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Abstract—Constrained multiobjective optimization problems
(CMOPs) are frequently encountered in real-world applications,
which usually involve constraints in both the decision and objec-
tive spaces. However, current artificial CMOPs never consider
constraints in the decision space (i.e., decision constraints) and
constraints in the objective space (i.e., objective constraints) at
the same time. As a result, they have a limited capability to sim-
ulate practical scenes. To remedy this issue, a set of CMOPs,
named DOC, is constructed in this paper. It is the first attempt
to consider both the decision and objective constraints simulta-
neously in the design of artificial CMOPs. Specifically, in DOC,
various decision constraints (e.g., inequality constraints, equal-
ity constraints, linear constraints, and nonlinear constraints) are
collected from real-world applications, thus making the feasible
region in the decision space have different properties (e.g., non-
linear, extremely small, and multimodal). On the other hand,
some simple and controllable objective constraints are devised
to reduce the feasible region in the objective space and to
make the Pareto front have diverse characteristics (e.g., con-
tinuous, discrete, mixed, and degenerate). As a whole, DOC
poses a great challenge for a constrained multiobjective evolu-
tionary algorithm (CMOEA) to obtain a set of well-distributed
and well-converged feasible solutions. In order to enhance cur-
rent CMOEAs’ performance on DOC, a simple and efficient
two-phase framework, named ToP, is proposed in this paper.
In ToP, the first phase is implemented to find the promising
feasible area by transforming a CMOP into a constrained single-
objective optimization problem. Then in the second phase, a
specific CMOEA is executed to obtain the final solutions. ToP is
applied to four state-of-the-art CMOEAs, and the experimental
results suggest that it is quite effective.

Index Terms—Constrained multiobjective optimization prob-
lems (CMOPs), constraint-handling technique, decision space,
evolutionary algorithms, objective space.
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I. INTRODUCTION

CONSTRAINED multiobjective optimization problems
(CMOPs) refer to the multiobjective optimization prob-

lems including constraints. CMOPs are not far away from our
daily life. For example, if someone wants to buy a car, he/she
may consider two essential issues: the minimum cost and at
the same time the maximum comfort. Besides, he/she may
have some other requirements. For example, the number of
seats should be more than five, the car should be a German
car, and the cost of the car should be less than $50K. This car
selection problem can be regarded as a CMOP since it con-
tains two conflicting objectives (i.e., the minimum cost and
the maximum comfort) and three constraints (i.e., Seats ≥ 5,
Country = Germany, and Cost ≤ $50K).

Without loss of generality, a CMOP can be expressed as

min F(x) = (f1(x), f2(x), . . . , fm(x))T ∈ F

s.t. gj(x) ≤ 0, j = 1, . . . , l

hj(x) = 0, j = l+ 1, . . . , n

x = (x1, x2, . . . , xD)T ∈ S (1)

where x is a D-dimensional decision vector, S is the decision
space, F(x) consists of m real-valued objective functions, F

is the objective space, fi(x) is the ith objective function, gj(x)

is the jth inequality constraint, hj(x) is the (j − l)th equality
constraint, and l and (n− l) are the number of inequality and
equality constraints, respectively.

Indeed, CMOPs are frequently encountered in many science
and engineering disciplines. Many real-world applications can
be formulated as CMOPs, such as the Web service location
allocation [1], the risk-constrained energy and reserve pro-
curement [2], the optimal scheduling in microgrids [3], the
optimal demand response strategies to mitigate oligopolistic
behavior [4], and the deployment optimization of near space
communication [5]. These real-world CMOPs usually contain
multiple objective functions1 and diverse constraints.

In terms of constraints, they usually have various forms
and features [6]–[9]. According to our observation, constraints
in real-world CMOPs can be roughly classified into two
categories: 1) the decision constraints and 2) the objective
constraints. In this paper, the decision constraints refer to
the constraints which cannot be expressed by objective func-
tions and thus cannot be described explicitly in the objective

1At least two of them are conflicting with each other.
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Fig. 1. Illustration of the objective constraint in the objective space. It is
obvious that the constraint Cost ≤ $50K is an objective constraint in the
objective space. However, the constraints Seats ≥ 5 and Country = Gemany
cannot be described in a straightforward way in the objective space.

space. Most constraints in real-world applications belong to
the decision constraints. For the objective constraints, they are
formulated by objective functions due to the fact that objective
functions may be mutually restricted. Overall, the decision and
objective constraints are easier to be interpreted in the decision
and objective spaces, respectively. To make a clear explana-
tion of these two kinds of constraints, we take the above car
selection problem as an example. As shown in Fig. 1, the con-
straint Cost ≤ $50K can be directly described in the objective
space while the constraints Seats ≥ 5 and Country = Gemany
cannot. Therefore, Cost ≤ $50K is an objective constraint and
Seats ≥ 5 and Country = Gemany are two decision con-
straints. In general, combining these two kinds of constraints
together causes great difficulties and challenges to the solution
of CMOPs.

Although many researchers have a consensus that con-
strained multiobjective evolutionary algorithms (CMOEAs)
are a promising way to deal with CMOPs [10], little effort
has been devoted to developing CMOEAs in the community
of evolutionary computation although both multiobjective EAs
(MOEAs) [11] and constraint-handling techniques [12] have
been extensively investigated individually. To boost the devel-
opment of CMOEAs, constrained multiobjective optimization
benchmark functions are always required. Note, however, that
real-world CMOPs are usually not suitable to be benchmark
functions, since the computational simulation of them may
require special hardware or software [13]. Hence, it is a
very important topic to devise some representative artificial
CMOPs to simulate real-world scenes, which can definitely
help researchers to analyze and understand the performance
of CMOEAs and encourage users to select the desired ones.

Unfortunately, current artificial CMOPs do not consider
the decision constraints and the objective constraints simul-
taneously. For some artificial CMOPs, such as CTP [8],
C-DTLZ [14], NCTPs [15], and DAS-CMOPs [16], only the
objective constraints are considered while the decision con-
straints are neglected in the design process. In addition, with
respect to CFs [17], the decision and objective constraints
are considered individually. Due to the fact that the deci-
sion and objective constraints widely coexist in real-world

CMOPs, the capability of current artificial CMOPs to sim-
ulate practical scenes is limited. Moreover, according to the
report in [13], for many current artificial CMOPs, even an
MOEA without any constraint-handling technique can find
well-approximated feasible solutions. The above phenomenon
means that the effectiveness of these artificial CMOPs is ques-
tionable. Therefore, it is necessary to carry out an in-depth
investigation on the construction of artificial CMOPs.

Based on the above considerations, we design a set of
CMOPs in this paper, named DOC, which takes both the deci-
sion and objective constraints into account simultaneously. In
DOC, a variety of decision constraints is collected from real-
world applications (e.g., inequality constraints, equality con-
straints, linear constraints, and nonlinear constraints), which
can help to construct the feasible region in the decision space
and make the feasible region have many properties (e.g., non-
linear, extremely small, and multimodal). Meanwhile, some
simple and controllable objective constraints are designed to
restrict the feasible region in the objective space and to make
the Pareto front associated with various characteristics, such
as continuous, discrete, mixed, and degenerate.

