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Abstract—Inverted generational distance (IGD) has been
widely considered as a reliable performance indicator to concur-
rently quantify the convergence and diversity of multiobjective
and many-objective evolutionary algorithms. In this paper, an
IGD indicator-based evolutionary algorithm for solving many-
objective optimization problems (MaOPs) has been proposed.
Specifically, the IGD indicator is employed in each generation
to select the solutions with favorable convergence and diversity.
In addition, a computationally efficient dominance comparison
method is designed to assign the rank values of solutions along
with three newly proposed proximity distance assignments. Based
on these two designs, the solutions are selected from a global view
by linear assignment mechanism to concern the convergence and
diversity simultaneously. In order to facilitate the accuracy of the
sampled reference points for the calculation of IGD indicator, we
also propose an efficient decomposition-based nadir point estima-
tion method for constructing the Utopian Pareto front (PF) which
is regarded as the best approximate PF for real-world MaOPs at
the early stage of the evolution. To evaluate the performance,
a series of experiments is performed on the proposed algo-
rithm against a group of selected state-of-the-art many-objective
optimization algorithms over optimization problems with 8-, 15-,
and 20-objective. Experimental results measured by the chosen
performance metrics indicate that the proposed algorithm is very
competitive in addressing MaOPs.

Index Terms—Inverted generational distance (IGD), lin-
ear assignment problem (LAP), many-objective evolutionary
optimization algorithm, nadir point.
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I. INTRODUCTION

MANY-OBJECTIVE optimization problems (MaOPs)
refer to the optimization tasks involving m (i.e.,

m > 3) conflicting objectives to be optimized concurrently [1].
Generally, an MaOP is with the mathematic form repre-
sented as {

y = f(x) = (f1(x), . . . , fm(x))

s.t. x ∈ �
(1)

where � ⊆ R
n is the feasible search space for the deci-

sion variables x = (x1, . . . , xn)
T , and f : � → � ⊆ R

m

is the corresponding objective vector including m objectives
which maps the n-dimensional decision space � to the m-
dimensional objective space �. Without the loss of generality,
f(x) is assumed to be minimized since the maximization prob-
lems can be transformed into the minimization problems due
to the duality principle. Because of the conflicting nature in
the objective functions, there is no single perfect solution for
f(x), but a set of tradeoff solutions which form the Pareto set
(PS) in the decision space and the corresponding Pareto front
(PF) in the objective space.

Optimization algorithms for addressing an MaOP aim at
searching for a set of uniformly distributed solutions which
are closely approximating the PF. Because the MaOPs widely
exist in diverse real-world applications, such as policy manage-
ment in land exploitation with 14-objective [2] and calibration
of automotive engine with ten-objective [3], to name a few,
various algorithms for solving MaOPs have been developed.
Among these algorithms, the evolutionary paradigms are
considerably preferable due to their population-based meta-
heuristic characteristics obtaining a set of quality solutions in
a single run.

During the past decades, various multiobjective evolution-
ary algorithms (MOEAs), such as elitist nondominated sorting
genetic algorithm (NSGA-II) [4], advanced version of strength
Pareto evolutionary algorithm [5], among others, have been
proposed to effectively solve multiobjective optimization prob-
lems (MOPs). Unfortunately, these MOEAs do not scale well
with the increasing number of objectives, mainly due to the loss
of selection pressure. To be specific, the number of nondomi-
nated solutions in MaOPs accounts for a large proportion of the
current population because of the dominance resistance phe-
nomenon [6] caused by the curse of dimensionality [7], so that
the traditional elitism mechanism based on Pareto-domination
cannot effectively differentiate which solutions should survive
into the next generation. As a result, the density-based diversity
promotion mechanism is considered the sole mechanism for
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mating and environmental selections [8]. However, the solutions
with good diversity in MaOPs are generally not only distant
from each other but also away from the PF. Consequently, the
evolution with the solutions generated by the activated diver-
sity promotion is stagnant or even far away from the PF [9].
To this end, various many-objective evolutionary algorithms
(MaOEAs) specifically designed for addressing MaOPs have
been proposed in recent years.

Generally, these MaOEAs can be divided into four different
categories. The first category covers the algorithms employing
reference prior to enhancing the diversity promotion which in
turn improve the convergence. For example, the MaOEA using
reference-point-based nondominated sorting approach (NSGA-
III) [10] employs a set of reference vectors to assist the
algorithm to select solutions which are close to these reference
vectors. Yuan et al. [11] proposed the reference line-based
algorithm which not only adopted the diversity improvement
mechanism like that in NSGA-III but also introduced con-
vergence enhancement scheme by measuring the distance
between the origin to the solution projections on the corre-
sponding reference line. In addition, a reference line-based
estimation of distribution algorithm was introduced in [12] for
explicitly promoting the diversity of an MaOEA. Furthermore,
an approach (RVEA) was presented in [13] to adaptively
revise the reference vector positions based on the scales of the
objective functions to balance the diversity and convergence.

The second category refers to the decomposition-based
algorithms which decompose an MaOP into several single-
objective optimization problems, such as the MOEA based on
decomposition (MOEA/D) [14] which was initially proposed
for solving MOPs but scaled well for MaOPs. Specifically,
MOEA/D transformed the original MOP/MaOP with m objec-
tives into a group of single-objective optimization problems,
and each subproblem was solved in its neighboring region
which constrained by their corresponding reference vec-
tors. Recently, diverse variants [15]–[20] of MOEA/D were
proposed for improving the performance much further.

The third category is known as the convergence
enhancement-based approaches. More specifically, the tradi-
tional Pareto dominance comparison methods widely utilized
in MOEAs are not effective in discriminating populations with
good proximity in MaOPs. A natural way is to modify this
comparison principle to promote the selection mechanism. For
example, the ε-dominance method [21] employed a relaxed
factor ε to compare the dominance relation between solutions.
di Pierro et al. [22] proposed the preference order rank-
ing approach to replace the traditional nondominated sorting.
Furthermore, the fuzzy dominance methods [23], [24] studied
the fuzzification of the Pareto-dominance relation to design the
ranking scheme to select promising solutions; the L-optimality
paradigm was proposed in [25] to pick up solutions whose
objectives were with the same importance by considering their
objective value improvements. In addition, Yang et al. [26]
proposed the grid-based approach to select the solutions that
have the higher priority of dominance, and control the pro-
portion of Pareto-optimal solutions by adjusting the grid size.
Meanwhile, López et al. [27] alternated the achievement func-
tion and the ε-indicator method to improve the performance

of MOEA in solving MaOPs. In [28], a modification of den-
sity estimation, termed as shift-based density estimation, was
proposed to make the dominance comparison better suited
for solving MaOPs. Furthermore, the favorable convergence
scheme was proposed in [29] to improve the selection pres-
sure in mating and environmental selections. Recently, a knee
point-based algorithm (KnEA) [30] was presented as a sec-
ondary selection scheme to enhance the selection pressure.
In summary, these algorithms introduced new comparison
methods, designed effective selection mechanisms, or relaxed
the original comparison approach to improve the selection
pressure in addressing MaOPs.

