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Abstract—Niching techniques have been widely incorporated 

into evolutionary algorithms for solving multimodal optimization 

problems (MMOPs). However, most of the existing niching 

techniques are either sensitive to the niching parameters or 

require extra fitness evaluations (FEs) to maintain the niche 

detection accuracy. In this paper, we propose a new automatic 

niching technique based on the affinity propagation clustering 

(APC) and design a novel niching differential evolution (DE) 

algorithm, termed as automatic niching DE (ANDE), for solving 

MMOPs. In the proposed ANDE algorithm, APC acts as a 

parameter-free automatic niching method that does not need to 

predefine the number of clusters or the cluster size. Also, it can 

facilitate locating multiple peaks without extra FEs. Furthermore, 

the ANDE algorithm is enhanced by a contour prediction 

approach (CPA) and a two-level local search (TLLS) strategy. 

Firstly, the CPA is a predictive search strategy. It exploits the 

individual distribution information in each niche to estimate the 

contour landscape, and then predicts the rough position of the 

potential peak to help accelerate the convergence speed. Secondly, 

the TLLS is a solution refine strategy to further increase the 

solution accuracy after the CPA roughly predicting the peaks. 

Compared with other state-of-the-art DE and non-DE multimodal 

algorithms, even the winner of competition on multimodal 

optimization, the experimental results on 20 widely used 

benchmark functions illustrate the superiority of the proposed 

ANDE algorithm. 
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I. INTRODUCTION 

any real-world problems own multiple global optima, 

such as protein structure prediction [1], 

electromagnetic design [2], and pedestrian detection 

[3], which are known as multimodal optimization problems 

(MMOPs). For example, pedestrian detection often requires to 

extract multiple pedestrian from a given image [3]. Locating all 

the global optima of an MMOP has significant benefits. If the 

optimizer is able to find multiple promising solutions 

simultaneously, we will have several choices to keep the 

satisfactory performance [4][5]. Therefore, it is desirable to 

locate multiple optima of practical MMOPs. 

Evolutionary algorithms (EAs), such as genetic algorithm 

(GA) [6]-[9], ant colony optimization (ACO) [10]-[13], 

estimation of distribution algorithm (EDA) [14]-[16], particle 

swarm optimization (PSO) [17]-[23], and differential evolution 

(DE) [24]-[33], have the potential advantages for solving 

MMOPs since their population-based search manner maintains 

multiple candidate solutions. However, most of the traditional 

EAs only focus on locating a single optimal solution. To tackle 

MMOPs, techniques known as “niching” have been proposed 

to partition the whole population into several niches [34]-[52]. 

Following this idea, different niching methods have been 

proposed, such as the crowding [34], speciation [35], clustering 

[36], hill-valley [46], fitness sharing [46], recursive middling 

[47], and topological species conservation [52]. Based on these 

niching techniques, various EAs have been extended for 

solving MMOPs, including GA [48]-[51], ACO [53], EDA [54], 

PSO [55][56], and DE [34]-[45]. Among these existing 

multimodal algorithms, DE variants have shown their 

effectiveness and superiority in the reported results [34]-[45]. 

Therefore, this paper focuses on DE for tackling MMOPs. 

However, when applying DE or other EAs variants in 

MMOPs, there is still much room for improvement. One of the 

most significant issues is that the current niching methods are 

very sensitive to the niching parameters such as the crowding 

size C in crowding [34], the species radius r in speciation [35], 

or the cluster size M in clustering [36]. If the niching 

parameters are not properly set, the performance of the 

algorithms will deteriorate severely. There are also some 

parameter-free niching methods using fitness evaluations (FEs) 
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to discover hill and valley for better niching [46]. However, 

how to design an efficient method to disperse the search of 

population to locate different peaks is still a challenging issue 

and a significant research topic in the MMOP community. 

To overcome the above drawbacks, this paper proposes a 

novel automatic niching method based on the affinity 

propagation clustering (APC). APC is a famous clustering 

approach which was published in Science [57] and has also 

been applied in EAs [58]. It does not require the number of 

clusters and the initial selection of exemplars for clustering. By 

using the APC, the niching method can not only form niches 

automatically to locate multiple peaks, but also can avoid 

predefining the sensitive parameters such as the cluster size or 

the number of clusters compared with other clustering niching 

methods [36][37]. Meanwhile, compared with other 

parameter-free niching methods [46], the use of APC niching 

does not introduce any extra FEs. 

As we focus on DE for tackling MMOPs in this paper, we 

termed our proposed APC-based DE algorithm as automatic 

niching DE (ANDE). After using APC to partition the 

population into suitable clusters/niches automatically to locate 

different peak regions, the DE evolutionary operators are 

performed within each niche. Then after the evolution of each 

generation, a contour prediction approach (CPA) is further 

developed to estimate the contour landscape of each niche. 

Specifically, the CPA utilizes the distribution information of 

some individuals in the niche to predict the rough position of 

the potential optima, so as to accelerate the convergence speed. 

However, as the potential optimum predicted by CPA is a rough 

position, it may still not be accurate enough. In order to enhance 

the exploitation ability and improve the solution accuracy, a 

two-level local search (TLLS) strategy is further performed 

after the CPA. 

Therefore, the performance of ANDE is guaranteed by not 

only the APC, but also the CPA and TLLS. Noted that these 

three components act different roles in ANDE and compensate 

with each other. Specifically, the APC is used for automatically 

forming niches and effectively locating different optimal areas 

in solving MMOPs. Based on the results of APC niching, the 

CPA and TLLS are further performed within each cluster/niche 

for approaching the peaks. When dealing with the high 

dimensional MMOPs, the principal component analysis (PCA) 

technique is incorporated into ANDE to achieve dimensionality 

reduction for better niching. Note that the PCA does not affect 

the functional landscape because it performs on an additional 

population to reduce the dimension so as to help the APC 

cluster the individuals more easily and thus to obtain better 

niching results. All the other operators in ANDE (such as the 

evolutionary operators and fitness evaluations) are still 

executed on the original space, which are not affected by the 

PCA. Moreover, the locations of the optima and the topology of 

the functional landscape are also not affected by the PCA. The 

performance of ANDE is evaluated on 20 widely used 

benchmark multimodal functions from the CEC2015 

multimodal competition. Experimental results fully show the 

superiority and feasibility of ANDE compared with many 

state-of-the-art multimodal optimization algorithms and the 

winner of the CEC2015 competition on multimodal 

optimization. 

The rest of this paper is organized as follows. Section II 

reviews the DE algorithm and its current developments on 

MMOPs. Section III describes the proposed ANDE algorithm 

in detail. Experimental results and discussions are shown in 

Section IV. Finally, conclusions are given in Section V. 

II. RELATED WORK 

A. DE Algorithm 

DE is a population-based stochastic search algorithm, which 

evolves according to the difference between individuals and by 

a loop of operators, including mutation, crossover, and 

selection. Recently, ensemble methods receive an increasing 

attention in designing high-quality DE algorithms [59]-[61]. 

The operations of DE in each generation are described below. 

Mutation: In each generation g, the mutation operation is 

performed on each individual xi,g to create its corresponding 

mutant vector vi,g. Three mutation strategies frequently used in 

the literatures are listed below: 

1) DE/rand/1 

 vi,g=xr1,g+F×(xr2,g–xr3,g) (1) 

2) DE/best/1 

 vi,g=xbest,g+F×(xr1,g–xr2,g) (2)  

3) DE/current-to-best/1 

 vi,g=xi,g+F×(xbest,g–xi,g)+F×(xr1,g–xr2,g) (3) 

where r1, r2, and r3 are different random integers selected from 

{1, 2, …, N}, which are all different from i. The amplification 

factor F is a positive control parameter, which amplifies the 

differential vectors. xbest,g is the individual with the best fitness 

value in generation g. 

