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Abstract—One of the main difficulties in applying an
optimization algorithm to a practical problem is that evalua-
tion of objectives and constraints often involve computationally
expensive procedures. To handle such problems, a metamodel
is first formed from a few exact (high-fidelity) solution eval-
uations and then optimized by an algorithm in a progressive
manner. However, in solving multiobjective or many-objective
optimization problems involving multiple constraints, a simple
extension of the idea to form one metamodel for each objec-
tive and constraint function may not constitute the most efficient
approach. The cumulative effect of errors from each metamodel
may turn out to be detrimental for the accuracy of the overall
optimization procedure. In this paper, we propose a taxonomy of
different plausible metamodeling frameworks for multiobjective
and many-objective optimization and provide a comparative
study by discussing advantages and disadvantages of each frame-
work. The results presented in this paper are obtained using
the well-known Kriging metamodeling approach. Based on our
extensive simulation studies on proposed frameworks, we report
intriguing observations about the behavior of each framework,
which may provide salient guidelines for further studies in this
emerging area within evolutionary multiobjective optimization.

Index Terms—Evolutionary multiobjective optimization
(EMO), Kriging, metamodel, surrogate model, taxonomy.

I. INTRODUCTION

MOST practical optimization problems face with a com-
mon difficulty: objective and constraint functions are

computationally expensive to evaluate. No matter how efficient
and intelligent an optimization algorithm is, every method
must compare a requisite number of solutions from the
search space before arriving at a reasonably good solution.
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While this can be a time consuming process, in most occa-
sions, practitioners cannot wait too long to find such a
solution. Although the advent and advances of parallel and
distributed computing certainly helps in reducing the over-
all computational time, algorithmic efficacies are must and
unavoidable.

The use of metamodels (or surrogate models) to approx-
imate the functional form of exact objective and constraints
by using a few high-fidelity solution evaluations is a com-
mon approach [1]. Among various methods, the Kriging
method is one of the widely used metamodel, which can
provide an estimated function value and also simultane-
ously provide an error estimate of the approximation [2].
Developments in optimization methods have recently led
to an increasing interest in metamodeling efforts. Some
researchers have made efforts to classify different metamod-
eling approaches [2], but most such studies exist in the realm
of single-objective optimization, although a few studies are
in multiobjective optimization area, which we discuss in the
next paragraph. Santana-Quintero et al. [3] have classified sur-
rogates according to the type of model used (e.g., Kriging,
radial basis function, and polynomial regression). Jin [4]
proposed a classification based on the way single-objective
evolutionary algorithms incorporated surrogate models. Shi
and Rasheed [5] classified different metamodeling approaches
according to direct or indirect fitness replacement methods.
Díaz-Manríquez et al. [6] classified surrogate models depend-
ing on the accuracy between metamodel approaches and which
approach was best suited for use.

Most metamodeling efforts in multiobjective optimization,
so far, seem to have taken a straightforward extension of
single-objective metamodeling approaches and did not con-
sider constraints in much details. First, every objective and
constraint function is metamodeled independently. Thereafter,
a standard evolutionary multiobjective optimization (EMO)
methodology is applied to the metamodels, instead of the
original objective and constraint functions, to find the nondom-
inated front. In some studies, the above metamodeling-EMO
combination is repeated in a progressive manner so that
refinement of the metamodels can occur with iterations [7].
However, with the possibilities of a combined constraint vio-
lation function that can be formulated by combining violations
of all constraints in a normalized manner [8] and a com-
bined scalarized objective function (weighted-sum, achieve-
ment scalarization function (ASF), Tchebyshev function, or
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others) [9], different metamodeling frameworks can certainly
be explored. While the straightforward approach requires
construction of many metamodels, the suggested metamod-
els for combined objective and constraint violations will
reduce the number of needed metamodels. However, the
flip side is that each metamodel of the combined functions
is likely to be more complex having discontinuous, non-
differentiable and multimodal landscapes. Thus, the success
of these advanced metamodeling frameworks is closely tied
with the advancements in the metamodeling techniques and
among different optimization methods, evolutionary methods
remain as potential candidates for handling such metamod-
els. A recent study [10] provided a taxonomy of model-
based multiobjective optimization mainly for unconstrained
problems. The taxonomy is based on modeling of inde-
pendent or aggregation of objectives and how new solu-
tions are created and selected (in-fill or otherwise) in an
algorithm. Based on the taxonomy, authors have classified
seven existing metamodeling multiobjective methods (includ-
ing Pareto-based efficient global optimization (ParEGO) [11],
decomposition-based multi-objective evolutionary algorithms
with efficient global optimization (MOEA/D-EGO) [7], and
S-metric selection with efficient global optimization [12]).
Parallel and batch use of the methods were also high-
lighted and extended [13]. While these advancements are
in progress, in this paper, we outline, for the first time, a
number of different and interesting metamodeling frameworks
for constrained multiobjective optimization utilizing combined
and aggregated approaches of objectives independently, con-
straints independently, and objectives and constraints together.
Our taxonomy is unified to cover single and multiobjective
optimization problems with and without constraints. It includes
one framework that requires as many as (M + J) metamodels
(where M and J are number of objectives and constraints) to
another extreme method that requires only one metamodel.
To demonstrate the behavior of each of these metamodel-
ing frameworks, we develop and implement a representative
algorithm for each framework and present results by using
the Kriging metamodeling approach. The taxonomy proposed
here is generic for it to degenerate for single-objective uni-
modal, multimodal, and importantly constrained optimization
problems.

In the remainder of this paper, Section II briefly intro-
duces Kriging predictor. Section III describes the proposed
taxonomy to classify the different multiobjective metamodel-
ing frameworks. The proposed frameworks use the so-called
in-fill strategy for creating and selecting new solutions. This
section also classifies many existing multiobjective meta-
modeling studies into six categories proposed in this paper.
Sections IV–VII present detail description of each of the six
frameworks. Thereafter, our extensive results on unconstrained
and constrained test problems are presented in Section VIII.
No effort is made to maximize each algorithm’s performance
by individual parameter setting, but a representative set of
results showing performance of each framework is presented in
this paper. Finally, salient conclusions of this extensive study
and plausible future extensions of this paper are discussed in
Section IX.