The fourth category is known as the indicator-based methods.
For instance, several MOEAs based on the hypervolume (HV)
were proposed in [31]–[33]; however, their major disadvantages
were the costly overhead in calculating the HV values especially
in solving MaOPs. To this end, Bader and Zitzler [34] proposed
the HypE method with the Monte Carlo simulation to estimate
the HV value. Consequently, the computational cost was largely
lowered compared to its predecessors whose HV values were
calculated exactly. In [35], an �p indicator-based algorithm
(�p-EMOA) was proposed for solving bi-objective optimization
problems, and then extended further for tri-objective prob-
lems [36]. Furthermore, Villalobos and Coello [37] integrated
the �p indicator with the differential evolution [38] to solve
MaOPs with up to ten objectives. Recently, an inverse genera-
tional distance plus (IGD+) [39] indicator-based evolutionary
algorithm (IGD+-EMOA) was proposed in [40] for address-
ing MaOPs with no more than eight objectives. Basically, the
IGD+ indicator is viewed as a variant of the inverse generational
distance (IGD) indicator.

Although the MaOEAs mentioned above have experimen-
tally demonstrated their promising performance, major issues
are easily to be identified in solving real-world applications.
For example, it is difficult to choose the converting strategy
of the MaOEAs from the second category, which motivates
multiple variants [15], [17], [19], [20], [41], [42] to be devel-
oped further. In addition, the MaOEAs from the first and
third categories only highlighted one of the characters in
their designs (i.e., only the diversity promotion is explicitly
concerned in the MaOEAs from the first category, and the
convergence from the third category). However, both diversity
and convergence are concurrently desired by the MaOEAs. In
this regard, some performance indicators, which are capable of
simultaneously measuring the diversity and convergence, such
as the HV and IGD indicators, are preferred to be employed
for designing MaOEAs. However, the major issue of HV is
its high computational complexity. Although the Monte Carlo
simulation has been employed to mitigate this adverse impact,
the calculation is still impracticable when the number of objec-
tives is more than 10 [34], while the calculation of IGD is
scalable without these deficiencies.

In this paper, an IGD indicator-based MaOEA
(MaOEA/IGD) has been proposed for effectively addressing
MaOPs, and the contributions are outlined as follows.

1) A decomposition-based nadir point estimation method
(DNPE) has been presented to estimate the nadir
points to facilitate the calculation of IGD indicator.
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In DNPE, the estimation focuses only on the extreme
point areas and transforms the computation of an m-
objective optimization problem into m single-objective
optimization problems. Therefore, less computational
cost is required compared to its peer competitors (exper-
iments are demonstrated in Section IV-E).

2) A comparison scheme for the nondominated sorting has
been designed for improving the convergence of the
proposed algorithm. In this scheme, the dominance rela-
tions of solutions are not obtained by the comparisons
among all the solutions but the solutions to the reference
points. Therefore, the computational complexity of the
presented comparison scheme is significantly lessened
compared to the traditional comparison means because
the number of reference points is generally much less
than that of the whole population.

3) Three types of proximity distance assignment mecha-
nisms are proposed for the solutions according to their
PF rank values, which make the solutions with good
convergence in the same PF to have higher chances
to be selected. Furthermore, these assignment mecha-
nisms collectively assure the proposed IGD indicator to
be Pareto compliance.

4) Based on the proposed dominance comparison scheme
and the proximity distance assignments, the selection
mechanism which is employed for the mating selec-
tion and the environmental selection is proposed to
concurrently facilitate the convergence and the diversity.

The reminder of this paper is organized as follows. First,
related works are reviewed, and the motivation of the proposed
DNPE is presented in Section II. Then the details of the
proposed algorithm are documented in Section III. To evalu-
ate the performance of the proposed algorithm in addressing
MaOPs, a series of experiments over scalable benchmark test
suits are performed against state-of-the-art MaOEAs, and their
results are measured by commonly chosen performance metrics
and then analyzed in Section IV. In addition, the performance
of the proposed MaOEA/IGD is also demonstrated by solving
a real-world application, and the performance of the proposed
DNPE in nadir point estimation is investigated against its peer
competitors. Finally, the proposed algorithm is concluded and
the future works are illustrated in Section V.

II. RELATED WORKS AND MOTIVATION

Literatures related to the nadir point estimation and IGD
indicator-based EAs are thoroughly reviewed in this sec-
tion. Specifically, the worst crowded NSGA-II (WC-NSGA-
II) [43] and the Pareto corner search evolutionary algorithm
(PCSEA) [44] would be reviewed and criticized in detail,
because the insightful observations of the deficiencies of
these two approaches naturally lead to the motivation of the
proposed DNPE design. In addition, the IGD+-EMOA is
reviewed as well to highlight the utilization of the IGD+ indi-
cator and the reference points sampling for the calculation of
IGD in the proposed MaOEA/IGD. Please note that all the
discussions in this section are with the context of the problem
formulation in (1).

A. Nadir Point Estimation Methods

According to [45] and [46], the approaches for estimating
the nadir points can be divided into three categories including
the surface-to-nadir, edge-to-nadir, and extreme-point-to-nadir
schemes. In the surface-to-nadir scheme, the nadir points
are constructed from the current Pareto-optimal solutions,
and updated as the corresponding algorithms evolve toward
the PF. MOEAs in [4], [18], and [47]–[49] and MaOEAs
in [10], [13], and [15] belong to this category. However, these
MOEAs are shown to perform poorly in MaOPs due to the
curse of dimensionality [50]. In addition, the MaOEAs related
methods are not suitable for the proposed algorithm because
the MaOPs have been solved prior to the nadir point esti-
mation, while the nadir points in this paper are targeted for
addressing MaOPs.

The edge-to-nadir scheme covers the Szczepański and
Wierzbicki’s approach [51], extremized crowded NSGA-II
(EC-NSGA-II) [43], and the recently proposed empha-
sized critical region (ECR) approach [45]. Specifically,
Szczepański and Wierzbicki’s approach decomposed an m-
objective problem into C2

m subproblems to estimate the nadir
point from the C2

m edges, in which the major issues were the
poor quality in nadir point found and the impractical compu-
tation complexity beyond three objectives [45]. EC-NSGA-II
modified the crowding distance of NSGA-II by assigning
large rank values to the solutions which had the minimum
or maximum objective values. The ECR emphasized the solu-
tions lying at the edges of the PF (i.e., the critical regions)
with the adopted MOEAs. Although EC-NSGA-II and ECR
have been reported to be capable of estimating the nadir
points in MaOPs, they required a significantly large number
of functional evaluations [45].

The extreme-point-to-nadir approaches refer to employ a
direct means to estimate the extreme points based on which the
nadir points are derived, such as WC-NSGA-II [43] in which
the worst crowded solutions (extreme points) were preferred
by ranking their crowding distances with large values. In
WC-NSGA-II, it was hopeful that the extreme points were
obtained when the evolution terminated. However, emphasiz-
ing the extreme points easily led to the WC-NSGA-II losing
the diversity which inadvertently affected the convergence in
turn. In addition, Singh et al. [44] proposed PCSEA to look
for the nadir points with the corner-sort ranking method for
the MaOPs whose objective values were required to be with
the identical scales.

In addition, there are also various methods not falling into
the above categories. For example, Benayoun et al. [52] esti-
mated the nadir points with the pay-table in which the jth row
denoted the objective values of the solution which had the
minima on its jth objective. In addition, other related works
were suggested in [53]–[55] for the problems assuming a lin-
ear relationship between the objectives and variables. On the
contrary, most of the real-world applications are nonlinear in
nature.