Crossover: Generally, after the mutation, DE performs a 

binomial crossover operation on xi,g and vi,g to generate a trial 

vector ui,g by: 
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where jrand is an integer randomly selected from {1, 2, …, D} to 

ensure that the trial vector has at least one dimension different 

from xi,g. The crossover rate CR is another parameter, which 

determines the fraction of vector components inherited from 

the mutant vector. 

 Selection: To determine whether the trial vector ui,g will 

survive into the next generation, the ui,g is compared with the 

xi,g. The one with the better fitness value enters the next 

generation. For instance, for a maximization problem, the 

individual with a larger fitness value survives into the next 

generation, as: 
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where f(x) is the fitness evaluation function. 

B. DE for MMOPs 

Various algorithms have been proposed to solve MMOPs in 

recent years. Among these existing multimodal algorithms, DE 

variants have shown promising performance [34]-[45]. To have 

a better view of these multimodal algorithms based on DE, 
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which is also the focus of this paper, we briefly describe them 

as follows. 

1) Niching Methods for DE 

Niching techniques have been widely used to help EAs solve 

MMOPs [34]-[52]. The two most representative niching 

methods are crowding [34] and speciation [35]. When applied 

into DE, the algorithms are called crowding DE (CDE) and 

speciation DE (SDE). In CDE, each newly generated offspring 

is compared with its most similar parent X from a crowd, which 

is formed by randomly selecting C individuals. The offspring 

will replace X if it is better. In SDE, the population is 

partitioned into several species according to the individuals’ 

fitness and a species radius r, and the DE operators are executed 

within each species. However, these two niching methods are 

very sensitive to their parameters, such as the crowding size C 

in crowding and the species radius r in speciation. 

To improve population partition, the self-adaptive 

clustering-based DE (Self-CCDE and Self-CSDE) proposed by 

Gao et al. [36] and the neighborhood mutation-based DE 

(NCDE and  

NSDE) proposed by Qu et al. [37] applied the clustering 

techniques into crowding and speciation methods. These 

clustering methods introduced a parameter, cluster size M, 

which is less sensitive compared with the crowding size C and 

the species radius r. However, the M also influences the 

algorithm performance directly [36][37]. 

2) Improved Mutation Strategies for DE 

Many efforts have been paid to improve the mutation 

strategy in DE based multimodal algorithms. Biswas et al. [38] 

improved the niching DE by developing an information sharing 

mechanism, and the proposed algorithms were termed as 

LoINDE (LoICDE and LoISDE). Meanwhile, they presented a 

parent-centric normalized mutation with proximity-based 

crowding DE (PNPCDE) which can fully utilize the 

neighborhood information [39]. Dual-strategy DE with affinity 

propagation clustering (DSDE), proposed by Wang et al. [40],  

which used two mutation strategies and adaptively chooses one 

of them for each individual, so as to balance the convergence 

and diversity. Furthermore, they also proposed a new selection 

operator based on affinity propagation clustering to select the 

more suitable individuals. In [41], Hui and Suganthan proposed 

ensemble and arithmetic recombination-based SDE, termed as 

EARSDE, which applied arithmetic recombination in the 

speciation method and used ensemble strategies in the 

neighborhood mutation to balance the exploration and 

exploitation. 

3) Multi-objective Techniques for DE 

Different from the methods mentioned above, some 

researchers use multi-objective techniques to transfer a MMOP 

into a multi-objective optimization problem (MOP), more 

specifically, a bi-objective optimization problem. Generally, 

the first objective is the multimodal function itself for fast 

convergence, whereas the second objective is self-designed for 

improving diversity. For example, the MOBiDE [44] used the 

mean Euclidean distance of one individual to all the other 

individuals as the second objective, which should be 

maximized to prevent from converging to only one peak. Apart 

from this, Wang et al. [45] designed the MOMMOP algorithm 

using a quite different transformation, which designed two 

conflict objectives for each dimension. 

Although these techniques mentioned above have shown 

their effectiveness in solving MMOPs, their performance is still 

not satisfactory especially in the problems with high 

dimensions or complexities. 

III. ANDE 

This section describes the proposed ANDE algorithm. Firstly, 

the APC for efficiently partitioning the population to 

automatically form niches and to locate different peaks is 

described. Secondly, the CPA for predicting the rough position 

of the potential optimum in each niche is designed. Moreover, 

the TLLS strategy to improve the solution accuracy and 

enhance the exploitation ability is introduced later. At last, 

ANDE is extended for solving high dimensional MMOPs and 

the whole ANDE algorithm is given. 

A. APC to Locate Different Peaks 

Different from other clustering methods, APC does not 

require the number of clusters or cluster size and initial 

selection of exemplars or clustering centers, which can avoid 

the sensitive parameters. The motivation and rationality of APC 

are that all the individuals are regarded as potential exemplars 

for any other individual, and then the clusters/niches are 

automatically formed according to the message-passing process 

[57][58]. The message-passing process is a loop process to 

calculate how suitable for an individual being the exemplar for 

another individual, and how appropriate for an individual to 

choose another individual as its exemplar. In order to calculate 

such information, two kinds of messages are defined in APC for 

exchanging information among individuals: “responsibility” 

and “availability”. The “responsibility” between individual xi 

and its candidate exemplar individual xk is denoted as r(i,k), 

which is sent from xi to xk, as illustrated in Fig. 1(a). The 

“availability” between individual xi and its candidate exemplar 

individual xk is denoted as a(i,k), which is sent from xk to xi, as 

shown in Fig. 1(b). 

Particularly, the “responsibility” r(i,k) shows how suitable 

for the individual xk being the exemplar for individual xi. It is 

set to the similarity between individual xi and individual xk, 

minus the largest of the availabilities and similarities between 

individual xi and other competing candidate exemplars. 

Inversely, the “availability” a(i,k) reflects how appropriate for 

individual xi to choose individual xk as its exemplar. It is set to 

the self-responsibility r(k,k) plus the sum of the positive 

responsibilities the individual xk receives from other supporting 

individuals. To limit the influence of strong incoming positive 

responsibilities, the availability a(i,k) is no larger than zero. 

Candidate 

exemplar k

Competing 

candidate 

exemplar k'

Individual i

r(i,k)

Individual i

Supporting 

individual i'

Candidate 

exemplar k

a(i,k)

 (a) Responsibility                               (b) Availability 
Fig. 1 Message passing in APC (a) Responsibility (b) Availability 
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To begin with, the availabilities a(i,k) are initialized as 0. 

Then, in each iteration, the responsibilities and availabilities are 

computed using the rules: 

( , ) ( , ) max{ ( , ') ( , ')} '=1,2,3... , 'r i k s i k a i k s i k k N k k= − +   (6) 

 
' 1, ' ,

( , ) min{0,  ( , ) max{0,  ( ', )}}
N

i i i k

a i k r k k r i k
= 

= +   (7) 

where s(i,k) is the similarity between individuals xi and xk, 

which is set as the negative squared error (Euclidean distance): 

s(i,k) = –|| xi – xk ||2. 

During the message-passing process, each message is set as λ 

times its value from the last iteration plus 1-λ times its current 

value, shown as: 

r(i,k)=λ×r(i,k)last+(1–λ)×r(i,k)                      (8) 

 a(i,k)=λ×a(i,k)last+(1–λ)×a(i,k)                      (9) 

For each individual xi, the individual xk that maximizes 

a(i,k)+r(i,k) is identified as the exemplar for individual xi. The 

message-passing process will terminate after the maximum 

number of iterations Mits, or the estimated exemplars stay 

stagnation for a certain number of iterations Cits. In that way, 

the clusters are automatically formed. We have investigated the 

influences of the parameters λ, Mits, and Cits and presented the 

results in the Table S.I-III in the supplemental file. Considering 

the aspects of promising results and light computational burden, 

we use parameters of λ=0.9, Mits=100, Cits=30. Herein, the 

relatively larger λ will maintain more message from the last 

iteration, which will avoid numerical oscillations effectively 

and make clustering results more stable. Besides, the Mits and 

Cits with relatively smaller values can relieve the 

computational burden of APC. 