Due to the above complicated properties of DOC, the
performance of current CMOEAs is poor based on our exper-
iments. When solving DOC, it is very challenging for current
CMOEAs to approach the Pareto optimal set. To improve
the performance of current CMOEAs, we propose a brand-
new two-phase framework, referred to as ToP. In the first
phase, a CMOP in DOC is transformed into a constrained
single-objective optimization problem. This transformation not
only leads to faster convergence speed but also alleviates the
premature convergence inside the feasible region. Moreover,
the objective function information can be flexibly utilized
because of the single objective function. Afterward, a spe-
cific CMOEA is implemented in the second phase to obtain
the final solutions. Because of its simple structure, ToP can be
integrated with many current CMOEAs. In this paper, we have
successfully applied ToP to four state-of-the-art CMOEAs:
1) NSGA-II-CDP [10]; 2) IDEA [18]; 3) CMOEAD [19]; and
4) MOEA/D-CDP [20].

The main contributions of this paper are summarized as
follows.

1) This paper constructs a set of novel artificial CMOPs,
called DOC. To the best of our knowledge, it is the
first attempt to consider both decision and objective
constraints simultaneously in the design of artificial
CMOPs. Moreover, both equality and inequality con-
straints are involved in DOC. Note that at present, few
artificial CMOPs consider equality constraints [21].

2) A novel two-phase framework named ToP is proposed in
this paper. The unique feature of ToP is its first phase, in
which we transform a CMOP into a constrained single-
objective optimization problem by making use of the
weighted sum approach. In addition, current CMOEAs
can be directly applied in the second phase. These two
phases aim at discovering the promising feasible area
and achieving the Pareto optimal solutions, respectively.
It should be noted that we do not design any new
weighted sum approach, constraint-handling technique,
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search engine, and CMOEA. It is because we focus on
the reason why the performance of current CMOEAs is
poor on DOC and how to enhance the performance of
current CMOEAs on DOC through a two-phase perspec-
tive. Moreover, we would like to keep our framework
simple to understand and easy to implement.

3) Systematic experiments have been conducted on DOC
to verify the effectiveness of ToP. The experimental
results suggest that ToP can significantly improve the
performance of four well-established CMOEAs.

The rest of this paper is organized as follows. Section II
introduces the related work. The details of DOC are given
in Section III. Subsequently, ToP is presented in Section IV.
The experimental setup is introduced in Section V and the
experiments and discussions are carried out in Section VI.
Finally, Section VII concludes this paper.

II. RELATED WORK

In this section, we will introduce some basic definitions
in CMOPs and give a brief introduction to current artificial
CMOPs and CMOEAs.

A. Basic Definitions in CMOPs

1) Pareto Dominance: Considering the m objective func-
tions of a CMOP in (1) and two decision vectors xu

and xv, if ∀i ∈ {1, 2, . . . , m}, fi(xu) ≤ fi(xv) and
∃i ∈ {1, 2, . . . , m}, fi(xu) < fi(xv), then xu is said to
Pareto dominate xv, denoted as xu ≺ xv.

2) Feasible Region: The feasible region of a CMOP in (1)
is defined as O = {x ∈ S|CV(x) = 0}, where

CV(x) =
n∑

i=1

CVi(x) (2)

is the degree of constraint violation on all the constraints
and CVi(x) is the degree of constraint violation on the
ith constraint

CVi(x) =
{

max(0, gi(x)), if i ≤ l
max(0, |hi(x)| − η), otherwise

, i = 1, . . . , n.

(3)

In (3), η is a very small positive value (e.g., η = 10−4).
3) Pareto Optimal Solution: A solution xu ∈ O is called

a Pareto optimal solution of a CMOP if and only if
¬∃xv ∈ O, xv ≺ xu.

4) Pareto Optimal Set: The Pareto optimal set of a CMOP
is defined as PS = {xu ∈ O|¬∃xv ∈ O, xv ≺ xu}.

5) Pareto Front: The Pareto front of a CMOP is defined
as PF = {F(xu)|xu ∈ PS}, which is the image of the
Pareto optimal set in the objective space.

B. Brief Introduction to Current Artificial CMOPs

To date there exist a few artificial CMOPs to test CMOEAs’
performance. In this paper, we classify them into two cate-
gories, according to the way of constructing constraints.

The first category only constructs the objective constraints
yet ignores the decision constraints. Most of current arti-
ficial CMOPs belong to this category, including CTPs [8],

C-DTLZ [14], DAS-CMOPs [16], and NCTPs [15]. CTPs
were proposed by Deb et al. [8] in 2000, which are the
most commonly used artificial CMOPs. This test set contains
seven CMOPs and all of them are two-objective optimization
problems. Overall, CTPs provide two different types of dif-
ficulties to a CMOEA: 1) the difficulty in the vicinity of
the Pareto front and 2) the difficulty in the entire search
space. In the first type, the constraints can make the uncon-
strained Pareto optimal solutions infeasible and divide the
Pareto front into a number of discrete regions. In the sec-
ond type, the constraints are designed to reduce the feasible
region in the entire search space. Note that the difficulties in
CTPs are tunable. In terms of the C-DTLZ problems [14],
they are constructed by adding constraints to the DTLZ prob-
lems [22]. This test suite includes five CMOPs and each of
them can be scalable to more than 15 objectives. The C-DTLZ
problems can be divided into three types. Type I introduces
difficulties in converging to the Pareto front, type II intro-
duces infeasibility to a part of the Pareto front, and in type
III, multiple constraints are involved and portions of the added
constraint surfaces form the Pareto front. As for DAS-CMOPs,
it was presented by Fan et al. [16] in 2016. This test suite
contains nine CMOPs and all of them are constructed by
using a novel toolkit. This toolkit considers three primary
types of difficulties to characterize the constraint functions in
CMOPs, including feasibility-hardness, convergence-hardness,
and diversity-hardness. Afterward, this toolkit constructs three
types of parameterized constraint functions according to the
proposed three primary types of difficulties. By combining
the constraint functions with different parameters, a variety
of CMOPs, whose difficulty can be adjustable and scalable,
is generated. Very recently, Li et al. [15] proposed NCTPs,
which are based on CTPs [8]. As pointed out in [15], CTPs
have some weaknesses, such as the low dimension and large
feasible region. To overcome these issues, 18 test instances
are devised. Compared with the original CTPs, NCTPs exhibit
more complex characteristics. To be specific, in NCTPs, dif-
ferent test instances have different shapes of the Pareto front,
different dimensions of the search space, and different sizes
of the feasible region.

In the second category, the decision and objective
constraints are developed individually. CFs, proposed by
Zhang et al. [17] in 2008, are a representative in this cate-
gory. They consist of ten CMOPs, in which seven are two-
objective optimization problems and three are three-objective
optimization problems. The construction of problems 1–3 and
8–10 is inspired by the method introduced in [8], in which only
the objective constraints are considered. While for the others,
they are constructed by the authors themselves, in which only
the decision constraints are involved.

C. Brief Introduction to Current CMOEAs

In essence, a CMOEA involves two key components: 1) an
MOEA and 2) a constraint-handling technique. In terms of
the former, the current CMOEAs can be roughly grouped into
three classes [23]: 1) the dominance-based approaches; 2) the
decomposition-based approaches; and 3) the indicator-based
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approaches. Since very few attempts are made toward the
indicator-based CMOEAs, in this section, we only introduce
the dominance-based and decomposition-based CMOEAs.