Because the nadir point estimation is a critical part of the
proposed algorithm for solving MaOPs, an approach with
a high computational complexity is certainly not preferable.
Furthermore, the nadir points are employed for constructing
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Fig. 1. Example with bi-objective optimization problem to illustrate the ideal
point, extreme point, worst point, nadir point, and the PF.

the Utopian PF, while the reference point of IGD would come
from the PF. As a consequence, nadir points with a high
accuracy are not necessary a guarantee. Considering the bal-
ance between the computational complexity and the estimation
accuracy, we have proposed in this paper a DNPE method
by transforming an m-objective MaOP into m single-objective
optimization problems to search for the respective m extreme
points. Thereafter the nadir point is derived.

Specifically, because the proposed nadir point estimation
method (i.e., the DNPE) is based on the extreme-point-to-nadir
scheme, the WC-NSGA-II and the PCSEA which are with
the similar scheme are detailed further. For convenience of
reviewing the related nadir point estimation methods, multiple
fundamental concepts of the MaOPs are given first. Then the
WC-NSGA-II and PCSEA are discussed.

Definition 1: Generally, there are m extreme points denoted
as yext

1 , . . . , yext
m in an m-objective optimization problem,

yext
i = f(xext

i ), and xext
i = arg maxx fi(x), where x ∈ PS and

i ∈ {1, . . . , m}.
Definition 2: The nadir point is defined as znad =
{znad

1 , . . . , znad
m }, where znad

i = fi(xext
i ).

Definition 3: The worst point is defined as zw =
{zw

1 , . . . , zw
m}, where zw

i = max fi(x) and x ∈ �.
Definition 4: The ideal point is defined as z∗ =
{z∗1, . . . , z∗m}, where z∗i = min fi(x) and x ∈ �.

Furthermore, the ideal point, extreme point, worst point,
nadir point, and the PF are plotted with a bi-objective
optimization problem in Fig. 1 for intuitively understanding
their significance. With these fundamental definitions, a cou-
ple of nadir point estimation algorithms, WC-NSGA-II and
PCSEA, which are in the extreme-point-to-point scheme are
discussed as follows.

WC-NSGA-II was designed based on NSGA-II by mod-
ifying its crowding distance assignment. According to the
definition of nadir point in Definition 2, WC-NSGA-II nat-
urally emphasized the solutions with maximal objectives
front-wise. Specifically, solutions on a particular nondom-
inated front were sorted with an increasing order based
on their fitness, and rank values equal to their positions
in the ordered list were assigned. Then the solutions with
larger rank values were preferred in each generation during
the evolution. By this emphasis mechanism, it was hopeful
that nadir point was obtained when the evolution of WC-
NSGA-II was terminated. However, one major deficiency

Fig. 2. Bi-objective example to illustrate the deficiency of PCSEA in
addressing the problem with different objective value scales.

is that over-emphasis on these solutions with maximal fit-
ness leads to the lack of diversity, which in turn affects the
convergence of the generated extreme points, i.e., the gen-
erated extreme points in WC-NSGA-II are not necessarily
Pareto-optimal.

PCSEA employed the corner-sorting to focus on the extreme
points during the evolution. Specifically, there were 2m
ascended lists during the executions of PCSEA. The first
m lists were about the m objectives of the solutions, while
the other m lists were about the excluded square L2 norm
with each objective. Furthermore, the jth objective of the
problem to be optimized was with the excluded square L2
norm

∑m
i=1,i �=j fi(x)2. From these 2m lists, solutions with

smaller rank values which were equal to their positions in
these lists were selected until there was no available slot.
Experimental results have shown that PCSEA performs well
in MaOPs due to the utilization of corner-sorting other than
the nondominated sorting which easily leads to the loss of
selection pressure. However, the corner-sorting can be viewed
as to minimize the square L2 norm of all objectives, which
deteriorates the performance of PCSEA in solving the prob-
lems with different objective value scales and nonconcave PF
shapes. For example in Fig. 2 which illustrates an example of
bi-objective optimization problem, the arc AB denotes the PF,
points A and B are with different values. It is clearly observed
that if the minimization of L2 norm regarding f1(x) and f2(x)

are emphasized, only the extreme point A would be obtained
while the other one (point B) would be missed. This defi-
ciency can also be seen in the problems with nonconcave PF
shapes.

Briefly, major concerns in these two nadir point esti-
mation algorithms are summarized as: 1) over-emphasizing
extreme points leads to the loss of diversity which in turn
deteriorates the convergence of the found nadir points and
2) simultaneously minimizing the objectives does not scale to
problems with different objective value scales and nonconcave
PF shapes. To this end, a natural approach is recommended
by: 1) decomposing the problem to be solved into several
single-objective optimization problems in which the diversity
is not required and 2) assigning different weights to the objec-
tives. In the proposed DNPE, the m respective extreme points
are estimated by decomposing the m-objective MaOP into m
single-objective problems associated with different weights.
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Fig. 3. Example of bi-objective optimization problem, A, B are the extreme
points, and C, D are the worse points. The shade region denotes the feasible
objective space.

Specifically, the ith extreme point estimation is with the form
formulated as

min | fi(x)| + λ

m∑
j=1,j �=i

(
fj(x)

)2 (2)

where λ is a factor with the value greater than 1 to highlight
the priority of solving its associated term. In order to better
justify our motivation, an example with bi-objective is plot-
ted in Fig. 3 in which A, B are the extreme points, C, D are
the worse points, and the shaded region denotes the feasible
objective space. To obtain the extreme point on the f1 objec-
tive, it is required to minimize |f1(x)| + λ(f2(x))2 according
to (2). Because λ is greater than 1, the term (f2(x))2 is opti-
mized with a higher priority. Consequently, solutions locating
in line BC are obtained, based on which |f1(x)| is minimized
much further, then the extreme point B is obtained.

B. IGD+-EMOA

Prior to the introduction of IGD+-EMOA, it is neces-
sary to compare the differences between the IGD and IGD+
indicators. For this purpose, we first list their respective math-
ematical formulations. Then the superiority of IGD+ indicator
is highlighted. Finally, the IGD+-EMOA is discussed much
further.

Basically, the IGD indicator is with the form formulated by

IGD =
∑

p∈p∗ dist(p, PF)

|p∗| (3)

where p∗ denotes a set of reference points in the calculation
of IGD, PF denotes the nondominated solutions generated by
the algorithm, dist(p, PF) denotes the nearest distance from p
to solutions in PF, and the distance from p to the solution y
in PF is calculated by d(p, y) =

√∑m
j=1(pj − yj)2. It has been

pointed out in [39] that IGD cannot differentiate the quality of
generated solutions when they are nondominated to the solu-
tions in p∗, and the IGD+ indicator is proposed by changing
the calculation of d(p, y) to

√∑m
j=1 max(yj − pj, 0)2.

IGD+-EMOA employed the IGD+ indicator as its selection
mechanism. In addition, the p∗ in IGD+-EMOA is sam-
pled from the approximate PF. Specifically, it supposed that
the PF is obtained by solving yr

1 + · · · + yr
m = 1, where

y = {y1, . . . , ym} is from the nondominated solutions of the
current population. However, this approximate approach for
generating the PF performs badly in MaOPs where multiple
local Pareto-optimal exist, which leads IGD+-EMOA only to
solve MaOPs with no more than 8 objectives [40].