The complete procedure of APC can be shown as the 

following five steps: 

Step1. Initialize a(i,k)=0; 

Step2. Calculate the temporary values of r(i,k) and a(i,k) by 

using (6) and (7); 

Step3. Keep the message from the last iteration and calculate 

the final values of r(i,k) and a(i,k) by using (8) and (9); 

Step4. For each individual xi, the individual xk that 

maximizes a(i,k)+r(i,k) is identified as the exemplar for 

individual xi. 

Step5. Repeat Steps 2 to 4 until the clustering termination 

criterion is satisfied. 

After the clustering procedure, the clusters, so-called niches 

are automatically formed. As we can see, the niching strategy 

based on APC avoids using the sensitive parameters, such as 

the number of clusters or the cluster size M. Besides, comparing 

with other parameter-free niching strategies [46][47][52], the 

whole message-passing process does not cost any extra FEs. 

B. CPA to Predict Optimal Region 

After forming niches automatically by APC, the basic DE 

operators are executed within the niche to generate new 

individuals. However, for the individuals in each niche, many 

current multimodal algorithms do not make use of the 

distribution information of the individuals to help the search. In 

fact, if we can narrow the search space or speculate the 

distribution of the potential optima by using the distribution 

information of individuals, the search process will be quicker 

and more effective. To this aim, a novel CPA is proposed for 

predicting the peak by using the distribution information of 

some individuals in each niche. 

The contour method is first used by Lin et al. [62] in GA to 

solve unimodal optimization problems. Here we modified and 

applied this method into DE to tackle the MMOPs. 

A contour in topography is a smooth line which connects the 

points with the same elevation. Fig. 2 displays an example of 

contours. Obviously, the potential summit is also enclosed in 

the contour. 

Inspired by the contours in topography, the CPA is proposed 

for effectively solving MMOPs by estimating the contour 

landscape of the problem and predicting the rough position of 

the potential optima. In CPA, the solutions can be regarded as 

the positions, whereas the fitness values of the solutions can be 

perceived as the elevations of the positions. Taking a 

two-dimensional problem for instance, each solution xi can be 

represented by (xi,1, xi,2). When several niches are formed, each 

niche Sj will have a niche seed which is with the best fitness 

value. For each niche Sj, we found some individuals nearest to 

the niche seed in Sj to form a network, as shown in Fig. 3(a). In 

this figure, the solid cycles denote the niche seeds, while the 

hollow cycles denote the individuals nearest to the niche seed. 

Each position (solution/individual) is denoted by (a, b) c in the 

figure, where (a, b) is the coordinate of the current individual 

and c is the elevation (fitness value) of the current individual. 

Then, we calculate each dimension of each interpolated point 

xi' as: 

 

'
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(a) Form the networks        (b) Draw contours and predict peaks 

Fig. 3 Contour prediction approach (CPA) in a two-dimensional example 

(a) Form the networks (b) Draw contours and predict peaks 
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Fig. 2 An example of contours 
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where the xlbest and xi are the niche seed and its ith adjacency 

individual in the niche, flbest and fi are the fitness values of xlbest 

and xi, respectively, whereas f is the contour value. In order to 

accelerate the approaching speed to the summit or the best 

solution, f is set larger than flbest for a maximization problem or 

smaller than flbest for a minimization problem, shown as: 

 
0.2 0.1,    maximization problem

0.2 0.1,  minimization problem

lbest

lbest

lbest

f
f f

f

  +
− = 

−  −

 (11) 

where 0.2 is the coefficient of |flbest| to control the approaching 

speed to the summit and 0.1 is the disturbance to deal with the 

condition that the function is with zero fitness value. We have 

investigated these two values in Table S.IV-V in the 

supplemental file. The results show that setting the coefficient 

as 0.2 (-0.2 for minimization problems) can achieve the balance 

between fast convergence and avoiding distortion. Moreover, 

the disturbance is not sensitive and is simply set as 0.1 herein. 

In Fig. 3(b), the contour value is set to 18, and the symbol ‘x’ 

denotes the interpolated points. After obtaining the interpolated 

points, we draw the contours by connecting all these 

interpolated points. 

As we mentioned before, the potential summits are enclosed 

in a contour. Therefore, after getting several interpolated points 

and drawing the contours, the potential summits within the 

contours will be determined. In this paper, we use the centroid 

x' of the contour to approximately estimate the optima, which 

can be expressed as: 

 1

'

'

K

i

i

K

==


x

x

 (12) 

where the K is the number of interpolated points and no more 

than 5, xi' is the ith interpolated point. Note that if the legal 

interpolated points are fewer than 3, the contour cannot be 

drawn. In other words, if the niche Sj has fewer than 4 

individuals, CPA is not used. In Fig. 3(b), the stars represent the 

potential optima we estimated using (12). For each niche, if the 

fitness of the estimated optimum is better than the niche seed, 

the estimated optimum will replace the niche seed, otherwise 

the estimated optimum is ignored. 

Now we extend CPA into any dimensional problems. In a 

D-dimensional problem, each individual xi can be expressed as 

(xi,1, xi,2, … , xi,D). Similarly, we use the formula like (10) to 

determine each dimension of the interpolated point xi' as: 
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 (13) 

After that, we also use (12) to predict the potential optima. 

The whole procedure of CPA can be seen in Fig. 4 as a 

flowchart, where n is the number of niches identified in APC. 

Based on CPA, ANDE can locate the ranges of the potential 

summits effectively, which will give a proper guidance of 

evolution. Meanwhile, forecasting the optima directly will 

simplify the search process and accelerate the convergence 

speed. The effectiveness and feasibility of CPA will be fully 

investigated in the Section IV-D(2). 

C. TLLS to Refine Solution Accuracy 

Although CPA can predict the potential optima and 

accelerate convergence to some degree, it may still not be 

accurate enough. Motivated by this, a TLLS is proposed in this 

paper to enhance the exploitation ability of algorithm and 

increase the accuracy of solutions. Gaussian distribution is 

utilized here due to its promising local search performance by 

sampling small areas, shown in (14a): 

xnew= Gaussian(x, σ)                           (14a) 

where xnew is the new generated individual by the Gaussian 

distribution with the individual x as the mean and a standard 

deviation σ. 

During the evolutionary process, the standard deviation σ in 

Gaussian distribution is decreased using an exponential model, 

shown in (14b), to sample relatively wide areas in the early 

stage and sample narrow areas at late. Besides, to keep 

population diversity and avoid getting trapped in the local 

optima, σ is set larger for the problems with higher dimensions 

to sample wide areas while smaller for problems with lower 

dimensions. Herein, the exponent 3 is used to control the lower 

Cluster 1

(Niche 1)

Cluster 2

(Niche 2)

Cluster 3

(Niche 3)

Cluster 4

(Niche 4)

Cluster 5

(Niche 5)

 
Fig. 5 Illustration of two-level local search 
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f(x')>f(xlbest)
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j=1

no
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Fig. 4 The flowchart of CPA 
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bound of the σ. We have investigated the exponent used in (14b) 

in Table S.VI in the supplemental file. The results show that 

setting the exponent as 3 can achieve the balance between 

exploration and exploitation. 