In the dominance-based CMOEAs, the dominance rule is
employed to rank the individuals. The most famous one
in this class is NSGA-II-CDP, which is an extension of
NSGA-II [10] for solving CMOPs. In NSGA-II-CDP, the
constraint-domination principle (CDP) is proposed to sort the
individuals. Specifically, any feasible individuals dominate any
infeasible individuals, and for two infeasible individuals, the
individual with a smaller constraint violation is preferred.
IDEA [18] is another popular CMOEA which explicitly main-
tains a small percentage of infeasible solutions during the
evolution. It is claimed that the presence of infeasible solu-
tions is beneficial for IDEA to search the Pareto optimal
solutions from both the feasible and infeasible regions. When
solving CMOPs, the adaptive tradeoff model [15] divides the
whole evolutionary process into three situations according to
the feasibility proportion of the current population. These three
situations are: 1) the infeasible situation; 2) the semi-feasible
situation; and 3) the feasible situation. In different situations,
different constraint-handling techniques are designed to cope
with constraints. Woldesenbet et al. [24] proposed a CMOEA
based on an adaptive penalty function and a distance measure,
which can not only search for the Pareto optimal solutions in
the feasible region, but also exploit the important information
provided by the infeasible individuals with better objective
function values and lower constraint violations. Young [25]
presented a CMOEA, which can cross the infeasible regions of
the objective space and find the true constrained Pareto front.
The main idea of this algorithm is to blend an individual’s
rank in the objective space with its rank in the constraint space.
In [26], a CMOEA is proposed in which the Pareto dominance
concept is combined with a constraint-handling technique and
a diversity mechanism. In [27], a new constraint-handling
technique based on Pareto-optimality and niching concept is
presented for handling CMOPs. In [28] and [29], the simu-
lated annealing and immune system model are used for solving
CMOPs, respectively, while in [30] and [31], differential evo-
lution (DE) is applied to cope with CMOPs. Jiao et al. [32]
introduced a modified objective function method to lead a
dominance checking, and adopted a feasible-guiding strategy
to repair the infeasible individuals. Recognizing the limitation
of a single constraint-handling technique, a novel CMOEA
is proposed in [33], which makes use of an ensemble of
constraint-handling techniques to solve CMOPs.

In the decomposition-based CMOEAs, the original CMOP
is decomposed into a set of constrained single-objective
optimization problems, and then these problems are opti-
mized in a collaborative way [34]. In [19], a decomposition-
based CMOEA named CMOEAD is proposed, which can be
regarded as an extension of MOEA/D [35] by adding a novel
constraint-handing technique. In this constraint-handling tech-
nique, the violation threshold is adaptively adjusted based on
the type of constraints, the size of the feasible space, and the
search outcome. The aim of this constraint-handling technique
is to add selection pressure, and to make the infeasible solu-
tions with violations less than the identified threshold at par

Fig. 2. Pareto front of the objective functions in (4).

with the feasible solutions. In [20], the extended/modified ver-
sions of stochastic ranking and CDP are implemented under
the MOEA/D framework. The experimental results suggest
that CDP works better than stochastic ranking. In [36], an
improved epsilon constraint-handling technique is applied to
MOEA/D, in which the epsilon level is dynamically adapted
according to the feasibility ratio in the current population.
Recently, a push and pull search (PPS) framework is embed-
ded into MOEA/D for solving CMOPs [37]. In PPS, the search
process is divided into two different stages: 1) the push stage
and 2) the pull stage. In the push stage, the constraints are
ignored, aiming to get across the infeasible regions in front
of the unconstrained Pareto front. Then in the pull stage, the
constrains are considered, and an improved epsilon constraint-
handling technique is employed to pull the solutions obtained
in the push stage toward the feasible and nondominated area.
Very recently, in [38], a constraint-handling technique named
angle-based constrained dominance principle is incorporated
into MOEA/D for solving CMOPs.

III. PROPOSED CMOPS

From the above introduction, it is clear that current arti-
ficial CMOPs never include constraints in both the decision
and objective spaces simultaneously. In this paper, we seek
to remedy this issue by constructing a new set of CMOPs,
called DOC. Next, we will introduce the principle, instances,
and characteristics of DOC.

A. Principle of DOC

In general, a CMOP with constraints in both the deci-
sion and objective spaces should comprise of three aspects:
1) objective functions; 2) objective constraints; and 3) decision
constraints. In DOC, three steps are implemented to construct
these three aspects, respectively.

It is well-known that in unconstrained multiobjective
optimization, many excellent benchmark functions have been
put forward during the past two decades [17], [22], [39], [40].
Thus, in the first step, it is not a difficult task to con-
struct objective functions for CMOPs, since we can benefit
from the benchmark functions of unconstrained multiobjective
optimization. For example, based on the idea in [40], it is easy
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Fig. 3. Illustration of the effect of the objective constraints. The red arc is
the Pareto front, and the blue region is the feasible region in the objective
space. As can be seen, the objective constraints cut down the feasible region
in the objective space and modify the Pareto front.

to construct the following two objective functions:{
min f1 = x1

min f2 = g(x)
(

1− f1
g(x)

)
.

(4)

Suppose that g(x) = 1 + x2 + x3, 0 ≤ x1 ≤ 1, and 0 ≤
x2, x3 ≤ 10. Under this condition, g(x) can reach the minimum
value (i.e., 1), when x2 = 0 and x3 = 0. It is necessary to note
that the Pareto front of (4) is dependent on the minimum value
of g(x) [40]. Based on the minimum value of g(x), we can
obtain the Pareto front, as shown in Fig. 2

f2 = 1− f1
0 ≤ f1 ≤ 1. (5)

The aim of the second step is to add objective constraints
to the objective functions. In principle, the objective con-
straints can cut down the feasible region in the objective
space and produce a constrained Pareto front. It is notewor-
thy that the constrained Pareto front may be totally different
from the unconstrained Pareto front, in terms of the shape and
location. Actually, the construction of objective constraints is
straightforward. We can make use of some simple functions
to describe the relationship among the objective functions.
Moreover, we can modify such functions to control the size
and shape of the feasible region in the objective space, due to
the fact that it is easy to visualize the objective constraints
if the number of objective functions is less than four. For
example, we add the following two objective constraints to (4):

g1 = f 2
1 + f 2

2 ≤ 1

g2 = (f1 + 1)2 + (f2 + 1)2 ≥ 5. (6)

It can be observed from Fig. 3 that the objective constraints
result in a small feasible region in the objective space, and the
Pareto front is changed to an arc

f2 =
√

4− 2f1 − f 2
1 − 1

0 ≤ f1 ≤ 1. (7)

Finally, the decision constraints are constructed. Overall,
this kind of constraints can reduce the feasible region in the
decision space and make the feasible region have a variety
of complex properties. In order to explain the construction of

Fig. 4. Illustration of the effect of the decision constraints. The blue line
segment is the feasible region. We can see that the decision constraints reduce
the feasible region in the decision space significantly.

decision constraints, we still take (4) as an example and add
the following two decision constraints:

g3 = x2 + 2x3 ≤ 6

h1 = 2x2 + x3 = 6. (8)

As depicted in Fig. 4, the feasible region in the x2 − x3 plane
is extremely small, which is a line segment

x3 = −2x2 + 6

2 ≤ x2 ≤ 3. (9)

If we just consider the decision constraints in (8), g(x) =
1 + x2 + x3 will reach the minimum value (i.e., 4) and the
maximum value (i.e., 5), when x2 = 3 and x3 = 0 and when
x2 = 2 and x3 = 2, respectively. Thus, the value of g(x) ranges
from 4 to 5. Under this condition, according to (4), the value
of f2 will range from (4− f1) to (5− f1). Due to the fact that
0 ≤ f1 = x1 ≤ 1, the value of f2 will range from 3 to 5. It is
interesting to see that the objective constraint g1 in (6) cannot
be satisfied any more. It is because the absolute value of f2
in g1 should be less than 1. This phenomenon suggests that
the decision constraints may be conflicting with the objective
constraints, which may make the constructed CMOP have no
feasible solution.