II. KRIGING PROCEDURE

Without going to the detailed mathematics, here, we pro-
vide the Kriging predictor, which we have used here as the
acquisition function or the metamodeling function

ŷ(x) = μ̂+ r
(
x∗, x

)T
R−1(y(x)− 1μ̂

)
(1)

where r(x∗, x) is the linear vector of correlation between the
unknown point x to be predicted and the known sample points
x∗. R denote the n × n matrix with (i, j) whose entry is
Corr[y(i), y(j)], and 1 denote an n-vector of ones. The optimal
values of μ̂ and σ̂ 2, expressed as function of R are given as
follows [14]:

μ̂ = 1TR−1y

1TR−11
(2)

σ̂ 2 =
(�y− 1μ̂

)T
R−1

(�y− 1μ̂
)

n
. (3)

Moreover, Kriging is attractive because of its ability to provide
error estimates of the predictor

s2(x) = σ̂ 2

[

1− rTR−1r +
(
1− rTR−1r

)2

1TR−11

]

. (4)

In-fill criterion for choosing new point(s) based on the
optimization of the metamodel(s) is different for each meta-
modeling framework proposed below. In-fill criterion for each
framework is discussed in its description below.

III. PROPOSED TAXONOMY

Multiple and many-objective optimization problems involve
a number of (say, M) objective functions (fi(x)) as a function
of decision variables (x) and a number of (say, J) constraint
functions (gj(x)), each as a function of x. For brevity, we
do not consider equality constraints in this paper, but with
certain modifications, they can be handled in the same way as
discussed here.

In this section, we propose a taxonomy of various frame-
works for using metamodeling approach in multiple and
many-objective optimization algorithms. Our taxonomy finds
six different broad frameworks (M1–M6), as illustrated in
Fig. 1. Our approach is based on the cardinality of meta-
models for objectives and constraints. In the first framework
(M1), all objectives and constraints are metamodeled inde-
pendently, thereby requiring a total of (M + J) metamodels
before a multiobjective optimization approach can be applied.
This framework is a straightforward extension of the single-
objective metamodeling studies, applied to approximate each
objective and constraint functions. Once all such metamod-
els are constructed, an EMO algorithm can use them to a
find one Pareto-optimal solution at a time (like the genera-
tive method used in classical optimization literature [9]) and
we call this framework M1-1, or they can be used to find a
number of Pareto-optimal solutions simultaneously (like in the
EMO literature) and we call this framework M1-2.

The next metamodeling framework can approximate an
overall estimation function of all constraint violations together
as one quantity, thereby reducing the overall number of
metamodels to (M + 1). The well-known normalized,
bracket-operator-based constraint violation functions [8], [15]
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Fig. 1. Proposed taxonomy of six different metamodeling approaches for
multiple and many-objective optimization.

can be used for this purpose. Like in M1, the constructed
metamodels can also be used to find one Pareto-optimal solu-
tion at a time as a generative approach (we call it M2-1) or
simultaneously like in an EMO approach (we call it M2-2).

The next metamodeling framework approximates each con-
straint function independently, but metamodels a combined
or aggregated objective function involving all M objectives
together, similar to ParEGO approach [11]. Both M3 and
ParEGO methods use parameterized scalarization methods
to target one optimal point at a time. While ParEGO uses
Tchebyshev function as scalarization, our M3 framework uses
the ASF, which is identical to Tchebyshev function under cer-
tain conditions. M3 uses a real-valued GA to optimize the
metamodel, while ParEGO uses a steady-state EA where par-
ents are replaced by better offsprings. While M3-1 proposes
to find a single Pareto-optimal solution in one run, thereby
requiring multiple runs to generate Pareto-optimal solutions,
a multimodal combined landscape, similar to framework M6
described later, but with objective functions alone, can be
metamodeled as M3-2.

Then, our fourth classification (M4) requires only two
metamodels to be constructed for finding one Pareto-optimal
solution, in which one metamodel is for a combined objective
function and the second metamodel is made for a com-
bined constraint violation (like in M2 approach). A similar
multimodal approach (M4-2) can also be constructed. The
frameworks (M1-1, M2-1, M3-1, and M4-1) are ideal for
classical point-based optimization algorithms, each requiring
multiple applications to find multiple Pareto-optimal solutions.
However, frameworks (M1-2, M2-2, M3-2, and M4-2) are
ideal for EMO approaches.

A deeper thought will reveal that there could be two more
frameworks, in which objectives and constraints are somehow

combined to have a single overall selection function which
when optimized will lead to one or more Pareto-optimal
solutions. In M5, the combined selection function has a single
optimum coinciding with a specific Pareto-optimal solution
and in M6, the combined selection function is multimodal
and makes multiple Pareto-optimal solutions as its optima.
Both M5 and M6 frameworks involve a single metamodel
in each iteration, but if K Pareto-optimal solutions are to
be found, M5 needs to be applied K times, whereas M6
still involves a single multimodal metamodel in finding a
set of Pareto-optimal solutions. In EMO algorithms, such as
in non-dominated sorting genetic algorithm (NSGA)-II [16],
NSGA-III [17], MOEA/D [18], and others, the combined
action of the selection operator involving nondomination and
niching operations is an ideal way of visualizing the above-
mentioned selection function. The advantage of modeling the
outcome of the selection function is that it takes into account
multiple objectives and constraints in an integrated manner and
the selection function can directly emphasize nondominated
and less-crowded solutions over dominated and crowded solu-
tions. In this spirit, we believe that M5 and M6 are intricately
advantageous for EMO approaches and although there has not
been paid much attention, remain as potential and fertile areas
for metamodeling-based EMO algorithms.

Thus, it is observed that according to our proposed tax-
onomy, frameworks M1–M6 require the maximum possible
metamodels (M + J) to single metamodel in each iteration
of the multiobjective metamodeling algorithms. While M6
requires minimum number of metamodels, this does not come
free and it is expected that complexity of the metamodels will
become increasingly higher from M1 to M6. It then becomes
an interesting research task to identify a balance between the
number of metamodels and the reduced complexity of meta-
models for a particular problem-algorithm combination. In this
paper, we do not study the effect of algorithm per se, but
present results of a particular algorithmic parameter setting
on different problems using all six metamodeling frameworks
to illustrate each framework’s potential in addressing different
problems. In an application, all M objectives can be clus-
tered into a smaller number of m clusters (m < M) and
all J constraints can be clustered into smaller number of j
clusters (j < J). In such a situation, objectives and con-
straints within each cluster can be combined and then each
combined function can be metamodeled using our proposed
taxonomy.