 

( )10/ 3
1

10

D FEs

MaxFEs
+ 

− −

=  (14b) 

As indicated by its name, the TLLS has two-level local 

search, including a niching-level local search and an 

individual-level local search. As locating more optima is the 

main objective of MMOPs, we first execute the local search 

operator on niching-level because different niches focus on 

different peaks. On niching-level, the local search is executed 

on the niche seed for finding more promising solutions. As 

there are many niche seeds (each niche has one), it is intuitive 

that the better niche seed is, the greater chance it is close to the 

global optima and should do local search. This indicates the 

opportunity of executing local search should be related to the 

fitness values of niche seeds. Therefore, we first sort the niche 

seeds in ascending order according to their fitness values (from 

worse to better). Then, set the probability of the ith niche to do 

local search as: 

Pi=ri/n            (15) 

where ri is the rank of the ith niche seed in the sort of fitness, and 

n is the number of niches. 

However, without any heuristic information or prior 

knowledge about the distribution of peaks in MMOPs, several 

peaks may be covered by the same niche if the peaks are close 

to each other or the number of peaks is too large. Suppose the 

current population distribution is shown in Fig. 5. The niche 1 

covers two peaks because they are very close to each other. 

Niche 2 and niche 3 cover one peak respectively. While the 

niche 4 and niche 5 cover the local optima. Our proposed 

niching-level local search based on Pi can avoid wasting the 

local search FEs on local optima to some degree. For example, 

the chance of performing local search in the niche 4 and niche 5 

is small because their Pi values are small. However, if we only 

do local search on niching-level, the accuracy of some optima 

may not be improved, e.g., only one peak in the niche 1 can be 

refined. Consequently, after executing local search operator at 

niching-level, an individual-level local search is also executed. 

Specifically, if the current niche i satisfies the probability Pi to 

do local search, some individuals with better fitness value in 

this niche should also do local search. The method is similar to 

that in niching-level, which is first sorting the individuals in 

ascending order according to their fitness values in the current 

niche (from worse to better). Then set the probability of the kth 

individual to do local search in the ith niche as: 

Pik=rk/ni          (16) 

where rk is the rank of the kth individual in the sort of fitness, 

and ni is size of ith niche. 

The number of points sampled by local search is set as 2. The 

whole framework of the TLLS is shown in Algorithm 1. 

Using this TLLS scheme, we can enhance the exploitation 

ability of algorithm and increase the accuracy of all the global 

optima. Moreover, the fitness rank based probabilistic scheme 

(i.e., Eqs. (15) and (16)) can avoid wasting FEs on local optima 

and inferior individuals. 

D. ANDE for High Dimensional Problems 

However, when dealing with the high dimensional problems, 

the niching strategy based on APC may also face the difficulty 

of “curse of dimensionality” like other clustering methods. In 

order to relieve this difficulty, we do not apply the APC directly 

on the original population whose individuals (solutions) are in 

high dimension, but firstly construct an additional population 

that is with dimensionality reduction from the original 

population. This way, the APC can be performed on the 

individuals of the additional population that are with low 

dimension, so as to cluster the individuals more easily and more 

efficiently. 

PCA is an effective method to achieve dimensionality 

reduction using mathematical projection. Therefore, we apply 

PCA into our ANDE algorithm to construct the additional 

population by reducing the D dimensions to k dimensions. The 

specific implementation is shown as the following six steps: 

1) Construct a D×N matrix X using the current population, 

where D is the dimension of problem and N is the 

population size. 

2) Transform the average value of each row in X to zero. 

3) Generate the covariance matrix 1 TC XX
D

= . 

4) Calculate the eigenvalues and eigenvectors of C. 

Algorithm 2: ANDE 

Begin 

1. Randomly generate N individuals as the population P. 

2. While FEs≤MaxFEs 

3.     (For problems with dimensions higher than 3, using PCA 

method to achieve dimensionality reduction.) 

4.     Using APC for niching. 

5.     For each niche Si 

6.         If ni≥4 // ni is the size of Si. 

7.              Generate offspring using standard DE; 

8.              For each offspring in Si 

9.                     Compare its fitness with the fitness of its most similar  

parent X in Si and replace X if the offspring is better; 

10.              End For 

11.          End If 

12.          Predict the potential optima using CPA in Fig. 4. 

13.     End For 

14.     Execute the TLLS using Algorithm 1.  

15. End While 

End 

 

Algorithm 1: TLLS 

Begin 

1. Generate the sample standard deviation σ using (14b). 

2. Calculate the niche-level local search probability Pi using (15). 

3. For each niche Si 

4.     If rand<Pi 

5.         For each individual xik in Si; 

6.             Calculate the individual-level local search probability  

Pik using (16); 

7.             If rand<Pik 

8.                 Sample 2 points around individual xik based on  

Gaussian distribution in (14a); 

9.                 Evaluate these 2 points and denote the better one as xik'; 

10.                 If xik' is better than xik 

11.                     Replace xik by xik'; 

12.                 End If 

13.             End If 

14.         End For 

15.     End If 

16. End For 

End 
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5) Sorting the eigenvectors according to their eigenvalues, and 

we choose the first k eigenvectors as a new matrix P, 

where k is the dimension we wish to obtain. 

6) Obtain X'=PX, where X' is the matrix after dimensionality 

reduction. 

In our algorithm, for problems with higher than 3 dimensions 

(D>3), we set k=3. In other words, we additionally construct a 

3×N matrix X' using PCA. Accordingly, we can obtain the 

additional population with N individuals and 3 dimensions. 

This way, the additional population is a dimension reduced 

version of the original population. The APC can be carried out 

on this additional population to help cluster the individuals 

more easily and thus obtain better niching results. However, all 

the other operators in ANDE (such as the evolutionary 

operators and fitness evaluations) are still executed on the 

original space and using the original population. Therefore, the 

topology of the functional landscape of the solving problems, 

the locations of the optima, and the search information of the 

evolutionary population are not affected by PCA. 

Based on PCA technique, we can achieve better niching 

using APC when dealing with the problems with high 

dimensions. 

E. The Complete Algorithm ANDE 

Overall, based on all the components mentioned above, the 

complete algorithm ANDE is shown in Algorithm 2 as the 

pseudo-code, together with the following advantages. 

1) Niching strategy based on APC forms the niches 

automatically without sensitive parameters or any extra 

FEs, which is efficient to locate different peaks of 

MMOPs. 

2) After the population partition and evolutionary operations, 

CPA can effectively speculate the rough position of the 

potential optimum in each niche, which can give a proper 

guidance of evolution and accelerate convergence. 

3) The TLLS refines the solutions and enhances the 

exploitation ability of algorithm, which attempts to 

increase the accuracy of all the global optima. Moreover, 

the two-level fitness rank based probabilistic scheme can 

avoid wasting FEs on local optima and inferior 

individuals. 

IV. EXPERIMENTAL RESULTS 

A. Benchmark Functions and Performance Measures 

All the 20 frequently used multimodal benchmark functions 

from CEC2015 competition are used to test the performance of 

ANDE and compared state-of-the-art multimodal optimization 

algorithms (CEC2015 competition contains the same problems 

as the CEC2013 test suite) [63]. The main characteristics of 

these functions are summarized in Table S.VII in the 

supplemental file due to the page limitation. 

Besides, three performance measures including peak ratio 

(PR), success rate (SR), and convergence speed (AveFEs) are 

utilized to evaluate the performance of all the multimodal 

algorithms. Given a fixed maximum fitness evaluations 

(MaxFEs) and a fixed accuracy level ε, the PR reflects the mean 

percentage of all global optima found over multiple runs. SR is 

the percentage of successful runs, where a successful run means 

all global optima are found in a single run. The AveFEs is the 

average fitness evaluations required to find all the global 

optima. The mathematical formulas can be expressed below: 

 1 1,  ,  

R R

i i

i i

NFP FEs
NSR

PR SR AveFEs
NP R R R

= == = =


 
 (17) 

where NFPi is the number of optima found in ith run, NP is the 

number of peaks, NSR is the number of successful runs, FEsi is 

the number of fitness evaluations required in ith run, and R is the 

number of runs. Note that if an algorithm cannot find all global 

optima in the ith run, the FEsi is set as MaxFEs. 