To address this problem, a simple way is to modify g(x) to
guarantee that there exist feasible solutions in both the deci-
sion and objective spaces. For example, if g(x) is modified by
subtracting 3, then g(x) = (1+ x2 + x3)− 3 = −2+ x2 + x3.
As a result, the finally constructed CMOP is{

min f1 = x1

min f2 = g(x)
(

1− f1
g(x)

) (10)

s.t. g1 = f 2
1 + f 2

2 ≤ 1

g2 = (f1 + 1)2 + (f2 + 1)2 ≥ 5

g3 = x2 + 2x3 ≤ 6

h1 = 2x2 + x3 = 6 (11)

where g(x) = −2+ x2+ x3, 0 ≤ x1 ≤ 1, and 0 ≤ x2, x3 ≤ 10.
Remark 1: Compared with the decision constraints, the

objective constraints can control the Pareto front of a CMOP
in the objective space flexibly. Thus, we can easily design var-
ious CMOPs with known Pareto fronts. Under this condition,
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the performance of difference CMOEAs can be evaluated and
compared via the designed CMOPs. In principle, the objective
constraints and the decision constraints can be dealt with by
the same constraint-handling technique during the evolution
since both of them should be satisfied.

B. Instances of DOC

Following the above three steps, we have constructed nine
instances of DOC, which are presented in the supplemen-
tary material. To be specific, there are seven CMOPs with
two objective functions and two CMOPs with three objective
functions.

Although researchers put more emphasis on the objective
constraints in the present study, it is more common to face the
decision constraints in real-world applications. Moreover, the
construction of decision constraints is much harder than that
of objective constraints. The reasons are twofold: 1) the num-
ber of decision variables is usually significantly larger than
that of objective functions and 2) it is difficult to control the
size and shape of the feasible region in the decision space due
to the higher dimension. Fortunately, Liang et al. [41] col-
lected 24 practical constrained single-objective optimization
problems at IEEE CEC2006. These 24 problems only con-
tain the decision constraints. In DOC, we borrow the decision
constraints from [41] based on the following two considera-
tions: 1) the decision constraints in [41] have been well-studied
during the past 12 years and we have already carried out
a series of work to ascertain their properties [42]–[44] and
2) the minimum value of g(x) under the decision constraints
can be obtained by employing a powerful constrained single-
objective EA, such as the method proposed in [45]. Note that
once we get the minimum value of g(x) under the decision
constraints of each instance, we can obtain the Pareto front of
each instance. Therefore, the Pareto front of each instance in
DOC can be known a priori.

C. Characteristics of DOC

The main information of the proposed DOC is summarized
in Table I. In this table, m denotes the number of objective
functions, D is the dimension, NOC and NDE are the number
of objective constraints and decision constraints, respectively,
and NIC and NEC denote the number of inequality and equal-
ity constraints, respectively. For the feasibility ratio, it was
estimated by computing the percentage of feasible solutions
among 105 uniformly and randomly generated solutions from
the search space, following the suggestion in [24].

Next, we give the following comments on DOC.
1) It considers the objective and decision constraints at the

same time. As a result, DOC exhibits better potential
to simulate actual scenes, compared with other artifi-
cial CMOPs. Hence, it is believed that DOC is a better
test bed.

2) It contains both inequality and equality constraints.
It is common to face equality constraints in actual
CMOPs, which can result in a very small feasible region.
Unfortunately, few current artificial CMOPs involve
equality constraints.

3) The Pareto fronts of DOC have various properties, such
as continuous, disconnected, convex, concave, linear,
mixed, degenerate, and multimodal.

4) The feasible regions in the decision space also show
many properties, such as nonlinear, very small, and
multimodal.

5) Because of the above diverse characteristics, it is
expected that DOC can attract much attention from
the evolutionary computation research community, thus
further promoting the development of evolutionary con-
strained multiobjective optimization.

IV. PROPOSED FRAMEWORK

A. ToP

As introduced in Section III, DOC includes many complex
properties in both the decision and objective spaces by con-
structing objective constraints, decision constraints, equality
constraints, and inequality constraints, which cause grand diffi-
culties for a CMOEA to first find the promising feasible area,2

and subsequently find the Pareto optimal solutions. The rea-
sons why it is hard for a CMOEA to find the promising feasible
area are explained as follows.

1) Due to the fact that a CMOEA needs to balance
all the objective functions in the feasible region, the
convergence speed of the population is inevitably slow.

2) It is expected that each individual in the population can
become a Pareto optimal solution of a CMOP in the
end. Suppose that a CMOP has a convex Pareto front.
According to [46], we know that each Pareto optimal
solution of (1) corresponds to the optimal solution of a
constrained single-objective optimization problem with
a weight vector w = {w1, w2, . . . , wm}T . By using the
weighted sum approach, (1) can be transformed as

min
m∑

i=1

wi ∗ fi(x)

s.t. gj(x) ≤ 0, j = 1, . . . , l

hj(x) = 0, j = l+ 1, . . . , n

x = (x1, x2, . . . , xD)T ∈ S (12)

where wi ≥ 0 for all i = 1, 2, . . . , m, and
∑m

i=1 wi = 1.
Suppose that the population size is N. If there is a
local optimal solution in the decision space, then all
the N constrained single-objective optimization prob-
lems with N different weight vectors should jump out
of this local optimal solution, with the purpose of find-
ing the promising feasible area. Obviously, the above
process will consume a considerable number of fitness
evaluations. In principle, any CMOEA will face this
dilemma. More importantly, if there are numerous local
optimal solutions in the decision space, the efficiency
and effectiveness of a CMOEA will drastically drop.

2The promising feasible area denotes either the feasible area around the
Pareto optimal solutions in the decision space or the feasible area around the
Pareto front in the objective space.
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TABLE I
INFORMATION OF DOC

(a) (b) (c)

Fig. 5. Extending the distribution of the population from different places. It is clear that the extension of the population from the central part of the Pareto
front is easier than from both the top and bottom parts of the Pareto front. (a) Top. (b) Central. (c) Bottom.

3) In constrained optimization, the information provided by
the objective function plays an important role in search-
ing for the optimal solution, in particular, searching for
the optimal solution located on the boundaries of the fea-
sible region [45]. However, for a CMOP, it is not trivial
to make use of the objective function information as it
always includes several conflicting objective functions.

Recognizing the above three aspects, we propose a new
framework called ToP, which divides the solution of a CMOP
into two phases. In the first phase, a CMOP is transformed
into a constrained single-objective optimization problem

min f ′(x) =
m∑

i=1

fi(x)

s.t. gj(x) ≤ 0, j = 1, . . . , l

hj(x) = 0, j = l+ 1, . . . , n

x = (x1, x2, . . . , xD)T ∈ S. (13)

(13) is a special case of (12) with the weight vector w =
{w1 = 1/m, w2 = 1/m, . . . , wm = 1/m}T . Compared with
other weight vectors, the benefit of this weight vector is
explained in the following. The image of the optimal solu-
tion of the constrained single-objective optimization problem
with this weight vector may be approximately located in the
center of the Pareto front of the original CMOP. As a result,
after the first phase, the images of the high-quality candidate
solutions may also scatter around the central part of the Pareto
front of the original CMOP, which makes the extension of the
distribution of the population easier (as explained in Fig. 5).
Since we only modify the objective functions while keeping
the constraints untouched, (1) and (13) share the same feasible
region.

