions in Section IV-C.

Table S-R-IX in the supplementary file provides the average
and standard deviation of IGD values obtained by the five
compared algorithms over 100 independent runs. It can be
seen that e-NSGA-III surpasses others on all the test problems
except MW4 with m = 3 and 5 and MW 14 with m = 8, where
CDP-NSGA-III and ATM-NSGA-III are better. To be specific,
CDP-NSGA-III achieves the best on MW4 with m = 3 and 5,
and ATM-NSGA-III obtains the best result on MW 14 with
m = 8. In addition, the Wilcoxon’s rank-sum test at a 0.05
significance level was conducted to demonstrate the statistical
differences between the results obtained by the best algorithm
and its competitors on each test problem. We can observe that
€-NSGA-III is the best algorithm and CDP-NSGA-III is also
competitive.

The excellent performance of e-NSGA-III is mainly
attributed to the fact that the constrained PFs of MW4, MWS,
and MW14 are derived from the unconstrained PFs. As ana-
lyzed in Section IV-F, the e-constrained method has natural
advantages in finding the unconstrained PF. Besides, the reason
for the competitive performance of CDP-NSGA-III is obvious.
With the aid of uniformly distributed weight vectors, CDP is
able to provide sufficient selection pressure for solutions to
approach the feasible region and make the population approxi-
mate the constrained PF from diverse directions. This is similar
to the situation in CDP-MOEA/D.
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1. Advantages of the Proposed Test Problems

Based on the above comparisons and analyses, the advan-
tages of the proposed test problems can be summarized as
follows.

1) Proper Difficulties: As revealed by the experimen-
tal results, our test problems can distinguish different
algorithms through performance comparisons.

2) Diverse Characteristics (as Shown in Table I): These
characteristics help us to systematically investigate an
algorithm’s performance and understand its strengths
and weaknesses, which plays an important role in further
enhancing its performance.

3) Four Different Types: As these four types are extracted
from real-world CMOPs, they can sufficiently reflect the
features of practical engineering problems. By testing
an algorithm on different types, we can ascertain the
types on which it shows superiority. This will provide
important information for us to apply an algorithm to
real-world CMOPs reasonably.

V. CONCLUSION

Artificial test problems can attract more researchers to
design EAs for solving CMOPs. However, a careful inves-
tigation has demonstrated that current artificial test problems
are not well designed, since they more or less ignore some
important characteristics of real-world CMOPs: small fea-
sibility ratio, sufficient nonlinearity of constraints, multiple
constraints, scalable number of objectives, high-dimensional
decision vector, and so on.

Recognizing their limitations, this paper presented a new
constraint construction method, which can be considered as
a guideline to design CMOPs. Then, a test suite of 14
instances was suggested based on our constraint construc-
tion method. We also equipped them with different kinds of
distance functions. Moreover, to promote the understanding
on the performance of different CHTs, several representative
CHTs were compared under the frameworks of NSGA-II and
MOEA/D on the proposed test problems.

Under the framework of NSGA-II, we found that: 1) the
e-constrained method [43] can well solve types I and II of
CMOPs; 2) ATM [46] shows remarkable superiority on the
type-I CMOPs with narrow feasible regions; 3) SP [39] can
well approximate the unconstrained PF and the boundary of
the feasible region simultaneously on type III; and 4) MO [44]
significantly outperforms others on type IV. In addition, under
the framework of MOEA/D, the e-constrained method [50]
has advantages on types I-III of CMOPs, and CDP [49] and
SP [48] are more successful on the type-IV CMOPs. We also
observed that the performance of some CHTs (e.g., CDP) is
improved due to the fact that MOEA/D has the capability to
maintain the diversity. However, as MOEA/D is sensitive to
the geometry of the constrained PF, CHTs combined with
MOEA/D performs not as well as combined with NSGA-II
on the disconnected constrained PFs.

Based on the experimental comparisons, we would like to
give the following suggestions when designing a CHT:

1) For the type-I CMOPs, good population diversity should
be maintained to avoid the loss of some parts of the
unconstrained PF.

2) For the type-II CMOPs, we can follow the principle
that switches from “objective priority” to “constraint
priority”, like the e-constrained method.

3) For CMOPs with type III, an effective way is to
keep solutions with better objective values and lower
constraint violations simultaneously, like self-adaptive
penalty functions.