Five accuracy levels, ε=1.0E-01, ε=1.0E-02, ε=1.0E-03, 

ε=1.0E-04, and ε=1.0E-05, are frequently used in the literatures. 

However, in this paper, only the last three accuracy levels 

ε=1.0E-03, ε=1.0E-04, and ε=1.0E-05 are adopted because the 

accuracy levels ε=1.0E-01 and ε=1.0E-02 are not accurate 

enough. Moreover, unless otherwise stated, we mainly discuss 

the results with accuracy level ε=1.0E-04, which is common in 

[34]-[45], [52]-[56]. Readers can refer to [63] for more details 

about the performance measures and the approach for 

calculating the number of global optima found. 

Moreover, the population size is set as in Table I, where the 

MaxFEs is adopted directly from CEC2015 competition [63]. 

DE/rand/1 mutation strategy is used in ANDE, and the 

amplification factor F and crossover rate CR in ANDE are set 

as 0.9 and 0.1, respectively. The experiments are conducted on 

a PC with 4 Intel Core i5-7400 3.00 GHz CPUs, 8 GB memory, 

the Windows 10 64-bit system and MATLAB 2015b edition. 

All algorithms run 51 times on each function independently and 

the mean results are reported. 

B. Comparisons with State-of-the-Art Multimodal Algorithms 

To examine the performance of ANDE, we compare ANDE 

with the following state-of-the-art 9 DE multimodal algorithms, 

including CDE [34], SDE [35], Self-CCDE, Self-CSDE [36], 

NCDE, NSDE [37], LoICDE, LoISDE [38], and PNPCDE [39]. 

Moreover, we also compare ANDE with other 5 EA 

multimodal algorithms, including PSO with ring topology 

(R2PSO and R3PSO) [55], locally informed PSO (LIPS) [56], 

multimodal EDA (LMCEDA and LMSEDA) [54] and a 

multi-objective technique MOMMOP [45]. All these 

competing multimodal algorithms use the same population size 

N and MaxFEs in Table I, the same as ANDE, to solve 

CEC2015 problems well and to make the comparisons fair. 

Table II summarizes the comparison results between ANDE 

and other multimodal algorithms in PR and SR at all the three 

accuracy levels, while the detailed comparison results are 

shown in Tables S.VIII-S.XIII in the supplemental file for 

saving space. The best PRs are highlighted by boldface for 

clarity. Besides, Wilcoxon’s rank sum test [64] at α=0.05 in PR 

is used to evaluate the statistical significance between ANDE 

and the compared multimodal algorithms. The symbols “+”, “-”, 

or “≈” indicate that ANDE is significantly better than, worse 

TABLE I. PARAMETER SETTINGS 
Test Function N MaxFEs 

F1-F5 80 5.00E+04 

F6 100 2.00E+05 

F7 300 2.00E+05 

F8-F9 300 4.00E+05 

F10 100 2.00E+05 

F11-F13 200 2.00E+05 

F14-F20 200 4.00E+05 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

8 

than, or similar to the compared multimodal algorithms. 

According to the results in Table II and Tables S.VIII-S.XIII, 

we find that with the accuracy level increases, the performance 

of many multimodal algorithms deteriorates rapidly, except 

ANDE. In particular terms: 

1) For the first 15 functions F1-F15 with no more than 3 

dimensions (D≤3), ANDE performs significantly better 

than other algorithms on most functions, no matter on 

which accuracy level. Take accuracy level ε=1.0E-04 as 

an instance. As we can see from Table S.X in the 

supplemental file, ANDE dominates SDE, R2PSO, 

R3PSO, NSDE, Self-CSDE, and LoISDE on at least 10 

functions; dominates CDE, LIPS, NCDE, PNPCDE, 

Self-CCDE, LoICDE, LMCEDA, and LMSEDA on at 

least 7 functions. Significantly, the results show that all 

the competitors cannot outperform ANDE more than 1 

function, except MOMMOP. Note that ANDE performs 

similarly to MOMMOP on these 15 functions. However, 

ANDE shows an obvious advantage on the last 5 functions, 

which will be discussed next. 

2) For the last 5 functions F16-F20 with more than 3 

dimensions (D>3), ANDE outperforms all the 

competitors on almost all the 5 functions. Take accuracy 

level ε=1.0E-04 in Table S.XI in the supplemental file for 

example again, ANDE dominates CDE, SDE, LIPS, 

R2PSO, R3PSO, NSDE, PNPCDE, Self-CCDE, 

Self-CSDE, LoICDE, and LoISDE on all the 5 functions. 

It is noteworthy that ANDE dominates MOMMOP and 

NCDE on 4 and 3 out of the 5 functions, respectively, 

while is dominated by MOMMOP on only 1 function. 

Such observation fully illustrates that ANDE can tackle 

MMOPs effectively when the dimensions and 

complexities increase. Even though ANDE performs a 

little worse than LMCEDA and LMSEDA on these 5 

functions, ANDE still outperforms and shows a great 

dominance than these two algorithms on F1-F15, 

especially on F6-F9, where exist numerous peaks as shown 

in Table S.X and discussed above. 

Therefore, ANDE is much more promising and suitable than 

these state-of-the-art multimodal algorithms. The superiority 

and dominance of ANDE are increasingly obvious with the 

required accuracy level increases. Besides, ANDE can maintain 

its dominance when dealing with the MMOPs with a larger 

number of peaks and with higher dimensions or complexities. 

For the comparison in AveFEs, since it is no sense to 

evaluate this performance metric on functions that no algorithm 

TABLE II. SUMMARIZED RESULTS IN PR AND SR ON PROBLEMS AT ALL THE THREE ACCURACY LEVELS 
ANDE V.S. CDE SDE LIPS R2PSO R3PSO NCDE NSDE PNPCDE 

ε=1.0E-03 

+ 13 18 14 16 16 11 18 14 

- 0 0 0 0 0 0 0 0 

≈ 7 2 6 4 4 9 2 6 

ε=1.0E-04 

+ 13 19 14 16 16 11 18 14 

- 0 0 1 0 0 0 0 0 

≈ 7 1 5 4 4 9 2 6 

ε=1.0E-05 

+ 14 19 14 16 17 12 18 15 

- 0 0 1 0 0 0 0 0 

≈ 6 1 5 4 3 8 2 5 

ANDE V.S. Self-CCDE Self-CSDE LoICDE LoISDE LMCEDA LMSEDA MOMMOP 

 

ε=1.0E-03 

+ 11 15 12 18 7 7 8 

- 1 0 0 0 3 3 4 

≈ 8 5 8 2 10 10 8 

ε=1.0E-04 

+ 13 17 13 18 8 7 7 

- 1 0 0 0 3 3 4 

≈ 6 3 7 2 9 10 9 

ε=1.0E-05 

+ 13 18 14 18 8 7 7 

- 1 0 0 0 2 3 4 

≈ 6 2 6 2 10 10 9 

 

 
(a) F1                                                       (b) F2                                                    (c) F4                                                    (d) F6 

 
(e) F7                                                      (f) F10                                                     (g) F11                                                   (h) F12 

Fig. 6 Final population distribution on 8 selected functions (a) F1 (b) F2 (c) F4 (d) F6 (e) F7 (f) F10 (g) F11 (h) F12 
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has a successful run, therefore, we only select the first 5 

functions F1-F5 for investigations. Meanwhile, we only 

compare ANDE with CDE, NCDE, Self-CCDE, LoICDE, 

PNPCDE, MOMMOP, LMCEDA, and LMSEDA because they 

can achieve the comparable performance. Table S.XIV in the 

supplemental file shows the comparison results in AveFEs at all 

these three accuracy levels, and the best results are emphasized 

by boldface. As we can see, ANDE generally achieves a faster 

convergence speed than other multimodal algorithms at 

accuracy level ε=1.0E-03, except NCDE. That may be due to 

the CPA in ANDE can speculate the approximate position of 

the potential optima and accelerate convergence speed. 