On a survey of many existing multiple and many-objective
metamodeling studies, we have made a classification of them
according to our proposed taxonomy. The majority of the exist-
ing studies used M1 framework (in which each objective and
constraint function is metamodeled separately) [19], [20] and
only a few studies used M2 [21], M3 [22], and M4 [23]. One
of our previous initial proof-of-principle study on M5 [24] is
a lone study in this category—more details are given in the
supplementary material. There does not exist any study imple-
menting our M6 approach, which seems to be an interesting
and technically challenging proposition. In this paper, we pro-
pose one such framework, although other frameworks are
certainly possible.
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A little thought will prevail that if the multiobjective
optimization problem is unconstrained, frameworks M1 and
M2 becomes identical and so are M3 and M4. Interestingly,
M3–M5 also become identical to each other.

The proposed taxonomy for multiobjective metamodeling
frameworks also degenerates to single-objective problems. In
this case, frameworks M1 and M3 are identical and so are
M2 and M4. A similar taxonomy can also be derived for
finding multiple optima in a single-objective optimization
problem, except that M6 framework will now become relevant.
Subframeworks M1-1 and M1-2 become relevant in determin-
ing whether a single optimum at a time or multiple optima
simultaneously, respectively, would be found. Similarly, sub-
frameworks M2-1 and M2-2 will also be relevant in this case.
For brevity, we do not present the respective diagram for
single-objective, multimodal optimization here.

We now provide further description and one representative
algorithm of each of the six multiobjective frameworks in the
following section.

IV. FRAMEWORKS M1 AND M2

In these two frameworks, each objective is independently
modeled, but constraints are either independently modeled
or modeled together. Thus, any classical generative or any
EMO algorithm can be run using the objective and con-
straint metamodels, once they are constructed. The difference
between M1 and M2 is that in the latter, one overall constraint
violation function is metamodeled. The following constraint
violation function CV(x) [8], which accumulates violation of
each constraint function (gj(x) ≥ 0) is used in this paper:

CV(x) =
J∑

j=1

〈
ḡj(x)

〉
(5)

where the bracket operator 〈χ〉 is −χ if α < 0 and zero, oth-
erwise. The function ḡj is a normalized version of constraint
function gj [25]. In this paper, we have used NSGA-II [16] as
the EMO algorithm throughout, although any other algorithm
could have been used. Direct fitness replacement (DFR) [5]
has been one of the most straightforward methods to embed
surrogate models into MOEAs. DFR assumes that solutions
assessed in the surrogate models are comparable to those
assessed by the real function (high-fidelity function evalu-
ations). DFR is further subdivided into three major model
managements [5].

1) No evolution control, which evaluates the MOEA’s gen-
erated solutions in the surrogate model exclusively (this
models trains the surrogate model before the execution
of the MOEA).

2) Fixed evolution control (FEC), which only some gener-
ations or some individuals are evaluated in the surrogate
model while the remaining population is evaluated using
the real test function.

3) Adaptive evolution control, which avoids any possible
poor parameter tuning by the use of an adaptive con-
trol that adjusts the number of solutions that will be
evaluated in the surrogate model.

For the sake of simplicity and performance, we have adopted
DFR-FEC model to implement M1 and M2 frameworks.

Furthermore, NSGA-II’s Pareto dominance and population-
based nature are able to find multiple solutions in a single
run, easing the implementation of frameworks M1-2 and M2-2.
Thus, we have not used M1-1 and M2-1 in this paper.

The description of M1-2 and M2-2 frameworks is given as
follows. The metamodeling algorithm starts with an archive of
initial population created using the Latin hypercube method
on the entire search space. Then, metamodels are constructed
for all M objectives (fi(x), i = 1, 2, . . . , M). For M1, each
constraint function is metamodeled separately and for M2,
one constraint violation function (CV(x)) is metamodeled.
Then, NSGA-II procedure is run for τ generations with these
metamodels. Each nondominated solution after τ generations
of an NSGA-II run is considered as an in-fill point and is
included in the archive. New metamodels are created again
using the archive and the process is repeated until termination.
A basic structure of frameworks M1-2 and M2-2 are outlined
in Algorithm 1. For the use of M1-1 and M2-1, instead of an
EMO, a single-objective optimization algorithm can be used
repeatedly.

V. FRAMEWORKS M3 AND M4

In these two frameworks, we transform the multiobjective
optimization problem into a number of parameterized single-
objective optimization problems. We use the ASF [26] using
a set of H reference points z(h) and a corresponding reference
direction w, identical for every z. The reference direction is
an equally angled direction from each objective axis (w =
(1, 1, . . . , 1)T/

√
M). Reference points z(h) for h = 1, 2, . . . , H

are initialized as equi-spaced points on a unit hyperplane mak-
ing equal angle to each objective axis. In this paper, we have
used Das and Dennis’s method to create H equi-spaced points
on the hyperplane, but any other method or any other biased set
of points, if desired, can also be used. Objective values of solu-
tions are normalized (f̄i(x)) using the population-maximum
and population-minimum objective values so that reference
points on the normalized hyperplane (z(h)

i ∈ [0, 1] for all i
and h) can be compared with the normalized objective values
of the population members. The ASF formulation is given as
follows:

ASF(x) = M
max
i=1

fi(x)− z(h)
i

wi
. (6)

In M3 and M4, we construct one metamodel ASF(x),
instead of constructing one metamodel for each objective func-
tion fi(x) independently. In M3, each constraint function gj(x)
is modeled separately, but in M4, only the overall constraint
violation function CV(x) is metamodeled, as described in (5).
Since a parameterized scalarization of multiple objectives are
used in both M3-1 and M4-1, we use a single-objective
evolutionary optimization algorithm (real-coded genetic algo-
rithm (RGA) [15]). The RGA uses a penalty parameter-less
approach [25] to handle constraints. Like in M1 and M2, both
algorithms start with an archive of randomly created solutions
created using the Latin hypercube method. Each archive mem-
ber is then evaluated exactly and then suitable metamodels
are constructed for a specific objective scalarization parame-
ter values after every τ generations. Constraint functions are



108 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 1, FEBRUARY 2019

Algorithm 1: Frameworks M1 and M2

Input : Objectives: (f1, . . . , fM)T , constraints: (g1, . . . , gJ)T , n
(variables), ρ (sample size), τ (EMO generations per
metamodel), SEmax (maximum high fidelity solution
evaluations), EMO (multi-objective evolutionary
algorithm), μ (EMO’s population size), � (other
parameters of EMO), CV (constrained violation
function),