4) For the type-IV CMOPs, more focuses should be put
on constraints and some mechanisms should also be
incorporated to preserve good infeasible solutions.

The source code of MW is available

http://www.escience.cn/people/yongwang1/index.html.

from

REFERENCES

[1] H. Farzin, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie, “A stochas-
tic multi-objective framework for optimal scheduling of energy stor-
age systems in microgrids,” IEEE Trans. Smart Grid, vol. 8, no. 1,
pp. 117-127, Jan. 2017.

[2] G. Sun, T. Pang, J. Fang, G. Li, and Q. Li, “Parameterization of criss-
cross configurations for multiobjective crashworthiness optimization,”
Int. J. Mech. Sci., vols. 124-125, pp. 145-157, May 2017.

[31 M. Gong, Z. Wang, Z. Zhu, and L. Jiao, “A similarity-based
multiobjective evolutionary algorithm for deployment optimization of
near space communication system,” IEEE Trans. Evol. Comput., vol. 21,
no. 6, pp. 878-897, Dec. 2017.

[4] A. Zhou et al., “Multiobjective evolutionary algorithms: A survey of the
state of the art,” Swarm Evol. Comput., vol. 1, no. 1, pp. 23—49, 2011.

[5] E. Mezura-Montes and C. A. Coello Coello, “Constraint-handling in
nature-inspired numerical optimization: Past, present and future,” Swarm
Evol. Comput., vol. 1, no. 4, pp. 173-194, 2011.

[6] Z. Fan et al., “Difficulty adjustable and scalable constrained multi-
objective test problem toolkit,” arXiv preprint arXiv:1612.07603, 2016.

[7] C.-E. Juang and Y.-T. Yeh, “Multiobjective evolution of biped robot
gaits using advanced continuous ant-colony optimized recurrent neu-
ral networks,” IEEE Trans. Cybern., vol. 48, no. 6, pp. 1910-1922,
Jun. 2018.

[8] Y.-D. Hong and B. Lee, “Evolutionary optimization for optimal hop-
ping of humanoid robots,” IEEE Trans. Ind. Electron., vol. 64, no. 2,
pp- 1279-1283, Feb. 2017.

[9] J. Fang, G. Sun, N. Qiu, G. P. Steven, and Q. Li, “Topology optimization

of multi-cell tubes under out-of-plane crushing using a modified artifi-

cial bee colony algorithm,” J. Mech. Design, vol. 139, no. 7, 2017,

Art. no. 071403.

G. Sun, H. Zhang, J. Fang, G. Li, and Q. Li, “Multi-objective and multi-

case reliability-based design optimization for tailor rolled blank (TRB)

structures,” Struct. Multidiscipl. Optim., vol. 55, no. 5, pp. 1899-1916,

2017.

G. Sun, H. Zhang, R. Wang, X. Lv, and Q. Li, “Multiobjective

reliability-based optimization for crashworthy structures coupled with

metal forming process,” Struct. Multidiscipl. Optim., vol. 56, no. 6,

pp. 1571-1578, 2017.

[12] Z. Fan et al., “An improved epsilon constraint-handling method in

MOEA/D for CMOPs with large infeasible regions,” in Proc. IEEE

Symp. Comput. Intell. (SSCI), 2016, pp. 1-8.

B.-C. Wang, H.-X. Li, Q. Zhangi, and Y. Wang, “Decomposition-

based multiobjective optimization for constrained evolutionary

optimization,” IEEE Trans. Syst., Man, Cybern., Syst., to be published.
doi: 10.1109/TSMC.2018.2876335.

R. Tanabe and A. Oyama, “A note on constrained multi-objective

optimization benchmark problems,” in Proc. IEEE Congr. Evol. Comput.

(CEC), 2017, pp. 1127-1134.

[15] N. Srinivas and K. Deb, “Multiobjective function optimization using

nondominated sorting genetic algorithms,” Evol. Comput., vol. 2, no. 3,

pp. 221-248, 1995.

M. Tanaka, H. Watanabe, Y. Furukawa, and T. Tanino, “GA-based deci-

sion support system for multicriteria optimization,” in Proc. IEEE Int.

Conf. Syst. Man Cybern., vol. 2, 1995, pp. 1556-1561.