However, when the accuracy level increases from ε=1.0E-03 to 

ε=1.0E-05, ANDE performs a little worse than both NCDE and 

LMSEDA. That may be explained by the TLLS in ANDE, 

which will consume more FEs to get more accurate results. 

However, the more FEs brought by TLLS can be compensated 

by the high solution accuracy and better PR and SR results, 

shown above. Even so, ANDE still maintains a faster 

convergence speed in locating all the global optima at all the 

three accuracy levels than other algorithms. 

 

From all the above comparison results (including PR, SR, 

and AveFEs), we can observe that ANDE can locate more 

global optima within fewer FEs, especially when solving the 

problems with high complexities and numerous global optima, 

which fully proves the superiority of ANDE. The advantages of 

ANDE may be due to its novel techniques in ANDE: 1) APC; 2) 

CPA; 3) TLLS; and 4) PCA. The first APC niching technique 

can generate suitable niches automatically to match the 

landscape of the problem, without sensitive parameter and extra 

FEs. The second CPA technique can effectively predict the 

rough position of the potential optimum in each niche, which 

can provide a proper guidance of evolution and lead to fast 

convergence. The third TLLS strategy aims to refine the 

solution, which enhances the exploitation ability of ANDE and 

increases the accuracy of all the global optima. In addition, the 

dimensionality reduction technique using PCA can achieve 

better niching, which is more suitable for dealing with the 

complicated and high dimensional MMOPs. The effects of 

these techniques will be further discussed in the Section IV-D. 

Therefore, equipped with the novel techniques mentioned 

above, ANDE outperforms other state-of-the-art algorithms. 

To have a more intuitive view of the ANDE, we display the 

final population distribution on 8 selected functions in Fig. 6. 

As we can see from the Fig. 6, ANDE can locate all the 

global optima, even there exist many global optima, such as the 

F6 and F7 in Fig. 6 (d)&(e). For the more complex functions 

which contain massive local optima, such as the F11 and F12 in 

Fig. 6 (g)&(h), ANDE maintains the exploration ability and 

population diversity, also avoids local optima and locates all 

the global optima. 

C. Comparison with Winner of CEC2015 Competition 

To further demonstrate the superiority of ANDE, in this 

subsection, we compare ANDE with the winner of the 

CEC2015 competition on multimodal optimization, NMMSO 

[64]. For fair comparison, we directly cite the mean results of 

NMMSO from the CEC2015 competition 

(https://github.com/mikeagn/CEC2013/tree/master/NichingCo

mpetition2015FinalData). 

The detailed comparison results with respect to PR and SR 

between ANDE and NMMSO on all the three accuracy levels 

are listed in Table III. The best PR results are highlighted in 

boldface. Due to the lack of the detailed results of NMMSO in 

each run, we cannot conduct the Wilcoxon’s rank sum test to 

evaluate the statistical significance between ANDE and 

NMMSO. Therefore, whether ANDE is better than (+), worse 

than (-), or similarly to (≈) NMMSO is just measured by the 

values of PR. 

From Table III, we find that ANDE still keeps its promising 

performance compared with NMMSO. First, at the accuracy 

level ε=1.0E-03 and ε=1.0E-04, ANDE dominates NMMSO on 

8 and 7 functions, respectively, while only dominated by 

NMMSO on 6 functions. Second, at the last accuracy level 

ε=1.0E-05, ANDE achieves the equivalent performance 

compared to NMMSO, where the number of functions that 

TABLE III. EXPERIMENTAL RESULTS IN PR AND SR BETWEEN ANDE AND NMMSO ON PROBLEMS F1-F20 AT ALL THE THREE ACCURACY LEVELS 
ε=1.0E-03 ε=1.0E-04 ε=1.0E-05 

Func 
ANDE NMMSO 

Func 
ANDE NMMSO 

Func 
ANDE NMMSO 

PR SR PR SR PR SR PR SR PR SR PR SR 

F1 1.000 1.000 1.000(≈) 1.000 F1 1.000 1.000 1.000(≈) 1.000 F1 1.000 1.000 1.000(≈) 1.000 

F2 1.000 1.000 1.000(≈) 1.000 F2 1.000 1.000 1.000(≈) 1.000 F2 1.000 1.000 1.000(≈) 1.000 

F3 1.000 1.000 1.000(≈) 1.000 F3 1.000 1.000 1.000(≈) 1.000 F3 1.000 1.000 1.000(≈) 1.000 

F4 1.000 1.000 1.000(≈) 1.000 F4 1.000 1.000 1.000(≈) 1.000 F4 1.000 1.000 1.000(≈) 1.000 

F5 1.000 1.000 1.000(≈) 1.000 F5 1.000 1.000 1.000(≈) 1.000 F5 1.000 1.000 1.000(≈) 1.000 

F6 1.000 1.000 0.992(+) 0.880 F6 1.000 1.000 0.992(+) 0.880 F6 1.000 1.000 0.000(+) 0.000 

F7 0.936 0.176 1.000(-) 1.000 F7 0.933 0.176 1.000(-) 1.000 F7 0.941 0.196 1.000(-) 1.000 

F8 0.947 0.078 0.922(+) 0.020 F8 0.944 0.078 0.899(+) 0.020 F8 0.948 0.039 0.870(+) 0.000 

F9 0.516 0.000 0.978(-) 0.120 F9 0.512 0.000 0.978(-) 0.120 F9 0.506 0.000 0.978(-) 0.120 

F10 1.000 1.000 1.000(≈) 1.000 F10 1.000 1.000 1.000(≈) 1.000 F10 1.000 1.000 1.000(≈) 1.000 

F11 1.000 1.000 0.990(+) 0.940 F11 1.000 1.000 0.990(+) 0.940 F11 1.000 1.000 0.990(+) 0.940 

F12 1.000 1.000 0.995(+) 0.960 F12 1.000 1.000 0.993(+) 0.940 F12 1.000 1.000 0.990(+) 0.920 

F13 0.771 0.078 0.983(-) 0.900 F13 0.686 0.000 0.983(-) 0.900 F13 0.686 0.000 0.983(-) 0.900 

F14 0.667 0.000 0.723(-) 0.020 F14 0.667 0.000 0.720(-) 0.000 F14 0.667 0.000 0.720(-) 0.000 

F15 0.645 0.000 0.642(+) 0.000 F15 0.632 0.000 0.632(≈) 0.000 F15 0.632 0.000 0.632(≈) 0.000 

F16 0.667 0.000 0.660(+) 0.000 F16 0.667 0.000 0.660(+) 0.000 F16 0.667 0.000 0.660(+) 0.000 

F17 0.397 0.000 0.470(-) 0.000 F17 0.397 0.000 0.468(-) 0.000 F17 0.397 0.000 0.460(-) 0.000 

F18 0.654 0.000 0.650(+) 0.000 F18 0.654 0.000 0.650(+) 0.000 F18 0.650 0.000 0.650(≈) 0.000 

F19 0.363 0.000 0.457(-) 0.000 F19 0.363 0.000 0.450(-) 0.000 F19 0.363 0.000 0.437(-) 0.000 

F20 0.250 0.000 0.172(+) 0.000 F20 0.248 0.000 0.172(+) 0.000 F20 0.248 0.000 0.172(+) 0.000 

+(ANDE is better) 8 +(ANDE is better) 7 +(ANDE is better) 6 

-(ANDE is worse) 6 -(ANDE is worse) 6 -(ANDE is worse) 6 

≈ 6 ≈ 7 ≈ 8 

 