In summary, we first introduce details of the proposed
DNPE which is motivated by the insightful observations in
deficiencies of WC-NSGA-II and PCSEA. With the help of
the estimated nadir point, the Utopian PF is constructed and
the reference points are sampled for the calculation of the
proposed MaOEA/IGD. Compared to the approximation of the
PF in IGD+-EMOA, our proposed MaOEA/IGD is capable
of solving problems with many more objectives. Considering
the superiority of IGD+, its design principle is employed in
the proposed MaOEA/IGD when the generated solutions are
nondominated to the sampled reference points.

III. PROPOSED ALGORITHM

In this section, the proposed IGD indicator-based evo-
lutionary algorithm for addressing MaOPs (in short for
MaOEA/IGD) is presented. To be specific, the framework
of the proposed algorithm is outlined first. Then the details
of each step in the framework are documented. Next, the
computational complexity of the proposed algorithm is ana-
lyzed. Finally, the mechanisms of promoting the diversity
and the convergence in the proposed algorithm are discussed.
Noted here that, the proposed algorithm is described within
the context formulated by (1).

A. Framework of the Proposed Algorithm

Because the proposed algorithm is based on the IGD indi-
cator, a set of uniformly distributed points which is generated
from the PF is required. However, exact points are difficult to
be obtained due to the unknown analytical form of the PF for
a given real-world application. In the proposed algorithm, a
set of reference points, denoted by p∗, which are evenly dis-
tributed in the Utopian PF is generated first (Section III-B).
Then the population with the predefined size is randomly ini-
tialized in the feasible space, and their fitness are evaluated.
Next, the population begins to evolve in pursuing the optima
until the stopping conditions are satisfied. When the evolu-
tion terminates, a number of promising solutions which are
hopeful to uniformly distributed in the PF with good prox-
imity is obtained. In order to remedy the shortage caused by
using the p∗ as the Pareto-optimal solutions with promising
diversity for IGD indicator, the rank of each solution as well
as its proximity distances to all the points in p∗ are assigned
(Section III-C) first during each generation of the evolution.
Then new offspring are generated from their parents selected
based on the comparisons over their corresponding rank val-
ues and proximity distances (Section III-D). Next, the fitness,
ranks, and the proximity distances of the generated offspring
to the solutions in p∗ are calculated. Finally, a limit number of
individuals is selected from the current population to survive
into the next generation with the operation of environmen-
tal selection (Section III-E). In summary, the details of the
framework are listed in Algorithm 1.
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Algorithm 1: Framework of the Proposed Algorithm

1 p∗ ← Uniformly generate reference points for IGD
indicator;

2 P0 ← Randomly initialize the population;
3 Fitness evaluation on P0;
4 t← 0;
5 while stopping criteria are not satisfied do
6 Assign the ranks and the proximity distances for

individuals in Pt;
7 Qt ← Generate offspring from Pt;
8 Fitness evaluation on Qt;
9 Assign the rank and the proximity distance for each

individual in Qt;
10 Pt+1 ← Environmental selection from Qt ∪ Pt;
11 t← t + 1;
12 end
13 Return Pt.

Algorithm 2: Uniformly Generate p∗ for IGD Indicator
Input: Optimization problem f(x) = (f1(x), · · · , fm(x));

the size k of p∗.
Output: p∗.

1 Estimate the extreme points of f(x) with Algorithm 3;
2 z* = {z∗1, · · · , z∗m} ← Extract the ideal point;
3 znad = {znad

1 , · · · , znad
m } ← Extract the nadir point;

4 p∗ ← Uniformly generate k points from the constrained
hyperplane;

5 for i← 1 to k do
6 for j← to m do
7 (p∗)i

j = (p∗)i
j × (znad

j − z∗j )+ z∗j
8 end
9 end

10 Return p∗.

B. Uniformly Generating Reference Points

In order to obtain the p∗, the extreme points of the problem
f(x) to be optimized are calculated first. Then the ideal point
and the nadir point are extracted. Next, a set of solutions is
uniformly sampled from the constrained (m− 1)-dimensional
hyperplane. Finally, these solutions are transformed into the
Utopian PF for the usage of the IGD indicator based on the
ideal point and the nadir point. Furthermore, these steps are
listed in Algorithm 2, and all the details of obtaining the p∗
are illustrated as follows.

To estimate the extreme points, the motivation mentioned in
Section II-A is implemented, and the details are presented in
Algorithm 3. Specifically, the m extreme points are estimated
individually based on the m objectives of the optimization
problem. Furthermore, to estimate the ith extreme point yext

i ,
the square L2 norm of {fk(x)|k = 1, . . . , i − 1, i + 1, . . . , m}
is calculated first. Then the absolute value of fi(x) is cal-
culated. Mathematically, these two steps are formulated by
fl2(x) = ∑m

k=1,k �=i ||fk(x)||22 and fl1(x) = |fi(x)|, respectively,
where ‖·‖2 is the L2 norm operator, and |·| is the absolute value

Algorithm 3: Estimate Extreme Points
Input: Optimization problem f(x) = (f1(x), · · · , fm(x)).
Output: Extreme points {yext

1 , · · · , yext
m }.

1 ϒ ← ∅;
2 for i← 1 to m do
3 �← ∅;
4 for k← 1 to m do
5 if k �= i then
6 �← � ∪ fk(x);
7 end
8 end
9 xext

i = arg minx λ‖�‖22 + |fi(x)|;
10 yext

i ← fi(xext
i );

11 ϒ ← ϒ ∪ yext
i ;

12 end
13 Return ϒ .

operator. Finally, the extreme point yext
i is obtained by line 10

in Algorithm 3, where λ is a factor with the value greater
than 1 to highlight the weight of the corresponding term in
the optimization. When all the extreme points have been esti-
mated, the nadir point and the ideal point are extracted from
the extreme points based on Definitions 2 and 4, respectively.
This is followed by generating a set of uniformly distributed
reference points denoted by p∗ from the (m− 1)-dimensional
constrained hyperplane which is contoured by m lines with the
unit intercepts in the positive part of the quadrant. Noted here
that the Das and Dennis’s [56] method, which is widely used
by some state-of-the-art MaOEAs, such as MOEA/D [14] and
NSGA-III [10], is employed for the generation of p∗ (line 4
of Algorithm 2). Ultimately, all the points in p∗ are trans-
formed into the Utopian PF, which are detailed in lines 5–9
of Algorithm 2.

C. Assigning Ranks and Proximity Distances

When p∗ has been generated, the population is randomly
initialized in the feasible search space first, and then the fit-
ness of individuals are evaluated. Next, the rank value and the
proximity distances of each individual are assigned. It is noted
here that, the rank values are used to distinguish the proximity
of the solutions to the Utopian PF from the view of reference
points, and the proximity distances are utilized to indicate
which individuals are with better convergence and diversity
in the subpopulation in which the solutions are with the same
rank values. More details are discussed in Section III-G.

Particularly, three rank values, denoted by r1, r2, and
r3, exist in the proposed algorithm for all the individuals.
Specifically, the way to rank individual s is based on the
definitions given as follows.

Definition 5: Individual s is ranked as r1, if it dominates at
least one solution in p∗.
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Definition 6: Individual s is ranked as r2, if it is nondomi-
nated to all the solutions in p∗.

Definition 7: Individual s is ranked as r3, if it is dominated
by all the solutions in p∗, or dominated by a part of solutions
in p∗ but nondominated to the remaining solutions.