(10]

[11]

[13]

[14]

[16]


http://dx.doi.org/10.1109/TSMC.2018.2876335

986

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

A. Osyczka and S. Kundu, “A new method to solve generalized multicri-
teria optimization problems using the simple genetic algorithm,” Struct.
Optim., vol. 10, no. 2, pp. 94-99, 1995.

K. Deb, A. Pratap, and T. Meyarivan, “Constrained test problems for
multi-objective evolutionary optimization,” in Proc. Ist Int. Conf. Evol.
Multi Criterion Optim. (EMO), 2001, pp. 284-298.

Q. Zhang et al., “Multiobjective optimization test instances for the CEC
2009 special session and competition,” Univ. Essex, Colchester, U.K.,
and Nanyang Technol. Univ., Singapore, Rep. CES-487, 2008.

J-P. Li, Y. Wang, S. Yang, and Z. Cai, “A comparative
study of constraint-handling techniques in evolutionary constrained
multiobjective optimization,” in Proc. IEEE Congr. Evol. Comput.
(CEC), 2016, pp. 4175-4182.

H. Jain and K. Deb, “An evolutionary many-objective optimization
algorithm using reference-point based nondominated sorting approach,
part II: Handling constraints and extending to an adaptive approach,”
IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 602-622, Aug. 2014.
T. Ray and K. M. Liew, “A swarm metaphor for multiobjective design
optimization,” Eng. Optim., vol. 34, no. 2, pp. 141-153, 2002.

W. Gong, Z. Cai, and L. Zhu, “An efficient multiobjective differential
evolution algorithm for engineering design,” Struct. Multidiscipl. Optim.,
vol. 38, no. 2, pp. 137-157, 2009.

M. G. Parsons, “Formulation of multicriterion design optimization prob-
lems for solution with scalar numerical optimization methods,” J. Ship
Res., vol. 48, no. 1, pp. 61-67, 2004.

C. A. Coello Coello and G. T. Pulido, “Multiobjective structural
optimization using a microgenetic algorithm,” Struct. Multidiscipl.
Optim., vol. 30, no. 5, pp. 388-403, 2005.

T. Ray, K. Tai, and K. C. Seow, “An evolutionary algorithm for
multiobjective optimization,” Eng. Optim., vol. 33, no. 3, pp. 399424,
2001.

Y. Guo, X. Cao, and J. Zhang, “Multiobjective evolutionary algorithm
with constraint handling for aircraft landing scheduling,” in Proc. IEEE
Congr. Evol. Comput. (CEC), 2008, pp. 3657-3662.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182-197, Apr. 2002.

Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712-731, Dec. 2007.

A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh, “A survey of
multiobjective evolutionary algorithms based on decomposition,” IEEE
Trans. Evol. Comput., vol. 21, no. 3, pp. 440-462, Jun. 2017.

K. Deb, “Multi-objective genetic algorithms: Problem difficulties and
construction of test problems,” Evol. Comput., vol. 7, no. 3, pp. 205-230,
1999.

S. Huband, P. Hingston, L. Barone, and L. While, “A review of
multiobjective test problems and a scalable test problem toolkit,” IEEE
Trans. Evol. Comput., vol. 10, no. 5, pp. 477-506, Oct. 2006.

L. Jiao, J. Luo, R. Shang, and F. Liu, “A modified objective
function method with feasible-guiding strategy to solve constrained
multi-objective optimization problems,” Appl. Soft Comput., vol. 14,
pp. 363-380, Jan. 2014.

C. Peng, H-L. Liu, and F. Gu, “An evolutionary algorithm with
directed weights for constrained multi-objective optimization,” Appl. Soft
Comput., vol. 60, pp. 613-622, Nov. 2017.

R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector
guided evolutionary algorithm for many-objective optimization,” IEEE
Trans. Evol. Comput., vol. 20, no. 5, pp. 773-791, Oct. 2016.

P. A. N. Bosman and D. Thierens, “The balance between proximity and
diversity in multiobjective evolutionary algorithms,” IEEE Trans. Evol.
Comput., vol. 7, no. 2, pp. 174-188, Apr. 2003.

C. K. Goh and K. C. Tan, “An investigation on noisy environments in
evolutionary multiobjective optimization,” IEEE Trans. Evol. Comput.,
vol. 11, no. 3, pp. 354-381, Jun. 2007.