https://github.com/mikeagn/CEC2013/tree/master/NichingCompetition2015FinalData
https://github.com/mikeagn/CEC2013/tree/master/NichingCompetition2015FinalData
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ANDE dominates NMMSO is the same to the number of 

functions that ANDE is dominated by NMMSO. However, we 

can see that ANDE performs much better than NMMSO on F6 

and F8 at the accuracy level ε=1.0E-05. In particularly, on F6, 

ANDE can locate all the global optima in all the runs with 

1.000 for PR and 1.000 for SR, while NMMSO cannot locate 

any global optima in each run with 0.000 for PR and 0.000 for 

SR. Even on the functions where ANDE is dominated by 

NMMSO, ANDE still achieves the comparable performance to 

NMMSO. For example, at the accuracy level ε=1.0E-05, on F14, 

F17, and F19, ANDE achieves the PR with 0.667, 0.397, and 

0.363 respectively, which is very close to the PR in NMMSO 

with 0.720, 0.460, and 0.437 respectively. Third, when dealing 

with the complicated problems with higher dimensions F16-F20, 

especially with 20D in F20, ANDE performs better than 

NMMSO, no matter on which accuracy level, further showing 

the superiority of ANDE for dealing with the high complexities 

or high dimensional problems. 

Overall, we can see that ANDE is competitive or even better 

than the winner of the CEC2015 competition. 

D. Influence of Each Component in ANDE 

The main components in ANDE are 1) APC; 2) CPA; 3) 

TLLS; and 4) PCA. Herein, we will discuss the influence of 

each component in ANDE. 

1) APC: Clustering techniques have been applied in 

crowding and speciation niching in [36][37]. However, these 

two clustering niching methods both have a parameter, cluster 

size M, which will directly affect the performance of algorithm. 

Herein, to investigate the effectiveness of the new proposed 

niching method, the ANDE variants, where the APC-based 

niching is replaced by the crowding or speciation clustering 

niching is compared with ANDE on F1-F20. The cluster size M 

is set as 5 or 10, which are also frequently used in [36][37]. The 

ANDE with clustering niching of crowding or speciation and 

with a fixed cluster size M=a is termed as ANDE-C(a) or 

ANDE-S(a), respectively. For example, ANDE with crowding 

clustering and with cluster size M=10 is denoted as 

ANDE-C(10). The comparison results between ANDE and its 

variants in PR and SR at accuracy level ε=1.0E-04 are shown in 

Table S.XV in supplemental file. 

As we can see, on functions F1-F6, and F10, all the 5 

competitors can locate all the global optima. The ANDE-C(10) 

 

 

       

 

 

(a) FEs=0                           (b) FEs=20000                          (c) FEs=40000                         (d) FEs=60000                           (e) FEs=80000 

Fig. 7 Population distribution on F6 using different niching strategies after a certain number of FEs 
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performs the best on the functions F7-F9. However, on F11-F15, 

with a huge number of local optima, ANDE gradually shows its 

tremendous advantage. ANDE obtains the best results on both 

PR and SR performance metrics on all these complex functions, 

while the other algorithms can only obtain similar results on F12 

and F14. ANDE-C(10) also obtains equivalent performance on 

F11, but is significantly worse than ANDE on F13 and F15. 

Particularly, when the dimensions and complexities increase, 

especially on F18-F20 with 10 and 20 dimensions, the 

superiority of ANDE is more obvious. 

Besides, different niching strategy and different cluster size 

M are suitable for different problems. For instance, the 

crowding cluster niching strategy may be suitable for the 

problems with numerous global optima, such as on F7-F9. 

While the speciation cluster niching strategy is probably 

suitable for the problems with high complexities, such as on 

F17-F19. In addition, the large cluster size contains a wide range 

of information, which may be appropriate for diversity 

maintaining, performs well on F7-F9. While the small cluster 

size covers narrow areas, which may be suitable for 

exploitation, performs well on F13. 

Overall, neither a small nor a large cluster size and neither 

crowding clustering nor speciation clustering is attractive, and 

these two clustering niching methods are both sensitive to the 

cluster size and lose their feasibilities on some sophisticated 

functions. However, without any heuristic information and any 

sensitive parameters, ANDE still generally outperforms 

ANDE-S(5), ANDE-S(10), ANDE-C(5), and ANDE-C(10) on 

8, 7, 7, and 5 functions, while is dominated by these 4 variants 

on only 1, 2, 3, and 3 functions, respectively. 

Moreover, to further present the cluster behaviors of ANDE 

and ANDE variants, we draw the population distribution during 

the evolutionary process on the contour landscape of F6, shown 

in Fig. 7. The line connected between two individuals means 

they belong to the same cluster/niche. As we can see, only 

ANDE can produce the stable niches to match the landscape of 

the problem, while the niching results in other variants are in a 

mess, which may mislead the evolution. 

From the Table S.XV and Fig. 7, we find that the APC-based 

niching strategy is almost not affected by the random initialized 

solutions in the search space in different runs and is more 

suitable for solving MMOPs than crowding clustering and 

speciation clustering. On the one hand, it can form stable niches 

automatically for better evolution, on the other hand, it does not 

use the sensitive parameter such as the number of clusters or the 

cluster size M and does not take up any extra FEs. 

As for the computational time shown in Table S.XV, we can 

see that ANDE generally consumes more computational time 

than its variants with other clustering niching techniques. That 

is due to the APC-based niching actually involves the iterative 

process. Although the APC induces some extra computational 

time to ANDE, it also helps ANDE form stable niches 

automatically for better evolution and locate all the global 

optima more accurately. As a result, the improvements in 

performance are much worth since the increased computational 

time can be compensated by the stable niching result and high 

solution accuracy. 

2) CPA: In this part, to investigate the influence of CPA, the 

ANDE variant without CPA, termed as ANDE-noCPA is 

compared with ANDE. Since CPA is used to estimate the rough 

position of the potential peak to accelerate convergence and 

save FEs, we only use the performance metric AveFEs herein to 

show the effectiveness of CPA. Similarly, since it is no sense to 

evaluate this performance metric on complicated functions 

where ANDE cannot achieve a successful run, only the first 5 

functions F1-F5 are used for investigations. The comparison 

results at all the three accuracy levels are listed in Table S.XVI 

in supplemental file. From Table S.XVI, we find that ANDE 

can achieve faster convergence speed and save FEs effectively 

than ANDE-noCPA on 3 functions on accuracy levels 

ε=1.0E-03 and ε=1.0E-04, which fully illustrates the advantage 

of the peak prediction. When accuracy level increases to 

ε=1.0E-05, the superiority of ANDE is not significantly 

obvious. That may be due to the fact that both ANDE and 

ANDE-noCPA use the TLLS method to refine the solution 

accuracy, which will also consume some FEs. Even so, ANDE 

still achieves the fast search process than ANDE-noCPA on F4 

and F5, while ANDE-noCPA cannot surpass ANDE on any 

functions. As a result, we may reasonably come to the 

conclusion that CPA can effectively speculate the appropriate 

position of potential optima and save FEs. 

Table S.XVI also shows the time required to find all the 

global optima to test the time influence of CPA. As we can see, 

ANDE generally consumes less computational time than its 

variant without CPA component. That is due to the CPA in 

ANDE can speculate the approximate position of the potential 

optima and accelerate convergence speed. With the help of 

CPA, we can locate all the global optima more quickly by using 

fewer FEs, which will save the computational time. 