Output: PT
1 t← 0
2 k← (t % τ)
3 Pt ← ∅
4 P̂k ← LHS(ρ, n)// Initialize surrogate model’s

training set
5 eval← 0
6 while eval < SEmax do
7 if (t mod τ) = 0 then
8 P̂k+1 ← P̂k ∪ Pt

9 F̂
m
k+1 ← fm(P̂k+1),∀m ∈
{1, . . . , M}// high-fidelity
evaluations (functions)

10 Ĉ
j
k+1 ← ctrj(P̂k+1),∀j ∈
{1, . . . , J}// high-fidelity evaluations
(constraints)

11 eval← eval+ ρ

12 Fm
k+1 ← Create_Surrogate_Model(F̂

m
k+1),∀m ∈

{1, . . . , M} // Surrogate independently
each objective function

13 if M1 then

14 Cj
k+1 ← Create_Surrogate_Model(Ĉ

j
k+1),∀j ∈

{1, . . . , J}// Surrogate
independently each constraint

15 else if M2 then

16 V̂k+1 ← CV(Ĉ
j
k+1, ∀j ∈ {1, . . . , J})

17 Ck+1 ← Create_Surrogate_Model(V̂k+1)

18 if k = 0 then
19 Pt ← LHS(μ, n)// Initialize EMO’s

population
20 else
21 Pt ← filter best μ solutions from P̂k+1

22 k← k + 1
23 Pt+1 ← EMO(Fk, Ck, Pt, �) ; // Optimize

surrogate model
24 t← t + 1

25 return PT ← Non-dominated solutions ∪P̂k

metamodeled independently (framework M3) or together as an
overall constraint violation (framework M4). The metamodels
are then optimized using RGA and the obtained best solu-
tion is used as in-fill point and the solution is included in the
archive for next metamodeling task. Due to similarities of M3-
2 and M4-2 with M6, we defer the discussion on these two
frameworks until Section VII.

For frameworks M3-1 and M4-1 (and M5), since every
metamodeling effort results in a formulation that is expected to
make one specific Pareto-optimal solution (say, x(∗,h)) as the
target, there is an important aspect about the sequence of the
parameterized formulations which we discuss next. In total,
there are H different scalarizations each focusing in finding
a single Pareto-optimal point x(∗,h). Each scalarization may

construct a new metamodel at every τ generations in order to
progressively approach the respective Pareto-optimal solution.
However, the sequence of choosing consecutive scalarization
will play an important role in the success of the overall pro-
cedure. In one approach (neighborhood sweep approach), the
first scalarization targets one extreme Pareto-optimal solution.
Once new and improved solutions near it are found, the next
scalarization will target a neighboring Pareto-optimal solu-
tion. Hence, having a number of near-optimal solutions from
previous scalarizations will allow the overall procedure to be
more efficient and implicitly parallel. Also, getting optimal
solutions from one extreme part of the Pareto-optimal front
may allow a better normalization of objectives, which is
an essential part of any EMO algorithm. To find and use
all extreme points from the beginning of a run, in another
approach (diverse sweep approach), after every scalarization
is applied, the next scalarization may consider a new refer-
ence point that is maximally away along the reference plane
from all the reference points that have already been consid-
ered. Both above approaches have merits of their own and a
mixed approach may be better. In this paper, we only adopt
the neighborhood sweep approach.

For each scalarization, the RGA is started with a meta-
model created with α proportion of sample points close to
the reference line passing through the specific reference point
in the objective space. This is because points far away from
the focal region of metamodeling do not contribute much
to the generated metamodeling function and also less points
for metamodeling help reduce computational time. Then, the
RGA is applied κ times, to take care of the inherent stochas-
ticities of the RGA procedure. The parameters α = 0.7 and
κ = 5 are observed to perform well experimentally and kept
fixed for all problems of this paper. Again, every RGA solu-
tion is included in the archive to make a new metamodel
before a new RGA run is performed. After making one pass
of consecutive scalarizations involving all reference points, the
process is repeated in reverse order one time to make more
refined metamodeling of initial scalarizations. The basic struc-
ture of M3 and M4 is outlined in Algorithm 2. For M3-2 and
M4-2, RGA must be replaced with a multimodal RGA, similar
to one described in Section VII.

VI. FRAMEWORK M5

Frameworks M1–M4 are straightforward extensions of
single-objective metamodeling frameworks used in the con-
text of evolutionary algorithms. To take care of multitude of
objectives and constraints, each is categorized the way the
objectives and/or constraints are metamodeled separately or
in a combined manner. Frameworks M5 and M6 proposes a
more direct metamodeling approach which not only reduces
the cardinality of distinct metamodeling efforts, it also algo-
rithm specific. A metamodel of the outcome of an algorithm’s
selection operation is directly constructed here. We discuss M5
here and M6 will be discussed in the next section.

The focus of M5 is to find a single Pareto-optimal solution
at a time by using a parameterized scalarization of all objec-
tive functions. However, instead of constructing metamodels
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Algorithm 2: Frameworks M3 and M4

Input : Objectives: (f1, . . . , fM)T , constraints: (g1, . . . , gJ)T , n
(variables), ρ (sample size), SEmax (total high-fidelity
evaluations), RGA (real-parameter genetic algorithm),
� (parameters of RGA), R (reference direction set), κ
(number of points created for each reference direction),
α (fraction of samples used for metamodel), ASF
(scalarization function), CV (constrained violation
function)

Output: PT
1 P← LHS(ρ, n) // initialization with Latin

Hypercube Sampling
2 F← fm(P), ∀m ∈ {1, . . . , M} // high-fidelity

evaluations (functions)
3 C← gj(P),∀j ∈ {1, . . . , J} // high-fidelity

evaluations (constraints)
4 eval← ρ // number of function evaluations
5 while eval < SEmax do
6 for r ∈ R do

// for each reference direction r
7 Pr ← Sort P according to distance from r and select

nearest αρ solutions
8 Fr ← Create_Surrogate_Model(ASF(r, Pr))
9 if M3 then

10 Cj
r ← Create_Surrogate_Model(Cj(Pr),∀j ∈
{1, . . . , J})

11 else if M4 then
12 Vr ← CV(Cj(Pr), ∀j ∈ {1, . . . , J})
13 Cr ← Create_Surrogate_Model(Vr)