Algorithm 1 ToP
Input: a CMOP and the population size N
Output: Pt+1
1: Initialization(P0);
2: t← 0
3: while the stopping criterion is not met do
4: if TOP is in its first phase then
5: Pt+1 ← Constrained-Single-Objective-Optimization(Pt)
6: else
7: Pt+1 ← Constrained-Multiobjective-Optimization(Pt)
8: end if
9: t← t + 1;

10: end while

Compared with solving (1) directly, the above transforma-
tion provides the following technical advantages.

1) In most cases, (13) only contains one optimal solution
and under this condition an optimization method only
needs to focus on this optimal solution [47]. As a con-
sequence, the convergence speed of the population in
the feasible region is faster.

2) For a local optimal solution in the decision space,
we only need to guide a constrained single-objective
optimization problem, rather than N constrained single-
objective optimization problems, to cross the local
attraction basin.

3) It is easy to obtain and utilize the objective function
information. Moreover, such information can be inte-
grated with a search engine to search for the optimal
solution.

Because of the aforementioned advantages, the first phase
has the good potential to probe the promising feasible area.
Nevertheless, it is necessary to note that the ultimate goal is
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to find the Pareto optimal solutions of the original CMOP,
the images of which are uniformly distributed over the Pareto
front. To this end, it is necessary to make the images of
the individuals produced in the first phase further approach
the Pareto front and uniformly spread over the Pareto front
simultaneously. Clearly, a CMOEA can be an effective tool
to achieve this. Therefore, in the second phase, a specific
CMOEA is implemented.

The main framework of ToP is presented in Algorithm 1.
Overall, the tasks of the first and second phases are solving the
transformed constrained single-objective optimization problem
and the original CMOP, respectively.

B. First Phase—Constrained Single-Objective
Optimization

When solving a constrained single-objective optimization
problem, an optimization method should include two main
components: 1) a constraint-handling technique and 2) a search
engine. In addition, since the aim of the first phase is to pro-
vide high-quality candidate solutions for the second phase,
it is necessary to design a stopping criterion for the first
phase.

1) Constraint-Handling Technique: The feasibility rule [48]
serves as the constraint-handling technique in ToP to compare
pairwise individuals. Specifically, given two individuals xu and
xv, xu is said to be better than xv if one of the following cases
is satisfied.

a) Both xu and xv are the feasible solutions, and f ′(xu) <

f ′(xv).
b) xu is feasible yet xv is infeasible.
c) Both xu and xv are the infeasible solutions, and

CV(xu) < CV(xv).
In general, the feasibility rule can motivate the population to
approach or enter the feasible region promptly.

2) Search Engine: DE [49] is considered as the search
engine in ToP. We employ two popular trial vector genera-
tion strategies of DE to generate offspring for each individual
xi = (xi,1, xi,2, . . . , xi,D)T(i ∈ {1, . . . , N}): DE/current-to-
rand/1 and DE/rand-to-best/1/bin.

a) DE/current-to-rand/1:

ui = xi + F ∗ (
xr1 − xi

)+ F ∗ (
xr2 − xr3

)
. (14)

b) DE/rand-to-best/1/bin:

vi = xr1 + F ∗ (
xbest − xr1

)+ F ∗ (
xr2 − xr3

)
(15)

ui,j =
{

vi,j, if randj < CR or j = jrand

xi,j, otherwise j = 1, . . . , D
(16)

where vi = (vi,1, vi,2, . . . , vi,D)T is the ith mutant vector,
ui = (ui,1, ui,2, . . . , ui,D)T is the ith trial vector, r1, r2, and
r3 are three mutually different integers randomly chosen from
[1, N] and also different from i, xbest denotes the individ-
ual with the smallest transformed objective function value
in the current population, randj is a uniformly distributed
random number between 0 and 1 for each j, jrand is a ran-
dom integer in [1, D], F is the scaling factor, and CR is

Algorithm 2 Constrained-Single-Objective-Optimization
Input: Pt = (x1, x2, . . . , xN )

Output: Pt+1
1: Pt+1 = ∅
2: for i = 1 : N do
3: if rand < 0.5 then
4: Generate the trial vector ui according to (14);
5: else
6: Generate the trial vector ui according to (15) and (16);
7: end if
8: Employ the feasibility rule to compare ui and xi, and store the better

one into Pt+1;
9: end for

the crossover control parameter. In DE/current-to-rand/1, the
binomial crossover is not applied; thus, it is rotation-invariant.

In DE/current-to-rand/1, each individual learns the
information from other randomly selected individuals. In con-
trast, in DE/rand-to-best/1/bin, the information of the best indi-
vidual is exploited. Note that the best individual is determined
based on the transformed objective function f ′. As analyzed
in [45], before the population enters the feasible region, the
individual with the smallest f ′ may change from generation to
generation. Under this condition, the best individual is similar
to a randomly selected individual. Therefore, both DE/current-
to-rand/1 and DE/rand-to-best/1/bin are able to enhance the
exploration ability of the population. After the population
enters the feasible region, if the individual with the smallest
f ′ is a feasible solution, then the population will be guided by
this individual toward the optimal solution. However, if the
individual with the smallest f ′ is an infeasible solution near
the boundaries of the feasible region, it is very likely that the
optimal solution is located on the boundaries of the feasible
region. In this case, the information of the best individual
can be used to search around the boundaries of the feasible
region. Therefore, the information provided by the objective
function is beneficial for exploration in the early stage of
evolution and for exploitation in the later stage of evolution.

In this paper, DE/current-to-rand/1 and DE/rand-to-
best/1/bin are applied to generate a trial vector ui for each
individual xi with the same probability, i.e., 0.5. In addition,
following the suggestion in [45], F and CR are randomly cho-
sen from a scaling factor pool (i.e., Fpool = [0.6, 0.8, 1.0])
and a crossover control parameter pool (i.e., CRpool =
[0.1, 0.2, 1.0]), respectively. After the trial vector has been
generated, the feasibility rule selects the better one between
xi and ui for the next generation.

The framework of constrained single-objective optimization
is presented in Algorithm 2.

3) Stopping Criterion: If we give plenty of fitness evalua-
tions to the first phase, all the individuals in the population may
converge to the optimal solution of the transformed single-
objective optimization problem. Obviously, it is not desirable
and the evolution should be halted before the population con-
verge to a single point. In essence, when the first phase
ends, we expect to obtain a number of high-quality feasible
solutions, which are close to the Pareto optimal solutions of
the original CMOP, but maintaining a good diversity. Under
this circumstance, we consider that the population attains the
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promising feasible area. To obtain such high-quality feasible
solutions, we design the following two conditions.

a) Condition 1: The feasibility proportion (i.e., Pf ) of the
current population is larger than 1/3.

b) Condition 2: Suppose that fmax,j and fmin,j represent the
maximum and minimum values of the jth objective func-
tion among all the discovered feasible solutions during
the evolution, respectively. Afterward, the jth objective
function of each feasible individual in the population
(denoted as yi) is normalized as follows:

f j(yi) = fj(yi)− fmin,j

fmax,j − fmin,j
. (17)

Subsequently, we add up all the normalized objective
function values and obtain f

′
(yi)

f
′
(yi) =

m∑
j=1

f j(yi). (18)

Finally, we sort the feasible solutions based on f
′
, and

calculate the biggest difference of f
′

among the first 1/3
feasible solutions. If this difference (i.e., δ) is less than
0.2, the second condition is regarded to be satisfied.