With Definitions 5–7, it is concluded that Pareto-optimal
solutions are all with rank values r1, r2, and r3, if the PF is con-
vex, a hyperplane, and concave, respectively.1 To be specific, if
the PF of a minimization problem is a hyperplane, the Utopian
PF is obviously equivalent to the PF. Consequently, the Pareto-
optimal solutions lying at the PF are all nondominated to
the reference points which are sampled from the Utopian PF.
Based on Definition 6, the Pareto-optimal solutions are ranked
with r2. This is also held true for the Pareto-optimal solutions
ranked with r1 for convex PF and Pareto-optimal solutions
ranked with r3 for concave PF.

Based on the conclusion mentioned above, the proximity
distances of each individual with different ranks in the popu-
lation are calculated. For convenience, it is assumed that there
are k solutions in p∗, and q individuals in the current popula-
tion. Consequently, there will be q×k proximity distances. Let
di

j denote the proximity distance of f(xi) = (f1(xi), . . . , fm(xi))

(xi refers to the ith individual) to the jth point in (p∗)j =
((p∗)j

1, . . . , (p
∗)j

m), where i = {1, . . . , q} and j = {1, . . . , k}.
Due to one individual with multiple proximity distances, the
corresponding minimal proximity distance would be employed
when two individuals are compared upon their proximity dis-
tances. Because the proximity distance assignment is used to
differentiate the convergence of individuals with the same rank
values by comparing their associate proximity distances when
a prior knowledge of the PF is unknown in advance, the rank ri

of xi is confirmed first in order to calculate the di
j . Particularly,

the proximity distance assignment is designed as follows. If
ri is equal to r3, di

j is set to the Euclidean distance between
f(xi) and (p∗)j; if ri is equal to r1, di

j is set to the negative
value of the Euclidean distance between f(xi) and (p∗)j; if ri

is equal to r2, di
j is calculated by

di
j =

√√√√ m∑
l=1

max
(

fl
(
xi

)− (p∗)j
l, 0

)2
. (4)

For an intuitive understanding, an example is illustrated in
Fig. 4 to present the motivation of the proximity distance
assignment for individuals who are ranked as r2. In Fig. 4,
the black solid circles refer to the reference points, the black
triangles marked by 1, 2, and 3 refer to the individuals x1,
x2, and x3 which are with the rank r2 (these three individuals
are nondominated to the reference points). In this situation,
it is clearly shown that the individual x1 is with the smallest
minimal proximity distance if the Euclidean distance metric
is employed (the minimal proximity distances of individuals
x1, x2, and x3 are 2.2361, 2.5495, and 2.8284, respectively).
Consequently, both distance measurements of the individuals
with ranks r1 and r3 in this situation cannot be utilized to

1This is considered in the context of a minimization problem with con-
tinuous PF, and the extreme points are excluded from the Pareto-optimal
solutions.

Fig. 4. Bi-objective optimization problem is illustrated to show the motivation
of the proximity distance assignment for the individuals with rank value r2.

Algorithm 4: Assign Proximity Distance
Input: Current population Pt with size q; reference

points p∗ with size k.
Output: Proximity distances matrix d.

1 for i← 1 to q do
2 xi ← Pi

t;
3 r← Calculate the rank of xi;
4 for j← 1 to k do
5 if r = r1 then

6 di
j ← −

√∑m
l=1(fl(xi)− (p∗)j

l)
2;

7 else if r = r2 then

8 di
j ←

√∑m
l=1 max(fl(xi)− (p∗)j

l, 0)2;
9 else

10 di
j ←

√∑m
l=1(fl(xi)− (p∗)j

l)
2;

11 end
12 end
13 end
14 Return d.

select the desirable individual x2 which has the most promis-
ing convergence to the PF. However, if the proximity distance
quantified by (4) is employed, it is clearly that the individ-
ual x2 is with the smallest minimal proximity distance (the
minimal proximity distances of individuals x1, x2, and x3 are
2, 0.5, and 2, respectively), which satisfies the motivation of
the proximity distance assignment that a smaller value implies
a better convergence. Noted here that, the proximity distance
assignment for the individuals with rank r2 is also employed
in the IGD+ indicator [39]. In summary, smaller proximity
distance reveals the better proximity when the exact PF of
the problem to be optimized is unknown. Furthermore, the
algorithm of the proximity distance assignment is presented
in Algorithm 4.

D. Generating Offspring

The process of generating offspring in the proposed algo-
rithm is similar to that in genetic algorithms, in addition to
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Algorithm 5: Filling Up the Gene Pool
Input: Current population Pt; Gene pool size g.
Output: Gene pool G.

1 G← ∅;
2 while the size of G is less than g do
3 {x1, x2} ← Randomly select two individuals from Pt;
4 rx1 ← Obtain the rank of x1;
5 rx2 ← Obtain the rank of x2;
6 d1 ← Obtain the proximity distances of x1;
7 d2 ← Obtain the proximity distances of x2;
8 if rx1 < rx2 then
9 G← G ∪ x1;

10 else if rx1 > rx2 then
11 G← G ∪ x2;
12 else
13 if min(d1) < min(d2) then
14 G← G ∪ x1;
15 else if min(d1) > min(d2) then
16 G← G ∪ x2;
17 else
18 x← Randomly select one individual from

{x1, x2};
19 G← G ∪ x;
20 end
21 end
22 end
23 Return G.

the selection of individuals for filling up the gene pool from
which the parent solutions are selected to generate offspring.
In this section, the processes of generating offspring are elab-
orated in steps 1–5. Then, the details for filling up the gene
pool are presented in Algorithm 5.

Step 1: Select solutions from the current population to fill
up the gene pool, until it is full.

Step 2: Select two parent solutions from the gene pool and
remove them from the gene pool.

Step 3: Employ the simulated binary crossover (SBX)
operator to generate offspring with the selected
parent solutions.

Step 4: Employ the polynomial mutation operator to
mutate the generated offspring.

Step 5: Repeat steps 2–4 until the gene pool is empty.
The binary tournament selection [57] approach is employed

in Algorithm 5 to select individuals from the current pop-
ulation to fill up the gene pool. In other words, the binary
tournament selection [57] approach is employed to select
individuals from the current population. Specifically, two indi-
viduals which are denoted by x1 and x2 are randomly selected
from the current population first (line 3). Then, their ranks
and the proximity distances are obtained (lines 4–7). Next,
the individual with smaller rank value is selected to be copied
to the gene pool (lines 8–11). If x1 and x2 have the same rank
values, the individual who has the smaller minimal proxim-
ity distance is selected (lines 13–16). Otherwise, an individual

from x1 and x2 is randomly selected being as one potential
parent solution to be put into the gene pool (lines 17–19).
When the gene pool is full, two parent solutions are randomly
selected from the gene pool for generating offspring, and then
these selected parent solutions are removed from the gene pool
until the gene pool is empty. Noted here that, the SBX [58]
and the polynomial mutation [59] operators are employed for
the corresponding crossover and mutation operations in the
proposed algorithm. It has been reported that two solutions
selected in a large search space is not necessary to gener-
ate promising offspring [7], [60]. Generally, two ways can be
employed to solve this problem. One is the mating restriction
method to limit the offspring to be generated by the neighbor
solutions [61]. The other one is to use SBX with a large dis-
tribution index [10]. In the proposed algorithm, the latter one
is utilized due to its simplicity.