14 for i = 1 to κ do
15 xr ← RGA(Fr, Cr, �) // returns the

best found solution
16 fm

xr
← fm(xr),∀m ∈ {1, . . . , M}// Evaluate
objectives of xr

17 cj
xr
← gj(xr), ∀j ∈ {1, . . . , J} // Evaluate
constraints of xr

18 P← P ∪ {xr}
19 F← F ∪ [f1

xr
, . . . , fM

xr
]

20 C← C ∪ [c1
xr

, . . . , cJ
xr

]
21 eval← eval+ 1
22 if eval ≥ SEmax then
23 Break out of all loops

24 return PT ← Non-dominated solutions of P

for the scalarized objective function and constraint functions
separately, as was done in M3 and M4, here, the combined
effect of an EMO’s selection operation is metamodeled. For
example, while comparing two solutions A and B in an EMO
for a particular scalarized problem, say with ASF having a
specific z and w, the operator computes ASF values for both
A and B and then the winner is selected using the constraint-
domination principle [15]. We can then directly construct a
metamodel of the resulting ASF and use as a single-objective
optimization problem. In this approach, we formulate the fol-
lowing combined selection function (S(x)) by considering all
objective functions and all constraint functions together, but
the final focus is to make the global optimum of S-function
as one of the targeted Pareto-optimal solution

S(x) =
{

ASF(x), if x is feasible
ASFmax + CV(x), otherwise.

(7)

Here, the parameter ASFmax is the worst ASF function value
of all feasible solutions of the archive. After metamodeling
the above selection function S, we formulate the expected
improvement (EI) function [14] and optimize the EI function
using an RGA. The best solution is then used as an in-fill point
and a new metamodel of S is created using the new archive.

Clearly, other scalarization approaches, such as weighted-
sum function or epsilon-constraint function or a generic
Tchebyshev function [9] can also be used. This methodol-
ogy is a generative multiobjective optimization procedure in
which one Pareto-optimal point is determined to be found at
a time [24]. By changing the reference point z one at a time
and keeping the reference direction w fixed and by using the
neighborhood sweep method of scalarization, as described in
the previous section, M5 can generate a number Pareto-optimal
solutions. The algorithm is outlined in Algorithm 3.

VII. FRAMEWORK M6

Framework M6 culminates into an ambitious metamod-
eling procedure in which only one metamodel is required
to find multiple Pareto-optimal solutions in a single run.
On the face of it, this may sound an approach which is
too good to be true, a little thought will reveal that if by
any procedure we are able to construct a multimodal selec-
tion function MS(x) having H Pareto-optimal solutions as
multiple distinct global optimum of it, then we can employ
a multimodal (niching-based [27]), single-objective evolution-
ary algorithm to find and capture multiple optima in a single
simulation run. In this paper, we suggest one such approach
based on a recently developed theoretical performance met-
ric for multiobjective optimization [28], but certainly other
approaches (such as recently proposed multimodal selection
function in MEMO [29]) are possible.

Based on Karush–Kuhn–Tucker (KKT) optimality condi-
tions, the first author and his students have recently devel-
oped a performance metric called the KKT proximity mea-
sure (KKTPM) [30] which makes a monotonous increase in
KKTPM values for an increase in domination level of solu-
tions. An interesting aspect of KKTPM is that its value is zero
for all Pareto-optimal solutions and it takes a positive value
as a solution gets more and more dominated. Such a property
motivates us to use KKTPM as a potential multimodal selec-
tion function for the purpose of developing an M6 framework.
However, we employ a discretization procedure by which we
convert theoretical KKTPM function having infinitely many
Pareto-optimal solutions to a discrete function having a finite
set of solutions as distinct optima of the resulting multimodal
problem, so that a multimodal EA can be used to find them.
Also, KKTPM considers all objectives and constraint satisfac-
tion into its computational procedure, thereby making it an
ideal MS-function for our purpose.

First we create a set of sample points from the variable space
by using the Latin hypercube approach and then compute their
objective values by high-fidelity computations. We then com-
pute KKTPM value of each sample point. KKTPM function
on the entire search space is then metamodeled using the
Kriging procedure. Thereafter, a multimodal RGA (M-RGA)
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TABLE I
NUMBER OF METAMODELS NEEDED FOR EACH OF THE SIX METAMODELING APPROACHES OF THIS PAPER

Algorithm 3: Framework M5

Input : Objectives: (f1, . . . , fM)T , constraints: (g1, . . . , gJ)T , n
(variables), ρ (sample size), SEmax (total high-fidelity
evaluations), RGA (real-parameter genetic algorithm),
� (parameters of RGA), EI (efficient global
optimization), R (reference direction set), κ (number of
points created for each reference direction), α (fraction
of samples used for metamodel), ASF (scalarization
function), CV (constrained violation function)

Output: PT
1 P← LHS(ρ, n) // initialization with Latin

Hypercube Sampling
2 F← fm(P), ∀m ∈ {1, . . . , M} // high-fidelity

evaluations (functions)
3 C← gj(P),∀j ∈ {1, . . . , J} // high-fidelity

evaluations (constraints)
4 eval← ρ // number of function evaluations
5 while eval < SEmax do
6 for r ∈ R do

// for each reference direction r
7 Pr ← Sort P according to distance from r and select

nearest αρ solutions
8 Ps

r ← Feasible(Pr) // find feasible
solutions of Pr

9 Pu
r ← Pr\Ps

r // locate infeasible
solutions of Pr

10 Fitnesss
r ← ASF(r, Ps

r) // fitness of
feasible solutions

11 Vu
r ← CV(Cj(Pu

r ), ∀j ∈ {1, . . . , J}) //
constraint violation function

12 Fitnessu
r ← Vu

r +
(

max∀Ps
r

Fitnesss
r

)
// fitness

of infeasible solutions
13 Fr ← Create_Surrogate_Model(Fitnessr) //

Surrogate model for constrained ASF
function model

14 for i = 1 to κ do
15 xr ← RGA(Fr, EI, �) // returns the

best found solution
16 fm

xr
← fm(xr),∀m ∈ {1, . . . , M}// Evaluate
objectives of xr

17 cj
xr
← gj(xr), ∀j ∈ {1, . . . , J} // Evaluate
constraints of xr

18 P← P ∪ {xr}
19 F← F ∪ [f1

xr
, . . . , fM

xr
]