The aim of condition 1 is to guarantee that a number of
feasible individuals have been obtained. In addition, condi-
tion 2 denotes that some feasible solutions are of high quality
and gradually converge to a small area. Therefore, the first
phase should be terminated once both conditions 1 and 2 are
met, thus maintaining the quality of the feasible solutions and
preventing the loss of the diversity.

C. Second Phase—Constrained Multiobjective Optimization

Although the promising feasible area has been found, some
individuals in the population may still be far away from the
Pareto optimal solutions since we only utilize the best 1/3
feasible solutions in the population to test condition 2. Thus,
the whole population should be further evolved toward the
Pareto optimal solutions. On the other hand, due to the lack
of explicit diversity preservation mechanism in constrained
single-objective optimization, it is necessary to spread the
image of the whole population throughout the Pareto front.

Fortunately, based on the high-quality candidate solutions
produced in the first phase, it is not a difficult task for a
CMOEA to achieve well-distributed and well-converged fea-
sible solutions efficiently. The reason is simple: converging to
the Pareto front and maintaining a well-distributed set of non-
dominated feasible solutions are two fundamental goals of a
CMOEA. Thereby, in principle, any CMOEA is applicable in
the second phase of ToP.

V. EXPERIMENTAL SETUP

A. Test Instances and Performance Metrics

Our experiments were conducted on DOC which contains
nine instances. These instances are denoted as DOC-1-DOC-9,
which can be divided into two groups: 1) two-objective
CMOPs: DOC-1-DOC-7 and 2) three-objective CMOPs:
DOC-8 and DOC-9.

To compare the performance of different algorithms, three
indicators were employed in our experiments.

1) Feasible Rate (FR): Suppose that FeasibleRuns denotes
the number of runs, where a CMOEA can find at
least one feasible solution in the final population, and
TotalRuns denotes the number of total runs. Then, FR
is defined as

FR = FeasibleRuns

TotalRuns
. (19)

The value of FR ranges from 0% to 100%, and the
larger the value of FR, the higher the probability that
a CMOEA enters the feasible region.

2) Inverted Generational Distance (IGD) [50]: IGD has
been widely used to evaluate an MOEA’s performance.
However, IGD may lose its effectiveness to evaluate a
CMOEA owing to the existence of the infeasible solu-
tions. Herein, we only keep the feasible solutions and
compute the IGD value of them. Specifically, suppose
that P is the set of images of the feasible solutions, and
P∗ is a set of nondominated points uniformly distributed
on the Pareto front. Then, the IGD metric is calculated as

IGD(P) = 1

|P∗|
∑

z∗∈P∗
distance

(
z∗,P)

(20)

where distance(z∗,P) is the minimum Euclidean dis-
tance between z∗ and all the feasible solutions in P ,
and |P∗| is the cardinality of P∗. The smaller the IGD
value, the better the performance of a CMOEA.

3) Hypervolume (HV) [51]: Similarly, the infeasible solu-
tions should be deleted before the calculation of HV.
Then, HV measures the volume enclosed by P and a
specified reference point in the objective space [52]. HV
has the capability to assess both convergence and diver-
sity of P . Usually, the larger the HV value, the better the
performance of a CMOEA. In our experiments, the HV
value is calculated by using the reference point which is
set to 1.1 times of the upper bounds of the Pareto front.

B. Algorithms for Comparison and Parameter Settings

ToP was applied to improve the performance of both
dominance-based and decomposition-based CMOEAs. In this
paper, we chose two widely used dominance-based CMOPs:
1) NSGA-II-CDP [10] and 2) IDEA [18], and two state-
of-the-art decomposition-based CMOPs: 1) CMOEAD [19]
and 2) MOEA/D-CDP [20]. They have been introduced in
Section II-C.

For the sake of convenience, if a specific CMOEA is under
the framework of ToP, the name of this CMOEA will be modi-
fied by adding four letters “ToP-.” For example, NSGA-II-CDP
under our framework is named ToP-NSGA-II-CDP.

In our experiments, we adopted the following parameter
settings.

1) Population Size: Following the suggestions in [35], for
two-objective CMOPs, the population size in each algo-
rithm was set to 100, while for three-objective CMOPs,
it was set to 300.
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TABLE II
EXPERIMENTAL RESULTS OF NSGA-II-CDP, TOP-NSGA-II-CDP, IDEA, AND TOP-IDEA OVER 20 INDEPENDENT RUNS IN TERMS OF FR AND IGD.

FOR IGD, THE AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, THE WILCOXON’S RANK SUM TEST AT 0.05
SIGNIFICANCE LEVEL IS PERFORMED BETWEEN A CMOEA AND ITS AUGMENTED VERSION, AND THE BETTER RESULT IS HIGHLIGHTED IN BOLDFACE

2) Parameter Settings for Operators: For four CMOEAs
(i.e., NSGA-II-CDP, IDEA, CMOEAD, and MOEA/D-
CDP), the simulated binary crossover (SBX) and poly-
nomial mutation were used to produce offspring. The
crossover probability and the mutation probability were
set to 1.0 and 1/D, respectively. The distribution indexes
of both SBX and the polynomial mutation were set to
20 [23]. To make a fair comparison, when a CMOEA
is under the framework of ToP, its offspring generation
operators and parameter settings were kept untouched.

3) Number of Independent Runs and Termination
Condition: All algorithms were independently run
20 times on each instance, and terminated when a
maximum of 200 000 and 400 000 fitness evaluations
reached for two-objective CMOPs and three-objective
CMOPs, respectively.

4) Parameter Settings for Algorithms: To ensure the
comparison fair, the other parameter settings of
NSGA-II-CDP, IDEA, CMOEAD, and MOEA/D-CDP
were identical with their original papers, and remained
unchanged when they were under the framework of ToP.

VI. RESULTS AND DISCUSSION

A. Analysis of Principle

First of all, we intended to ascertain whether ToP can find
the promising feasible area in the first phase and obtain well-
distributed and well-converged feasible solutions in the second
phase. To answer this question, we took ToP-NSGA-II-CDP
as an example, and tested it on DOC-1 whose Pareto front is
nonconvex. The images of the feasible solutions obtained after
the first and second phases are presented in Fig. 6.

From Fig. 6(a), it can be seen that even for a nonconvex
CMOP, the images of the feasible solutions obtained after the
first phase not only are close to the Pareto front, but also have a
good diversity around the Pareto front. The above phenomenon
suggests that the first phase of ToP succeeds in finding the
promising feasible area and that it is also terminated at a
proper stage. From Fig. 6(b), we can observe that the images
of the feasible solutions obtained after the second phase dis-
tribute well along the Pareto front. Thus, ToP-NSGA-II-CDP

(a) (b)

Fig. 6. Images of the feasible solutions obtained after the first and sec-
ond phases, which are provided by ToP-NSGA-II-CDP on DOC-1 in a run.
(a) After the first phase. (b) After the second phase.

is able to push the images of the high-quality candidate solu-
tions obtained in the first phase toward the Pareto front from
diverse directions. After these two phases, ToP-NSGA-II-CDP
eventually produces a set of representative feasible solutions.

B. Applying ToP to Two Dominance-Based CMOEAs

Subsequently, we applied ToP to two popular dominance-
based CMOEAs, namely NSGA-II-CDP and IDEA.
Tables II and III summarize the experimental results of
NSGA-II-CDP, ToP-NSGA-II-CDP, IDEA, and ToP-IDEA
over 20 independent runs on DOC in terms of FR, IGD, and
HV. For IGD and HV, their average and standard deviation
are recorded. In addition, the Wilcoxon’s rank sum test at
0.05 significance level is performed between a CMOEA and
its augmented version, and the better result is highlighted in
boldface on each instance.