E. Environmental Selection

When the offspring have been generated, the size of the
current population is greater than that of the available slots.
As a consequence, the environmental selection takes effects to
select a set of representatives to survive to the next genera-
tion. In summary, the individuals are selected from the current
population according to their assigned rank values and prox-
imity distances. For convenience, it is assumed that there are
N available slots, the selected individuals are to be stored in
Pt+1, and the individuals with ranks r1, r2, as well as r3 are
grouped into Fr1 , Fr2 , and Fr3 nondominated fronts, respec-
tively. To be specific, the counter i is increased by one until∑i

j=1 |Frj | > N where |·| is a countable operator. If
∑i−1

j=1 |Frj |
is equal to N, the individuals in Fr1 , . . . , Fri−1 are copied into
Pt+1 and the environmental selection is terminated. Otherwise,
the individuals in Fr1 , . . . , Fri−1 are copied into Pt+1 first, then
A = N−∑i−1

j=1 |Frj | individuals are selected from Fri . In sum-
mary, the details of the environmental selection are presented
in Algorithm 6. Furthermore, line 11 is confirmed by finding
A individuals who have the minimal total proximity distances
to the A reference points r (line 10), which involves a linear
assignment problem (LAP). In the proposed algorithm, the
Hungarian method [62] is employed to solve this LAP.

F. Computational Complexity

In this section, the computational complexity of the
proposed algorithm is analyzed. For convenience, it is assumed
that the problem to be optimized is with m objectives, n
decision variables, N desired solutions for decision-makers,
and the computational complexity is analyzed in the context
of Algorithm 1. To estimate each extreme point, the genetic
algorithm is employed, and the SBX as well as polynomial
mutation are used as the genetic operators. Furthermore, it is
assumed that the population size for estimating extreme points
is set to be N, and the generation is set to be t1. Consequently,
the total computation cost of uniformly generating reference
points for IGD indicator (line 1) is O(t1m2N). Furthermore,
lines 2 and 3 require O(nN) and O(mN) computations, respec-
tively. Because the number of the reference points is equal to
that of the desired solutions, the computational complexity of



SUN et al.: IGD INDICATOR-BASED EVOLUTIONARY ALGORITHM FOR MaOPs 181

Algorithm 6: Environmental Selection
Input: Fr1 , Fr2 , and Fr3 ; Available slots size N.
Output: Pt+1.

1 Pt+1 ← ∅;
2 i← 1;
3 while |Pt+1| + |Fri | < N do
4 Pt+1 ← Pt+1 ∪ Fri ;
5 i← i+ 1;
6 end
7 if |Pt+1| + |Fri | = N then
8 Pt+1 ← Pt+1 ∪ Fri ;
9 else

10 r← Uniformly select A = N −∑i−1
j=1 |Frj | reference

points from p∗;
11 R← Select A individuals from Fri ;
12 Pt+1 ← Pt+1 ∪ R;
13 end
14 Return Pt+1.

assigning ranks and proximity distances in line 6 are O(mN2)

and O(nN2), respectively. Furthermore, generating offspring
(line 7) needs O([N/2](n+ n)) computations because the size
of gene pool is set to be N. Since only the fitness, ranks
and the proximity distances of the generated offspring need
to be calculated, as a consequence, lines 8 and 9 consume
O([N/2]m) and O([N/2]Nm) + O([N/2]Nn), respectively. In
the environmental selection, the best case scenario in computa-
tional complexity is O(N), while the worst is O(N3) given that
N individuals are linearly assignment to the reference points.
Furthermore, it is considered common that N is greater than
n, and N >> m in MaOPs. Therefore, lines 5–12 overall need
O(tN3) computations with the generation t. In summary, the
computational complexity of the proposed algorithm is O(tN3)

where t is the number of the generation and N is the number
of solutions.

G. Discussion

Loss of selection pressure is a major issue for traditional
MOEAs in effectively solving MaOPs because of the tradi-
tional domination comparisons between individuals giving a
large proportion of nondominated solutions. In the proposed
algorithm, the dominance relation of all the individuals are
compared to the reference points which are employed for the
calculation of IGD indicator. However, the exact reference
points which are uniformly distributed in the PF are diffi-
cult to obtain. For this purpose, a set of points which are
evenly distributed in the Utopian PF are sampled. Furthermore,
in order to address this inefficiency given by these approxi-
mated reference points, three proximity distances are designed
according to their dominance relation to the approximated ref-
erence points. This is in hope that less value of the proximity
distance means that the corresponding individual is with a bet-
ter proximity. Specifically, if the solutions with rank r2 are still
with the distance calculation of that with ranks r1 or r3, the
convergence will be lost in the proposed algorithm [39].

When the number of solutions to be selected is larger than
the available slots, the representatives are chosen from a global
view in the proposed algorithm. For convenience of under-
standing, it is first assumed that a representatives need to be
selected from b solutions where b > a. Then the selection of
a representatives is simultaneously considered by the calcu-
lation of IGD indicator, as oppose to choosing one by one.
Simultaneously selecting a representatives involves a LAP.
By this linear assignment, each selected reference point can
have one distinct individual, which improves the diversity and
the convergence simultaneously and this conclusion can also
be found in literatures [37], [40], [63]. If the individuals are
selected by finding the individual who has the least distance to
the reference points, the diversity is not necessarily guaranteed.

IV. EXPERIMENTS

To evaluate the performance of the proposed algorithm
in solving MaOPs, a series of experiments is performed.
Particularly, NSGA-III [10], MOEA/D [14], HypE [34],
RVEA [13], and KnEA [30] are selected as the state-of-the-art
peer competitors. Although the IGD+-EMOA can be viewed
as the peer algorithm based on IGD indicator, it is merely
capable of solving MaOPs with no more than eight objec-
tives. As a consequence, IGD+-EMOA is excluded from the
list of peer competitors in our experiments.

The remaining of this section is organized as follows. At
first, the selected benchmark problems used in this experi-
ment are introduced. Then, the chosen performance metric is
given to measure the quality of the approximate Pareto-optimal
solutions generated by the competing algorithms. Next, the
parameter settings employed in all the compared algorithms
are listed, and experimental results measured by the consid-
ered performance metric are presented and analyzed. Finally,
the performance of the proposed algorithm in solving a real-
world MaOP is shown (in Section III of the supplemental
materials), and the performance on the proposed DNPE in
estimating nadir point is empirically investigated.

A. Benchmark Test Problems

The widely used scalable test problems DTLZ1–DTLZ7
from the DTLZ benchmark test suite [64] and WFG1–WFG9
from the WFG benchmark test suite [65] are employed in
our experiments. Specifically, each objective function in one
given m-objective test problem of DTLZ has n = k + m − 1
decision variables, and k is set to be 5 for DTLZ1, 10 for
DTLZ2–DTLZ6, and 20 for DTLZ7 problems. Moreover, each
objective function of a given problem in WFG test suite has
n = k + l decision variables, and k is set to be (m− 1) and l
is set to be 20 based on the suggestion from [65].