20 C← C ∪ [c1
xr

, . . . , cJ
xr

]
21 eval← eval+ 1
22 if eval ≥ SEmax then
23 Break out of all loops

24 return PT ← Non-dominated solutions of P

is employed to search the metamodeled KKTPM function
for finding new and multiple multimodal solutions. In M5,
RGA optimizes a single-objective metamodel to find the best

possible solution for each reference direction. While in M6,
a M-RGA is employed to search the metamodeled KKTPM
function for finding new and multiple multimodal solutions.
In our proposed approach, we set H reference directions like
in NSGA-III approaches [17] or in MOEA/D [18]. Thereafter,
each obtained multimodal point which is associated with a
specific reference line based on its closeness (orthogonal nor-
malized distance) to the line in the objective space is used as
an in-fill point. These closest high-fidelity solutions are called
leaders. In each iteration of M-RGA, for each offspring popu-
lation member, the nearest leader (computed using normalized
Euclidean distance in the variable space) is identified. Then,
the offspring population member is associated with the same
reference line as its nearest leader. All members associated
with a reference line are declared to lie on the same cluster.
Then, the selection operation is restricted within the same clus-
ter solutions in M-RGA. The first parent is chosen at random,
but care is given to ensure every cluster is considered one at
a time. Thereafter, the second parent choice is not at random,
rather a solution from the same cluster is chosen at random
for comparison using their KKTPM values. If no other solu-
tion is found in the same cluster, the first parent becomes an
automatic winner of the selection process. This restriction of
selection operator among similar population members in vari-
able space will eventually form multiple niches for different
reference lines within the population. At the end of a M-RGA
run, the best metamodeled KKTPM value in the cluster of each
reference line is saved to the archive. Thus, the M-RGA run
sends multiple well-diversified solutions having small KKTPM
values for high-fidelity evaluations. This process is continued
until the termination of the overall M6 algorithm. The algo-
rithm is outlined in Algorithm 4. For M3-2 and M4-2, the
above multimodal RGA can be used with metamodeled com-
bined objective function and single or multiple metamodeled
constraint functions, instead of a single combined selection
function used in M6.

Based on the above detail description of six different meta-
modeling frameworks, we now summarize the number of
metamodels needed for each framework in Table I. Recall
that M, J, H, and κ are the number of objectives, con-
straints, desired number of Pareto-optimal solutions, and num-
ber of solutions created from a single metamodel, respectively.
Clearly, M1-1 requires maximum number of metamodeling
constructions (Hκ(M + J)); M2-1 requires Hκ(1 + J); M3
requires Hκ(M + 1); M4 needs Hκ(2); M5 requires Hκ; and
M6 requires κ metamodels. While M1-1 needs the maximum
number of metamodeling efforts, M6 requires the least.

While the cardinality reduces from M1 to M6, in general,
the relative complexity of the resulting landscapes is likely
to increase from M1 to M6. For a given set of objective
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Fig. 2. Obtained nondominated solutions for problem ZDT1 using frameworks M1, M3, M5, and M6 from left to right.

Algorithm 4: Framework M6

Input : Objectives: (f1, . . . , fM)T , constraints: (g1, . . . , gJ)T , n
(variables), ρ (sample size), SEmax (total high-fidelity
evaluations), M-RGA (multi-modal real-parameter
genetic algorithm), � (parameters of M-RGA), R
(reference direction set), KKTPM (multi-modal
constraint function)

Output: PT
1 P← LHS(ρ, n) // initialization with Latin

Hypercube Sampling
2 F← fm(P), ∀m ∈ {1, . . . , M} // high-fidelity

evaluations (functions)
3 C← gj(P),∀j ∈ {1, . . . , J} // high-fidelity

evaluations (constraints)
4 eval← ρ // number of function evaluations
5 while eval < SEmax do
6 LP ← Cluster ID of each solution x ∈ P according to

distance from r
7 Fitness← KKTPM(F, C) // KKTPM for each

solution
8 F ← Create_Surrogate_Model(Fitness) // Surrogate

model for constrained KKTPM model
9 X← M-RGA(F , LP, �) // returns multiple

optimized solutions, one for each
reference line; niching is performed
in x-space with LP

10 if |X| + eval > SEmax then
11 X← X(1:(SEmax − eval)) // Choose best

(SEmax − eval) metamodeled KKTPM
solutions

12 Fm
X ← fm(X), ∀m ∈ {1, . . . , M} // Evaluate

objectives of X

13 Cj
X ← gj(X),∀j ∈ {1, . . . , J} // Evaluate
constraints of X

14 P← P ∪ X;
15 F← F ∪ FX;
16 C← C ∪ CX;
17 eval← eval+ |X|;
18 return PT ← Non-dominated solutions of P

and constraint functions, M1 approximates the original func-
tions as they are. However, M6 attempts to approximate the
most complex selection function which is multimodal and dis-
continuous at the constraint boundaries. Understandably, more
sample points are required for modeling more complex land-
scapes from M1 to M6, in general. Although we recognize this
effect, in this first study, we use an identical number of sample
points for constructing metamodels for all six frameworks to
mainly show the working of them.

VIII. RESULTS

In this section, we compare the results obtained by all
six proposed metamodeling frameworks. We use the same
parameter settings for RGA or M-RGA, each of which uses
the binary tournament selection operator, simulated binary
crossover (SBX), and polynomial mutation, with parameters
as follows: population size = 10n, where n is a number of
variables, number of generations = 100, crossover probabil-
ity = 0.95, mutation probability = 1/n, distribution index
for SBX operator = 1, and distribution index for polynomial
mutation operator = 10. The NSGA-II procedure, wherever
used, is also applied with the same parameter values as above.
For repeating a metamodeling formulation for each formu-
lation, we have used κ = 5 and τ = 50 generations. We
performed ten runs of all frameworks on all test problems. As
mentioned earlier, for unconstrained problems (ZDT) with no
constraints and three-objective problem C2DTLZ2 having a
single constraint, the behaviors of both M1 and M2 are iden-
tical. In such a case, we only show the results for M1. The
same situation occurs for M3 and M4 and we only show the
results of M3. In order to have a graphical comparison, we
show the obtained tradeoff solutions for the median inverted
generational distance (IGD) run in each case. It is worth men-
tioning here that in this first paper, we do not make any
effort to choose optimal parameter setting for each algorithm,
rather identical parameters are used to provide a representative
performance of each framework.