D. A. V. Veldhuizen and G. B. Lamont, “Evolutionary computation and
convergence to a Pareto front,” in Proc. Late Breaking Papers Genet.
Program. Conf., 1998, pp. 221-228.

Y. G. Woldesenbet, G. G. Yen, and B. G. Tessema, “Constraint han-
dling in multiobjective evolutionary optimization,” IEEE Trans. Evol.
Comput., vol. 13, no. 3, pp. 514-525, Jun. 2009.

T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evo-
lutionary optimization,” [EEE Trans. Evol. Comput., vol. 4, no. 3,
pp. 284-294, Sep. 2000.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

H. Geng, M. Zhang, L. Huang, and X. Wang, “Infeasible elitists
and stochastic ranking selection in constrained evolutionary multi-
objective optimization,” in Proc. Int. Conf. Simulat. Evol. Learn., 2006,
pp. 336-344.

T. Takahama and S. Sakai, “Constrained optimization by the € con-
strained differential evolution with gradient-based mutation and feasible
elites,” in Proc. IEEE Congr. Evol. Comput. (CEC), Vancouver, BC,
Canada, 2006, pp. 1-8.

F. Qian, B. Xu, R. Qi, and H. Tianfield, “Self-adaptive differential
evolution algorithm with «-constrained-domination principle for con-
strained multi-objective optimization,” Soft Comput., vol. 16, no. 8,
pp. 1353-1372, 2012.

T. Ray, H. K. Singh, A. Isaacs, and W. Smith, “Infeasibility driven evolu-
tionary algorithm for constrained optimization,” in Constraint-Handling
in Evolutionary Optimization. Heidelberg, Germany: Springer, 2009,
pp. 145-165.

B. Y. Qu and P. N. Suganthan, “Constrained multi-objective optimization
algorithm with an ensemble of constraint handling methods,” Eng.
Optim., vol. 43, no. 4, pp. 403—416, 2011.

Y. Wang, Z. Cai, Y. Zhou, and W. Zeng, “An adaptive tradeoff model
for constrained evolutionary optimization,” IEEE Trans. Evol. Comput.,
vol. 12, no. 1, pp. 80-92, Feb. 2008.

H. Li and Q. Zhang, “Multiobjective optimization problems with compli-
cated Pareto sets, MOEA/D and NSGA-IL,” IEEE Trans. Evol. Comput.,
vol. 13, no. 2, pp. 284-302, Apr. 2009.

M. A. Jan and Q. Zhang, “MOEA/D for constrained multiobjective
optimization: Some preliminary experimental results,” in Proc. Comput.
Intell., 2010, pp. 1-6.

M. A. Jan and R. A. Khanum, “A study of two penalty-parameterless
constraint handling techniques in the framework of MOEA/D,” Appl.
Soft Comput., vol. 13, no. 1, pp. 128-148, 2013.

Z. Yang, X. Cai, and Z. Fan, “Epsilon constrained method for
constrained multiobjective optimization problems: Some preliminary
results,” in Proc. Companion Publication Annu. Conf. Genet. Evol.
Comput., 2014, pp. 1181-1186.

R. C. Purshouse and P. J. Fleming, “On the evolutionary optimization of
many conflicting objectives,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 770-784, Dec. 2007.

K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part I: Solving problems with box constraints,” IEEE Trans. Evol.
Comput., vol. 18, no. 4, pp. 577-601, Aug. 2014.

Zhongwei Ma received the M.S. degree in computer
science and technology from Xiangtan University,
Xiangtan, China, in 2016. He is currently pursuing
the Ph.D. degree in computer science and technology
with Central South University, Changsha, China.
His current research interests include evolution-
ary computation, constrained optimization, dynamic
optimization, and automotive lightweight design.

Yong Wang (M’08-SM’17) received the Ph.D.
degree in control science and engineering from the
Central South University, Changsha, China, in 2011.

He is a Professor with the School of Automation,
Central South University. His current research
interests include theory, algorithm design, and inter-
disciplinary applications of computational intelli-
gence.

Dr. Wang was a recipient of the Highly Cited
Researcher Award in Computer Science by Web of
Science in 2017 and 2018. He is an Associate Editor
of Swarm and Evolutionary Computation.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