At our first glance from Tables II and III, ToP can signif-
icantly improve the performance of both NSGA-II-CDP and
IDEA in terms of three indicators (i.e., FR, IGD, and HV).
The detailed discussions are given below.

1) NSGA-II-CDP and IDEA under the framework of ToP
perform better than or similar to their original algorithms
in terms of FR. For NSGA-II-CDP, its FR values on
DOC-2, DOC-3, DOC-5, and DOC-8 are 0%, 0%, 0%,
and 35%, respectively. With respect to IDEA, its FR
values on DOC-2, DOC-3, and DOC-7 are 5%, 15%,
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TABLE III
EXPERIMENTAL RESULTS OF NSGA-II-CDP, TOP-NSGA-II-CDP, IDEA, AND TOP-IDEA OVER 20 INDEPENDENT RUNS IN TERMS OF FR AND HV.

FOR HV, THE AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, THE WILCOXON’S RANK SUM TEST AT 0.05
SIGNIFICANCE LEVEL IS PERFORMED BETWEEN A CMOEA AND ITS AUGMENTED VERSION, AND THE BETTER RESULT IS HIGHLIGHTED IN BOLDFACE

(a) (b) (c) (d)

Fig. 7. Images of the feasible solutions provided by two dominance-based CMOEAs (NSGA-II-CDP and IDEA) and their augmented algorithms in a run
on (a) DOC-1, (b) DOC-4, (c) DOC-6, and (d) DOC-7.

TABLE IV
EXPERIMENTAL RESULTS OF CMOEAD, TOP-CMOEAD, MOEA/D-CDP, AND TOP-MOEA/D-CDP OVER 20 INDEPENDENT RUNS IN TERMS OF FR
AND IGD. FOR IGD, THE AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, THE WILCOXON’S RANK SUM TEST AT 0.05

SIGNIFICANCE LEVEL IS PERFORMED BETWEEN A CMOEA AND ITS AUGMENTED VERSION, AND THE BETTER RESULT IS HIGHLIGHTED IN BOLDFACE

and 75%, respectively. However, when NSGA-II-CDP
and IDEA are under the framework of ToP, both of them
can obtain 100% FR on all instances. Therefore, ToP is
capable of helping them to find the feasible region.

2) In terms of IGD, from Table II, ToP-NSGA-II-CDP
and ToP-IDEA beat their original algorithms on all
instances as ToP-NSGA-II-CDP and ToP-IDEA consis-
tently obtain smaller IGD values.

3) Regarding the HV indicator, from Table III, ToP-NSGA-
II-CDP and ToP-IDEA provide higher HV values on
each instance than their original algorithms. When
NSGA-II-CDP is applied to solve DOC-7 and DOC-8,
the HV values are zero. The reason is that the images

of the obtained feasible solutions are far away from the
Pareto front. In addition, the similar phenomenon occurs
when IDEA is applied to solve DOC-3, DOC-7, and
DOC-8.

The images of the feasible solutions provided by NSGA-
II-CDP, ToP-NSGA-II-CDP, IDEA, and ToP-IDEA in the end
of a run are plotted in Fig. 7 on four instances (i.e., DOC-1,
DOC-4, DOC-6, and DOC-7).

C. Applying ToP to Two Decomposition-Based CMOEAs

Thereafter, we investigated the effectiveness of ToP on
two state-of-the-art decomposition-based CMOEAs, namely
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TABLE V
EXPERIMENTAL RESULTS OF CMOEAD, TOP-CMOEAD, MOEA/D-CDP, AND TOP-MOEA/D-CDP OVER 20 INDEPENDENT RUNS IN TERMS OF FR

AND HV. FOR HV, THE AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, THE WILCOXON’S RANK SUM TEST AT 0.05
SIGNIFICANCE LEVEL IS PERFORMED BETWEEN A CMOEA AND ITS AUGMENTED VERSION, AND THE BETTER RESULT IS HIGHLIGHTED IN BOLDFACE

CMOEAD and MOEAD-CDP. The experimental results are
presented in Tables IV and V.

As shown in Tables IV and V, both CMOEAD and
MOEA/D-CDP fail to provide 100% FR on four instances,
i.e., DOC-2, DOC-3, DOC-5, and DOC-7. However, under the
framework of ToP, they can achieve 100% FR on all instances,
which means that ToP is able to improve their capability in
finding the feasible region. As far as IGD is concerned, accord-
ing to Table IV, both ToP-CMOEAD and ToP-MOEA/D-CDP
provide smaller values than their original algorithms on each
instance. With respect to HV, as shown in Table V, the val-
ues derived from ToP-CMOEAD and ToP-MOEA/D-CDP are
much larger than their original algorithms on all instances
expect for DOC-9.

From the above comparison, one can conclude that
CMOEAD and MOEA/D-CDP under the framework of ToP
achieve better performance than the original algorithms in
terms of three indicators (i.e., FR, IGD, and HV), which
verifies the effectiveness of ToP on the decomposition-based
CMOEAs. Fig. 8 plots the images of the feasible solutions
resulting from CMOEAD, ToP-CMOEAD, MOEA/D-CDP,
and ToP-MOEA/D-CDP when a run halts on DOC-8.

D. Benefit of the Two-Phase Optimization Mechanism

The aim of this section is to investigate the benefit of
the two-phase optimization mechanism in ToP. To this end,
we selected ToP-NSGA-II-CDP as the instance algorithm
and considered its two variants, i.e., Former-NSGA-II-CDP
and Latter-NSGA-II-CDP. In Former-NSGA-II-CDP, the con-
strained single-objective optimization in the first phase of
ToP was implemented throughout the whole evolution. As
for Latter-NSGA-II-CDP, NSGA-II-CDP was implemented
during the whole evolution. It is obvious that Latter-NSGA-
II-CDP is equivalent to the original NSGA-II-CDP. Herein,
we tested ToP-NSGA-II-CDP and its two variants on DOC-1
and DOC-3, and the experimental results are presented in
Figs. S-10 and S-11 in the supplementary material, respec-
tively.

From Figs. S-10 and S-11, the images of the feasible solu-
tions derived from Former-NSGA-II-CDP always cluster in
a very small area of the Pareto front. It is not difficult to
understand since the conflict among the objective functions

of the original CMOP is ignored in Former-NSGA-II-CDP;
thus, it converges toward the Pareto front from few direc-
tions. For Latter-NSGA-II-CDP, the images of the feasible
solutions are distant from the Pareto front on DOC-1. It is
probably because Latter-NSGA-II-CDP runs the risk of getting
stuck at a local optimal area in the feasible region. Moreover,
Latter-NSGA-II-CDP cannot obtain any feasible solution on
DOC-3. In contrast, the images of the feasible solutions pro-
vided by ToP-NSGA-II-CDP can scatter throughout the Pareto
front well on DOC-1. When solving DOC-3, the images of its
finally obtained feasible solutions can also approach the Pareto
front with a good distribution.

The above comparison demonstrates the importance of the
two-phase optimization mechanism in ToP, thus verifying the
main motivation of this paper. Due to the lack of the first
phase, a CMOEA may either not be able to enter the feasible
region, or stall in a local attraction basin. On the other hand,
without the second phase, a constrained single-objective EA
is prone to converge to a small area of the Pareto optimal
solutions.