A. Two-Objective Unconstrained Problems

First, we apply our proposed frameworks to two-objective
unconstrained problems ZDT1–ZDT3 and ZDT6 with ten
(n = 10) variables, H = 21 reference directions, and with
a maximum of only SEmax = 500 high-fidelity solution eval-
uations. For each problem, we have used an initial sample
size of ρ = 300. The obtained nondominated solutions are
shown in Figs. 2 and 3, for frameworks M1, M3, M5, and
M6, respectively. Figures for ZDT3 and ZDT6 are put in the
supplementary material. As mentioned above, M2 becomes
identical to M1 and M4 becomes identical to M3 for uncon-
strained problems. For brevity, we also do not show results
from M1-1 framework. For brevity, we denote M1-2 and M2-2
by M1 and M2, respectively, in the rest of this paper.

It is clear from the figures that all four frameworks are
able to solve ZDT1 problem fairly well in only 500 high-
fidelity SEs, but frameworks M5 and M1 perform the best. The
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Fig. 3. Obtained nondominated solutions for problem ZDT2 using frameworks M1, M3, M5, and M6 from left to right.

TABLE II
COMPUTED IGD VALUES FOR TEST PROBLEMS. BEST PERFORMING FRAMEWORK AND

OTHER STATISTICALLY SIMILAR FRAMEWORKS ARE MARKED IN BOLD

obtained points are very close to the respective true Pareto-
optimal fronts and have a good distribution of points on the
entire front. Most past studies [16] have used tens of thousands
of high-fidelity SEs to have a similar performance, while here
using the proposed metamodeling frameworks, we are able
to find a similar set of points in only 500 high-fidelity SEs.
Table II shows the IGD metric value for all runs perform for
all frameworks. The GD metric values are kept in the sup-
plementary material for brevity. The IGD metric is computed
using 21 true Pareto-optimal points obtained for each reference
point, one at a time. Since each framework is expected to find
the respective Pareto-optimal point, this IGD computation is
able to distinguish a set of nondominated points from another
set depending on their convergence level to the desired set
of points. However, to compute the GD metric, we use a
large number of Pareto-optimal fronts so as to get a clear

idea of the convergence level to the Pareto-optimal front. In
ZDT2 problem, two selection function-based metamodeling
frameworks (M5 and M6) perform the best, followed by M1
and then M3. It is interesting to note that despite multimodal
nature of the selection function landscape with M6, it is able
to find multiple near Pareto-optimal points with only 500 high-
fidelity solution evaluations. The convex or nonconvex nature
of the Pareto-optimal front does not seem to matter to all
frameworks. For ZDT3 problem in terms of IGD measure,
M1 and M3 perform the best, followed by M5 then M6. For
ZDT6 problem, framework M5 performs the best, while other
frameworks are not able to make a good performance in 500
high-fidelity solution evaluations. Nevertheless, the results on
the first three problems indicate that all frameworks have per-
formed well with a fraction of solution evaluations than they
are usually used in standard studies [16]. Overall, it is clear
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TABLE III
COMPUTED IGD VALUES FOR ZDT PROBLEMS. BEST PERFORMING FRAMEWORK AND

OTHER STATISTICALLY SIMILAR FRAMEWORKS ARE MARKED IN BOLD

Fig. 4. Obtained nondominated solutions for BNH using M1–M6 from left to right and top to bottom.

Fig. 5. Obtained nondominated solutions for the TNK problem using frameworks M1–M6 from left to right and top to bottom.

that framework M5 performs the best on the unconstrained
two-objective test problems. Frameworks having statistically
insignificant performance from the best performing framework
in each problem are also marked in bold with the respective
p-value in Wilcoxon signed-ranked test.

For a further analysis, we compare IGD and GD
performance metric values of the proposed metamodeling
frameworks with NSGA-II without any metamodeling frame-
work for solving the ZDT problems with only 500 evaluations.
It is clear from Table III that the proposed metamodeling
frameworks show superior performance, thereby suggesting
a clear advantage of the use of metamodeling frameworks.
Similar superior convergence is also observed through the GD
metric, results of which can be found in the supplementary
material.

B. Two-Objective Constrained Problems

Next, we apply our proposed frameworks to two-objective
constrained problems: Binh’s problem (BNH), Srinivas
and Deb’s problem (SRN), Tanaka’s problem (TNK), and
Osyczka’s problem (OSY) [15], For each problem, H = 21
reference directions, an initial sample size of ρ = 400 (for
OSY ρ = 500), and a maximum of SEmax = 800 high-
fidelity SEs are fixed. The obtained nondominated solutions
are shown in Figs. 4 and 5 for M1–M6, respectively. Figures
for SRN and OSY are put in the supplementary document. All
six frameworks are able to find a close and well-distributed
set of tradeoff points to true Pareto-optimal front (shown by

a solid line in each case) for BNH and SRN problems. With
only SEmax = 800 high-fidelity SEs used in this paper, the
performance of these frameworks is noteworthy. However, the
problem TNK has provided difficulties to all six frameworks,
due to discontinuities in its Pareto-optimal front. Although
all frameworks come close to the true Pareto-optimal front,
M3 performs the best, but as presented in Table II, M1, M4,
and M6 also perform well. In OSY, frameworks M3 and
M1 perform the best. Although metamodels are constructed
progressively, the independent approximation of constraints
adopted by M3 and M1 produced more accurate results than
the use of a combined constraint function in this difficult
problem. Another aspect which has become clear from these
results is that modeling of a combined constraint violation
function (as in M2 and M4) is not better than modeling each
constraint independently (as in M1 and M3). However, an inte-
grated constraint handling using the aggregated ASF approach
or the KKTPM approach is better.

C. Three-Objective Constrained and Unconstrained
Problems

Next, we apply all six frameworks to three-objective
optimization problems (DTLZ2, DTLZ4, and DTLZ5) and
also to a three-objective constrained problem (C2DTLZ2).
Each of these problems are considered for seven variables
and considered for H = 91 reference directions. We fix
SEmax = 1000 high-fidelity SEs and ρ = 500 for DTLZ2 and
DTLZ5, and SEmax = 2000 and ρ = 700 for DTLZ4 due to
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Fig. 6. Obtained nondominated solutions for problem DTLZ2 using frameworks M1, M3, M5, and M6 from left to right.

Fig. 7. Graphical results for problem C2DTLZ2 using frameworks M1, M3, M5, and M6 from left to right.

multimodality in its landscape. For C2DTLZ2, we have used
SEmax = 1500 and ρ = 700.