3) TLLS: The local search method is mainly to increase the 

accuracy of solution and enhance the exploitation ability of 

algorithm. Herein, we take a close observation at the influence 

of the local search and the two-level scheme. We denote the 

ANDE without local search and with only niche-level local 

search as ANDE-noLS and ANDE-onlyN, respectively. The 

ANDE with only niche-level local search is to sample the 

individuals only around the niche seed xsi of the ith niche Si. The 

complete niche-level local search is shown in Algorithm S1 in 

the supplemental file. Table S.XVII in the supplemental file 

presents the comparison results with respect to PR and SR at 

accuracy level ε=1.0E-04. We first illustrate the effectiveness 

of local search. According to the comparison results, we find 

both ANDE and ANDE-onlyN can surpass than ANDE-noLS 

on many functions, such as F6-F9, F11-F13, and F17-F20. As a 

whole, the local search is extremely useful for ANDE, which 

can increase the accuracy of solutions. Next we illustrate the 

advantage of the two-level scheme. From the comparison 

results between ANDE and ANDE-onlyN, ANDE still 

outperforms ANDE-onlyN on many functions, such as F6-F9, 

F11-F12. That may be due to the fact that some peaks are 

covered by the same niche, so that some peaks cannot improve 

their accuracy if performing local search only on niche-level. 

However, as we all known, to get more accurate results, the 

local search scheme will take up some extra FEs. On F17 and 

F19, ANDE-onlyN performs slightly better than ANDE, which 

may be due to the TLLS has to consume more extra FEs on both 

the niche and individual levels than the local search on only 

niche level. Even so, ANDE still shows its superiority on other 

functions. 
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Besides, ANDE generally consumes less computational time 

than its variants without local search and with only niche-level 

local search, shown in Table S.XVII. That is due to the TLLS 

has to be allocated FEs to further enhance the exploitation 

ability and improve the solution accuracy. As a result, the 

number of generations in evolutionary process will decrease 

due to some FEs are allocated for TLLS. Therefore, fewer 

APC-based niching and evolutionary operators are needed, 

which can save the computational time. 

In short, we can conclude that the TLLS is beneficial for 

ANDE in locating more global optima and increasing accuracy. 

4) PCA: ANDE shows its prominent advantages when 

dealing with MMOPs, which can be seen from Section IV.B 

and Section IV.C. However, when dealing with the high 

dimensional MMOPs, the niching method based on APC is 

somehow affected by the dimensions of problems. Therefore, 

PCA is used here to achieve dimensionality reduction for better 

niching. In that way, in order to study the usefulness of PCA, 

ANDE is compared with the ANDE variant without PCA, 

termed as ANDE-noPCA. We only choose the last 5 functions 

F16-F20 to compare because PCA is only used for problems with 

more than 3 dimensions (D>3). The detailed experimental 

results in PR and SR at accuracy level ε=1.0E-04 are shown in 

Table S.XVIII in the supplemental file. Obviously, on F16-F17, 

there is no significant difference between ANDE and 

ANDE-noPCA, which illustrates the property of APC is not 

severely affected when the dimension is less than or equal to 5. 

However, ANDE-noPCA deteriorates rapidly on F18-F20, 

where the dimension increases to 10 or 20. While ANDE 

maintains a stable performance and dominates ANDE-noPCA 

on these 3 functions. Such an observation directly shows the 

effectiveness of PCA, which can achieve the dimensionality 

reduction for better niching. 

Moreover, ANDE generally consumes less computational 

time than its variant without PCA component. That is due to the 

PCA in ANDE can achieve the dimensional reduction, which 

helps clustering faster and save computational time. 

E. FEs Consumed of Each Component in ANDE 

We further discuss the FEs consumed of each component in 

ANDE. The detailed experimental results are listed in Table 

S.XIX and Fig. S1 in the supplemental file. 

The first component of ANDE is APC for population 

partition. The APC is an automatic niching technique, which 

can form clusters/niches automatically without any extra FEs. 

So the APC does not consume any extra FEs. 

After using APC to partition the population into suitable 

clusters/niches automatically to locate different peak regions, 

the DE evolutionary operators are performed within each niche. 

Each individual will evolve and consume 1 FE. However, for 

the niches with fewer than 4 individuals, the DE operators are 

not executed because DE must have at least 4 individuals. 

Therefore, the FEs consumed in DE is about N or a little fewer 

than N in each generation. 

Then, CPA is further developed to estimate the contour 

landscape of each niche. Each niche will consume 1 FE to 

estimate the optimum. However, if the legal interpolated points 

are fewer than 3, the contour cannot be drawn. In other words, 

if the current niche has fewer than 4 individuals, CPA is not 

used. Therefore, the FEs consumed in CPA is about n or a little 

fewer than n (n is the number of niches) in each generation. 

At last, in order to enhance the exploitation ability and 

improve the solution accuracy, TLLS strategy is further 

performed after the CPA. About 50% niches will execute the 

niche-level local search according to the probability Pi. If the 

current niche i satisfies the probability Pi to do local search, 

about 50% individuals will execute the individual-level local 

search in the current niche according to the probability Pik. As a 

result, there are about 25% (50%×50%) individuals will 

execute TLLS and each individual will consume 2 FEs to 

sample 2 individuals. Therefore, the FEs consumed in TLLS is 

about N/2 (25%×2) in each generation. 

Additionally, we also use a PCA component for dimension 

reduction to assistant the APC-based niching in high 

dimensional problems. However, this component does not 

consume any extra FEs. 

To sum, the number of FEs consumed in each generation of 

ANDE is approximately 1.5N+n. However, when comparing 

ANDE with other algorithms, their termination criteria are set 

the same by the same MaxFEs. The comparison results show 

that ANDE can achieve better performance using the same 

computational budget, suggesting that the extra components 

(i.e., APC, CPA, and TLLS) can promote the efficiency of 

ANDE despite of certain computational load. 

V. CONCLUSION 

In this paper, the DE with APC, CPA, and TLLS, termed as 

ANDE is proposed for solving MMOPs. First, we proposed a 

new automatic niching strategy using APC for population 

partition, which can relieve the algorithm from sensitivity of 

parameter such as the cluster size or the number of clusters and 

form stable niches automatically to match the landscape of the 

problems without any extra FEs. Second, CPA can predict the 

rough position of the potential peak in each niche, and then 

provide a proper guidance for evolution, which can accelerate 

the convergence speed. Third, the TLLS is embed for 

enhancing the exploitation ability of algorithm and improving 

the accuracy of solutions. In addition, for MMOPs with high 

dimensions, PCA is utilized to achieve dimension reduction for 

better niching. 

Based on these techniques, ANDE can find a balance 

between diversity and convergence, leading to a competitive 

feasibility and effectiveness when tackling with MMOPs. The 

experimental results fully show the superiority of ANDE when 

compared with other 15 state-of-the-art multimodal algorithms 

and the winner of CEC2015 competition, which can find more 

global optima using fewer FEs, and the dominance of ANDE 

becomes increasingly obvious with the increasing accuracy 

level. 

However, APC-based niching technique in ANDE will 

generally consume more computational time compared with 

other clustering niching techniques. Even so, APC also helps 

ANDE form stable niches automatically for better evolution 

and locate all the global optima more accurately. Therefore, the 

improvements in performance are much worth since the 

increased computational time can be compensated by the stable 

niching result and high solution accuracy. 
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Even though the performance of ANDE shows its apparent 

advantage when dealing with MMOPs, with the complexity and 

dimension increases, ANDE still cannot locate all the global 

optima. For future work, we wish to further improve the 

performance of ANDE on more complex MMOPs with higher 

dimensions and large number of global or local peaks. 

Moreover, we wish to apply ANDE in dynamic multimodal 

environments [66]-[68], and to explore the information sharing 

mechanism in algorithm design [69]-[71]. 
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