E. Investigation to the Search Engine

As depicted in Tables II–V, the four CMOEAs (i.e., NSGA-
II-CDP, IDEA, CMOEAD, and MOEA/D-CDP) fail to obtain
promising results on most instances. Someone may attribute
the poor performance to the search engine used in them.
To investigate this guess, DE introduced in Section IV-B2
was utilized to produce offspring for these four CMOEAs.
For convenience, a CMOEA with DE is named CMOEA-DE,
and a CMOEA-DE under the framework of ToP is denoted
as ToP-CMOEA-DE. Note that in a CMOEA-DE, it is hard
to define the best individual due to the multiple objective
functions. Therefore, the best individual in (15) was replaced
with a random individual in the current population. While for
other parameters (i.e., F and CR), they were kept the same
as in Section IV-B2. The experimental results are given in
Tables VI and VII.

From Tables VI and VII, it is interesting to see that, overall,
NSGA-II-CDP-DE, CMOEAD-DE, and MOEA/D-CDP-DE
can obtain very good FR values on all instances, which indi-
cates that DE is more powerful to find the feasible solutions
for these three CMOEAs. For NSGA-II-CDP-DE, it prefers
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(a) (b) (c) (d)

Fig. 8. Images of the feasible solutions provided by two decomposition-based CMOEAs (CMOEAD and MOEA/D-CDP) and their augmented algorithms
in the end of a run on DOC-8. (a) CMOEAD. (b) ToP-CMOEAD. (c) MOEA/D-CDP. (d) ToP-MOEA/D-CDP.

TABLE VI
EXPERIMENTAL RESULTS OF NSGA-II-CDP-DE, TOP-NSGA-II-CDP-DE, IDEA-DE, AND TOP-IDEA-DE OVER 20 INDEPENDENT RUNS IN TERMS

OF FR AND IGD. FOR IGD, THE AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE, THE WILCOXON’S RANK

SUM TEST AT 0.05 SIGNIFICANCE LEVEL IS PERFORMED BETWEEN A CMOEA AND ITS AUGMENTED VERSION, AND

THE BETTER RESULT IS HIGHLIGHTED IN BOLDFACE

TABLE VII
EXPERIMENTAL RESULTS OF CMOEAD-DE, TOP-CMOEAD-DE, MOEA/D-CDP-DE, AND TOP-MOEA/D-CDP-DE OVER 20 INDEPENDENT RUNS

IN TERMS OF FR AND IGD. FOR IGD, THE AVERAGE AND STANDARD DEVIATION ARE RECORDED. FOR EACH INSTANCE,
THE WILCOXON’S RANK SUM TEST AT 0.05 SIGNIFICANCE LEVEL IS PERFORMED BETWEEN A CMOEA AND ITS

AUGMENTED VERSION, AND THE BETTER RESULT IS HIGHLIGHTED IN BOLDFACE

constraints to objective functions and a CMOP is regarded as
an unconstrained single-objective optimization problem (the
objective function is the degree of constraint violation) when
the population is infeasible. In addition, for CMOEAD-DE
and MOEA/D-CDP-DE, the original CMOP is decomposed
into a set of constrained single-objective optimization prob-
lems. Considering that DE is a powerful search engine to
solve single-objective optimization problems [45], [53], it is
not a hard task for NSGA-II-CDP-DE, CMOEAD-DE, and
MOEA/D-CDP-DE to find the feasible region. However, the
performance of IDEA-DE is still unsatisfactory in terms of
FR. The reason might be that IDEA-DE compares infeasible

solutions based on (m + 1) objective functions, in which all
constraints are considered as an additional objective function,
in addition to the m original objective functions. As a result,
IDEA-DE has a low selection pressure to steer the individuals
from the infeasible region to the feasible region, especially
for some instances in DOC which have very small feasible
regions. The fact that ToP-IDEA-DE can achieve 100% FR
suggests that the first phase of ToP, which transforms the orig-
inal CMOP into a constrained single-objective optimization
problem, is helpful for IDEA-DE.

In terms of IGD, from Tables VI and VII, ToP-
NSGA-II-CDP-DE, ToP-IDEA-DE, ToP-CMOEAD-DE, and
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ToP-MOEA/D-CDP-DE perform better than their original
algorithms on six, six, seven, and seven instances, respec-
tively; while the original algorithms cannot beat their enhanced
versions on more than one instance. Therefore, despite the
powerful DE can help some CMOEAs (i.e., NSGA-II-CDP,
CMOEAD, and MOEA/D-CDP) to enter the feasible region,
ToP can still further improve their performance inside the
feasible region. The performance improvement should be
attributed to the transformation from the original CMOP into
a constrained single-objective optimization problem in ToP.
This transformation can result in faster convergence speed in
the feasible region due to concentrating on only one optimal
solution and a stronger capability to cross the local optimal
area in the feasible region as analyzed in Section IV-A.

From the above discussions, the performance of CMOEAs
can be improved through a powerful search engine. However,
the transformation idea in ToP is also indispensable to the
performance improvement of CMOEAs.

Remark 2: We also investigated the effect of the parame-
ter settings in Section S-II-A in the supplementary material,
the generality of ToP on other CMOPs in Section S-II-B in
the supplementary material, the impact of the search engine
in the first phase of ToP in Section S-II-C in the supplemen-
tary material, the effect of the constraint-handling techniques
in the second phase of ToP in Section S-II-D in the supple-
mentary material, the influence of the normalized process in
Section S-II-E in the supplementary material, the allocation of
the number of fitness evaluations in the first and second phases
in Section S-II-F in the supplementary material, and the effec-
tiveness of the best individual in ToP in Section S-II-G in the
supplementary material.

VII. CONCLUSION

In this paper, a set of artificial CMOPs, named DOC, was
proposed. It contained seven two-objective CMOPs and two
three-objective CMOPs. It was the first attempt to consider
both decision and objective constraints simultaneously in the
design of CMOPs. It was also one of the first artificial CMOP
suites considering both inequality and equality constraints. In
general, DOC posed a great challenge for a CMOEA to obtain
a set of well-distributed and well-converged feasible solutions.

Subsequently, we proposed a two-phase framework called
ToP to improve current CMOEAs’ performance on DOC.
The first phase was implemented to find the promising fea-
sible area. To achieve this goal, the original CMOP was
transformed into a constrained single-objective optimization
problem by ignoring the conflict among the objective func-
tions. We analyzed the advantages of the above transformation.
After the promising feasible area has been discovered, a
specific CMOEA was implemented in the second phase to
approximate the Pareto front. ToP had a simple structure
and could be applied to many current CMOEAs. In this
paper, we applied ToP to four state-of-the-art CMOPs, and
the experimental results suggested that ToP can improve their
performance significantly.

In the future, we will design some other powerful con-
strained single-objective EAs and CMOEAs in the first and

second phases of ToP, respectively. The new developments
in constrained single-objective optimization and constrained
multiobjective optimization can also be integrated into the
framework of ToP. Moreover, we plan to apply the idea of ToP
to deal with expensive constrained multiobjective optimization.
For expensive constrained multiobjective optimization, the fast
convergence is required since the computational resource is
very limited. We expect that the ability of ToP rapidly locat-
ing the promising feasible area can benefit the solution of
expensive constrained multiobjective optimization.

The MATLAB source codes of DOC and ToP can be down-
loaded from Y. Wang’s homepage: http://www.escience.cn/
people/yongwang1/index.html.
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