The Pareto-optimal surface of DTLZ2 and C2DTLZ2 prob-
lems and the respective nondominated solutions (all non-
dominated solutions of the high-fidelity solutions) are shown
in Figs. 6 and 7 for M1, M3, M5, and M6 frameworks,
respectively. Figures for DTLZ4 and DTLZ5 are put in the
supplementary material. First, all four frameworks perform
well, in general, on the DTLZ2 problem. Frameworks M5
and M6 perform the best on this problem. Then, on problem
DTLZ4, framework M5 performs the best. On DTLZ5, all
four frameworks performs well, with M1 performing the best,
followed by M6. Thus, on unconstrained three-objective prob-
lems, frameworks M5 and M1 perform the best, followed by
M6 and then M3.

On C2DTLZ2 problem, frameworks M1 and M5 per-
form the best, followed by M3. As noted before, since this
problem has a single constraint, M1 and M2 will produce
identical results, M3 and M4 will also produce identical
results. Interestingly, framework M6 is able to find multiple
near Pareto-optimal solutions through the multimodal RGA
approach; however, further developments are needed to under-
stand full potential of M6.

Finally, we apply all six frameworks to a car side-impact
problem having three objectives and 10 constraints. This
problem allows us to apply each of our six frameworks on the
same problem. More details for this problem are mentioned in
the supplementary material.

D. Five-Objective Constrained and Unconstrained Problems

Finally, we apply all six frameworks to five-objective uncon-
strained DTLZ2 and to five-objective constrained C2DTLZ2
problem. Each of these problems are considered for seven

variables and considered for H = 210 reference directions.
We fix SEmax = 2, 500 high-fidelity SEs and ρ = 900 for
DTLZ2 and C2DTLZ2, respectively. According to the IGD
performance metric value in Table II, M1-2 performs the best
on DTLZ2, followed by M5 and then M3. For C2DTLZ2, M3
performs the best, followed by M1 and M5. As mentioned
earlier, more high-fidelity points are needed for M6 to work
better, but these initial results demonstrate the relative perfor-
mances of proposed six metamodeling frameworks in two to
five-objective constrained and unconstrained problems.

IX. CONCLUSION

In this paper, we have presented a taxonomy for the
use of different metamodeling frameworks for multiobjective
optimization. The taxonomy also extends to cover single-
objective optimization problems with and without constraints;
however, handling constraints has been put under the same
platform as the handling of objectives—a matter which has
been ignored in many past such studies. This paper has focused
outside the popular strategy of extending metamodeling
frameworks for single-objective optimization to multiobjective
optimization. The straightforward extension suggests that for
every objective function and constraint function, an indepen-
dent metamodel is needed. Although this is one viable strategy
(M1-2), we have proposed five more broad potential strate-
gies and classified many existing studies into the proposed
six broad categories. Thereafter, as an initial detailed system-
atic study, we have implemented a representative algorithm for
each of the six proposed frameworks and applied them to solve
a number of constrained and unconstrained multiobjective
optimization problems. Results are compared against each
other and important conclusions about the behavior of each
of the frameworks have been revealed. It is worth noting that



DEB et al.: TAXONOMY FOR METAMODELING FRAMEWORKS FOR EMO 115

although parameters of all six proposed frameworks have not
been fine-tuned for their best performance, our obtained results
are able to bring out generic properties of different possible
multiobjective metamodeling frameworks applied to distinct
problem classes.

First, it is interesting to note that compared to standard
EMO studies in which tens of thousands of solution evalu-
ations are usually devoted to solve these test problems, here
we present results that take only a fraction (a few hundreds
to a maximum of two thousands) of solution evaluations in
each case to find a near Pareto-optimal set of solutions using
a metamodeling-based EMO approach. This is remarkable and
the proposed metamodeling frameworks hold promise to the
successful applications of metamodeling methods in practical
EMO studies.

Second, there is a tradeoff between number of metamod-
eling efforts and resulting performance. It is intuitive that as
the number of objectives increase, the straightforward imple-
mentation of metamodeling frameworks for each objective
and constraint function independently may not be a computa-
tionally efficient approach. The flip side is that the resulting
integrated functions become complex to metamodel, thereby
requiring more high-fidelity points. Although further studies
are needed to make more confident conclusions, we have
observed that a metamodeling of an aggregate function to find
a single Pareto-optimal solution at a time is a better strategy,
as evident from the better performance of frameworks M3
and M5. Both these frameworks constitute an implicit parallel
approach, as intermediate points obtained for one reference
line may lie in the vicinity of the Pareto-optimal solution of
another neighboring reference line, thereby helping to create
better metamodels for subsequent reference lines. This and the
use of the efficient global optimization (EGO) approach are
the key reasons for the superior performance of M5.

Third, it is also clear that a metamodeling of a combined
constraint violation function (M2 and M4) is not, in general, a
better strategy compared to independent-constraint metamod-
eling frameworks M1 and M3 both in terms of convergence
and diversity issues. However, when constraints are integrated
with objective functions by a scalarization function (in M5),
better performance has been achieved. The superiority of M5
in most problems of this paper suggests that metamodeling
of an implicit selection function involving all objective and
constraint functions together either for finding a single solu-
tion at a time (or multiple solutions together) as an integrated
approach is a better strategy. Framework M6 is interesting,
but further investigation is needed with a different parameter
setting to completely evaluate its merit.

In general, this paper has clearly indicated the need for
metamodeling aggregated approaches compared to their sim-
plistic and independent multiple metamodeling frameworks.
This is extremely motivating to pursue development and appli-
cation of further such frameworks, some of which we are
currently pursuing, such as M3-2 and M4-2. Although iden-
tical parameter values are used for each framework here to
get an overall and initial assessment of simplistic and aggre-
gated approaches, it is likely that each framework performs
its best for a different set of parameter values than what

has been used here. It will be interesting to investigate the
effect of diverse sweep approach with frameworks M3–M5.
Different in-filling methods, such as ParEGO, MOEA/D-EGO,
and other approaches, may also be tried with each frame-
work. A similar metamodeling study for preference-based
EMO would be another practical extension of this paper.
As an immediate future study, we plan to investigate other
metamodeling approaches (such as radial basis function, sup-
port vector machine, and response surface, to name a few)
and acquisition functions, such as EI approach to eventu-
ally identify optimized algorithms and determine the scope
for each of the six possible metamodeling frameworks for
solving various types of problems ranging from two to many
objectives. A progressive switch between different frameworks
with generations is another possibility, which must also be
investigated.
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