B. Performance Metric

The widely used HV [66] which simultaneously measures
the convergence and diversity of the MaOEAs is selected
as the performance metric in these experiments. Specifically,
the reference points for the calculation of HV are set to be
{1, . . . , 1} for DTLZ1, {2, . . . , 2} for DTLZ2-DTLZ6, and
{3, . . . , 2m + 1} for DTLZ7 as well as WFG1-WFG9 test
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TABLE I
CONFIGURATIONS OF TWO LAYERS SETTING

problems. Please note that the solutions are discarded for the
calculation of HV when they are dominated by the predefined
reference points. Because the computational cost increases sig-
nificantly as the number of objectives grows, Monte Carlo
simulation [34]2 is applied for the calculation when m ≥ 10,
otherwise the exact approach proposed in [67] is utilized.3 In
our experiments, all the HV values are normalized to [0, 1]
by dividing the HV value of the origin with the corresponding
reference point. Moreover, higher HV values indicate a better
performance of the corresponding MaOEA.

C. Parameter Settings

In this section, the baseline parameter settings which are
adopted by all the compared MaOEAs are declared first. Then
the special parameter settings required by each MaOEA are
provided.

1) Number of Objectives: Test problems with 8, 15, and
20 objectives are considered in the experiments because the
proposed algorithm aims specifically at effectively solving
MaOPs.

2) Number of Function Evaluations and Stop Criterion: All
compared algorithms are individually executed 30 independent
times. The maximum number of function evaluations for each
compared MaOEA in one independent run is set to be 2.3×
106, 4.3 × 106, and 5.5 × 106 for 8-, 15-, and 20-objective,
respectively, which is employed as the termination criterion.
Noted that, the parameter settings here are set based on the
convention that the maximum generations for the MaOEAs
with more than ten objectives are generally in the order of
103 (the generation number set here is approximately to 1200).
Because of the proposed algorithm includes the phases of nadir
point estimation and the optimization for MaOPs, the function
evaluations specified here will be shared by these two phases
for a fair comparison.

3) Statistical Approach: Because of the heuristic character-
istic of the peer evolutionary algorithms, all the results, which
are measured by the performance metric over 30 independent
runs for each competing algorithm, are statistically evaluated.
In this experiment, the Mann–Whitney–Wilcoxon rank-sum
test [68] with a 5% significance level is employed for this
purpose.

4) Population Size: In principle, the population size can
be arbitrarily assigned. However, the population size of the
proposed algorithm, NSGA-III, MOEA/D, and RVEA depends
on the number of the associated reference points or refer-
ence vectors. For a fair comparison, the sizes of population

2The source code is available at: http://www.tik.ee.ethz.ch/sop/download/
supplementary/hype/.

3The source code is available at: http://www.wfg.csse.uwa.edu.au/
hypervolume/.

in HypE and KnEA are set to be the same as that in others. In
the experiment, the reference points and reference vectors are
sampled with the two-layer method [10] and the configurations
are listed in Table I.

5) Genetic Operators: The SBX [58] and polynomial muta-
tion [69] are employed as the genetic operators. Moreover,
the probabilities of the crossover and mutation are set to be
1 and 1/n, respectively. The distribution indexes of mutation
and crossover are set to be 20, in addition to NSGA-III whose
mutation distribution index is specifically set to be 30 based
on the recommendation from its developers [10].

In solving the proposed nadir point estimation method
for constructing the Utopian PF, evolutionary algorithm is
employed. To be specific, the SBX and polynomial mutation,
both of whose distribution index are set to be 20, and proba-
bilities for crossover and mutation are set to be 0.9 and 1/n,
respectively, are utilized as the genetic operators. In addition,
the population sizes are set to be the same to those in Table I,
and the numbers of generations for all are set to be 1000.
Besides, the balance parameter λ in (2) is specified as 100.

D. Experimental Results and Analysis

In this section, the results, which are generated by com-
peting algorithms over considered test problems with spe-
cific objective numbers and then measured by the selected
performance metric, are presented and analyzed to high-
light the superiority of the proposed algorithm in addressing
MaOPs. Specifically, the mean values as well as the stan-
dard deviations of HV results over DTLZ1–DTLZ7 and
WFG1–WFG9 test problems are listed in Tables II and III,
respectively. Furthermore, the numbers with bold face imply
the best mean values over the corresponding test problem with
a given objective number (the second and third columns in
Tables II and III) against all compared algorithms. Moreover,
the symbols “+,” “−,” and “=” indicate whether the null
hypothesis of the results, which are generated by the proposed
algorithm and corresponding compared peer competitor, is
accepted or rejected with the significance level 5% by
the considered rank-sum test. In addition, the last rows in
Tables II and III present the summarizations indicating how
many times the proposed algorithm performs better than,
worse than or equal to the chosen peer competitor, respec-
tively. In order to conveniently investigate the experimental
results of the well-designed proximity distance assignments in
the proposed MaOEA/IGD and the conclusion in Section III-C,
test problems are group into “convex,” “linear,” and “concave”
based on the respective test problem features, and displayed in
the first columns of Tables II and III. Noted that, although the
PFs of DTLZ7 and WFG1 are mixed, they are classified into
the linear category due to their PF shapes being more similar
to linear.

From the results measured by HV on DTLZ1–DTLZ7 test
problems (Table II), it is clearly shown that MaOEA/IGD
achieves the best performance among its peer competitors
upon 8- and 20-objective DTLZ1 and DTLZ7, while per-
forms slightly worse upon 15-objective DTLZ1 by KnEA
and DTLZ7 by RVEA. Furthermore, MaOEA/IGD also wins



SUN et al.: IGD INDICATOR-BASED EVOLUTIONARY ALGORITHM FOR MaOPs 183

TABLE II
HV RESULTS OF MAOEA/IGD AGAINST NSGA-III, MOEA/D, HYPE, RVEA, AND KNEA OVER DTLZ1–DTLZ7 WITH 8-, 15-, AND 20-OBJECTIVE

TABLE III
HV RESULTS OF MAOEA/IGD AGAINST NSGA-III, MOEA/D, HYPE, RVEA, AND KNEA OVER WFG1–WFG9 WITH 8-, 15-, AND 20-OBJECTIVE

the best scores on 8- and 15-objective DTLZ4 and DTLZ6,
but is defeated by NSGA-III upon these two problems with
20-objective. Although NSGA-III and KnEA show better
performance upon 8- and 20-objective DTLZ2 and DTLZ5,
MaOEA/IGD is the winner upon 15-objective DTLZ2 and
DTLZ5. In addition, MaOEA/IGD achieves the best score
upon 20-objective DTLZ3.

The HV results from WFG1–WFG9 test problems gen-
erated by competing algorithms are listed in Table III. For
eight-objective WFG test problems, MaOEA/IGD shows a
better performance on WFG1, WFG2, WFG7, and WFG9
than its peer competitors, and performs a little worse than
that of KnEA on WFG5, RVEA on WFG6, and NSGA-III

on WFG8 test problems. Although MaOEA/IGD does not
show the best scores on WFG3 and WFG4, it obtains sim-
ilar statistical results compared to the respective winners
(i.e., KnEA and NSGA-III). For 15-objective test problems,
MaOEA/IGD shows a better performance on WFG5, WFG6,
WFG8, and WFG9 than competing algorithms, while worse
than RVEA on WFG2 and WFG3, NSGA-III on WFG2, and
KnEA on WFG4. Although NSGA-III performs better than
MaOEA/IGD on WFG7, MaOEA/IGD performs better than
all other peer competitors. In addition, MaOEA/IGD wins
over NSGA-III, MOEA/D, HypE, RVEA, and KnEA on 20-
objective WFG1–WFG6 and WFG9, but underperforms on
WFG7 and WFG8 in which RVEA performs better.



184 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 2, APRIL 2019

Briefly, MaOEA/IGD wins nine times out of the 12 com-
parisons upon the test problems whose PF shapes are linear
(i.e., DTLZ1, DTLZ7, WFG1, and WFG3), which can be
interpreted that the sampled reference points from the Utopian
PF for the proposed algorithm are the Pareto-optimal solu-
tions due to the linear feature of the PF, and the proximity
distance assignment for the solutions with rank value r2 has
taken effects. Furthermore, MaOEA/IGD shows competitive
performance on WFG2 test problem whose feature of the
PF is convex. Because the sampled reference points on the
Utopian PF are all nondominated by the Pareto-optimal solu-
tions, the proximity distances for solutions with rank r1 in
MaOEA/IGD take effects in this situation. In addition, it is
no strange that MaOEA/IGD obtains better results on most of
other test problems whose PF features are concave because
the reference points utilized to maintain the diversity and con-
vergence of the proposed algorithm dominate the solutions
uniformly generated from the PF. In summary, the proposed
algorithm shows considerable competitiveness against consid-
ered competing algorithms in addressing selected MaOPs with
the results measured by the HV performance metric.

Theoretically, the major shortcoming of HV indicator
against IGD is its much higher computational complexity.
However, noted that from Tables II and III, the proposed
algorithm, which is designed based on the IGD indicator,
outperforms HypE, which is motivated by the HV indicator,
upon all test problems with the selected numbers of objec-
tives, although the numbers of function evaluations regarding
HypE is set to be a much large number. The deficiencies
of HypE in this regard are explained as follows. First, it
has been reported in [11], [15], [70], and [71] that the HV
result is largely affected by the nadir points of the problem
to be optimized. In HypE, the nadir points are determined as
the evolution continues. In this way, the obtained nadir point
would be inaccurate during the early evolution process (the
reasons have been discussed in reviewing the nadir point esti-
mation approaches in Section II), which leads to the worse
performance of HypE. Second, the HV results of HypE in solv-
ing MaOPs are estimated by Monte Carlo simulation, while
the number of reference points in Monte Carlo simulation is
critical to the successful performance [34]. In practice, that
number is unknown and unavailable of such may lead to a
poor performance.

E. Investigation on Nadir Point Estimation

In this section, we will investigate the performance of the
proposed DNPE on estimating the nadir point. To be specific,
two peer competitors including WC-NSGA-II and PCSEA
which have been discussed in Section II are utilized to perform
comparisons on selected test problems. In these comparisons,
the numbers of function evaluations regarding each com-
pared algorithm are counted until: 1) the metric E ≤ 0.01
formulated by

E =
√√√√ m∑

i=1

(
znad

i − zi
)2

/
(
znad

i − z∗i
)2

(5)

(a)

(b)

(c)

Fig. 5. Numbers of function evaluations performed by WC-NSGA-II,
PCSEA, and DNPE on (a) DTLZ1, (b) DTLZ2, and (c) WFG2 with 8-, 10-,
15-, and 20-objective.

where zi denotes the ith element of the estimated nadir point
derived from the extreme points generated by the compared
algorithm or 2) the maximum function evaluation numbers
100 000 is met. The experimental results for DTLZ1, DTLZ2,
and WFG2 with 8-, 10-, 15-, and 20-objective are plotted in
Fig. 5. Please note that the reason of choosing these three
test problems is that they cover the various shapes of PF
(i.e., DTLZ1, DTLZ2, and WFG2 are with linear, concave,
and convex PF, respectively) and characteristics of objective
value scales (i.e., DTLZ1 and DTLZ2 are with the same objec-
tive value scales while WFG2 is not). Specifically, the ideal
points of DTLZ1, DTLZ2, and WFG2 are {0, . . . , 0}, and the
nadir points are {0.5, . . . , 0.5}, {1, . . . , 1}, and {2, 4, . . . , 2m},
respectively. In addition, the population size is specified as
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200, the probabilities of SBX and polynomial mutation are
set to be 0.9 and 1/n, and both of distribution index are set to
be 20. Because the proposed DNPE is based on the decompo-
sition to estimate the nadir point, E ≤ 0.01/m and maximum
function evaluation number with 100 000/m are set to be the
stopping criteria for estimating each extreme point.

The results performed by compared nadir point estimation
methods on 8-, 10-, 15-, and 20-objective DTLZ1, DTLZ2,
and WFG2 are illustrated in Fig. 5(a)–(c), respectively. It is
clearly shown in Fig. 5(a) that these compared algorithms find
the satisfactory nadir points of the DTLZ1 which is with the
linear PF within the predefined maximum function evaluation
numbers, and the proposed DNPE takes the least numbers of
function evaluations over the four considered objective num-
bers. Moreover, WC-NSGA-II cannot find the nadir point over
DTLZ2 with concave PF and WFG2 with convex PF with 10-,
15-, and 20-objective, and PCSEA cannot find the nadir point
over WFG2 with different objective value scales, while the
proposed DNPE performs well on both test problems with all
considered objective numbers. In addition, the proposed DNPE
is scalable to the objective number in the estimating nadir
points of the MaOPs, which can be seen from Fig. 5(a) and (b).
In summary, the proposed DNPE shows quality performance
in estimating nadir point of MaOPs with different PF features
and objective scales.

V. CONCLUSION

In this paper, an IGD indicator-based evolutionary algorithm
is proposed for solving MaOPs. In order to obtain a set of
uniformly distributed reference points for the calculation of
the IGD indicator, a DNPE method is designed to construct
the Utopian PF in which the reference points can be easily
sampled. For solving the deficiency of the Utopian PF being
as the PF in the phase of sampling the reference points, one
rank assignment mechanism is proposed to compare the dom-
inance relation of the solutions to the reference points, based
on which three types of proximity distance assignments are
designed to distinct the quality of the solutions with the same
front rank values. In addition, the linear assignment principle is
utilized as the selection mechanism to choose representatives
for concurrently facilitating the convergence and diversity of
the proposed algorithm. In summary, based on the proposed
nadir estimation method, the proposed dominance comparison
approach, rank value and proximity distance assignment, and
selection mechanism collectively improve the evolution of the
proposed algorithm toward the PF with promising diversity.
In order to qualify the performance of the proposed algo-
rithm, a series of well-designed experiments is performed over
two widely used benchmark test suites with 8-, 15-, and 20-
objective, their results measured by the selected performance
metric indicate that the proposed algorithm is with consid-
erable competitiveness in solving MaOPs. In addition, we
utilize the proposed algorithm to solve one real-world MaOP,
in which the satisfactory results demonstrate the superiority
of the proposed algorithm. Moreover, experiments are per-
formed by the proposed DNPE method against a couple of
competitors over three representative test problems (DTLZ1,

DTLZ2, and WFG2) with challenging features in PF shapes
and objective value scales, the experimental results reveal the
satisfactory results obtained by the proposed nadir point esti-
mation method. In near future, we will place our efforts mainly
on two essential aspects.

1) Constructing more accurate PF with limited informa-
tion priori to obtaining the Pareto-optimal solutions to
improve the development of indicator-based algorithms
which require the uniformly distributed reference points.

2) Extending the proposed algorithm to solve constrained
MaOPs.
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