
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Niching techniques have been widely incorporated

into evolutionary algorithms for solving multimodal optimization

problems (MMOPs). However, most of the existing niching

techniques are either sensitive to the niching parameters or

require extra fitness evaluations (FEs) to maintain the niche

detection accuracy. In this paper, we propose a new automatic

niching technique based on the affinity propagation clustering

(APC) and design a novel niching differential evolution (DE)

algorithm, termed as automatic niching DE (ANDE), for solving

MMOPs. In the proposed ANDE algorithm, APC acts as a

parameter-free automatic niching method that does not need to

predefine the number of clusters or the cluster size. Also, it can

facilitate locating multiple peaks without extra FEs. Furthermore,

the ANDE algorithm is enhanced by a contour prediction

approach (CPA) and a two-level local search (TLLS) strategy.

Firstly, the CPA is a predictive search strategy. It exploits the

individual distribution information in each niche to estimate the

contour landscape, and then predicts the rough position of the

potential peak to help accelerate the convergence speed. Secondly,

the TLLS is a solution refine strategy to further increase the

solution accuracy after the CPA roughly predicting the peaks.

Compared with other state-of-the-art DE and non-DE multimodal

algorithms, even the winner of competition on multimodal

optimization, the experimental results on 20 widely used

benchmark functions illustrate the superiority of the proposed

ANDE algorithm.

Index Terms—Niching techniques, affinity propagation

clustering, contour prediction approach, differential evolution,

multimodal optimization problems

Manuscript received….revised….accepted…. This work was partially

supported by the Outstanding Youth Science Foundation with No. 61822602,

the National Natural Science Foundations of China (NSFC) with No. 61772207

and 61873097, the Natural Science Foundations of Guangdong Province
(NSFGD) for Distinguished Young Scholars with No. 2014A030306038, the

Project for Pearl River New Star in Science and Technology with No.

201506010047, the GDUPS (2016), the NSFGD with No 2014B050504005,

and Hong Kong GRF-RGC General research Fund 9042489（CityU 11206317).

(Corresponding authors: Zhi-Hui Zhan and Jun Zhang).
Z. J. Wang is with the School of Data and Computer Science, Sun Yat-sen

University, 510006 Guangzhou, P. R. China.

Z. H. Zhan, Y. Lin, and W. J. Yu are with the School of Computer Science
and Engineering, South China University of Technology, 510006 Guangzhou,

P. R. China and with the Guangdong Provincial Key Lab of Computational

Intelligence and Cyberspace Information, South China University of
Technology, 510006 Guangzhou, P. R. China. (email: zhanapollo@163.com)

H. Wang and J. Zhang are with the Victoria University, Melbourne,

Australia.
S. Kwong is with the Department of Computer Science, City University of

Hong Kong, Hong Kong.

I. INTRODUCTION

any real-world problems own multiple global optima,

such as protein structure prediction [1],

electromagnetic design [2], and pedestrian detection

[3], which are known as multimodal optimization problems

(MMOPs). For example, pedestrian detection often requires to

extract multiple pedestrian from a given image [3]. Locating all

the global optima of an MMOP has significant benefits. If the

optimizer is able to find multiple promising solutions

simultaneously, we will have several choices to keep the

satisfactory performance [4][5]. Therefore, it is desirable to

locate multiple optima of practical MMOPs.

Evolutionary algorithms (EAs), such as genetic algorithm

(GA) [6]-[9], ant colony optimization (ACO) [10]-[13],

estimation of distribution algorithm (EDA) [14]-[16], particle

swarm optimization (PSO) [17]-[23], and differential evolution

(DE) [24]-[33], have the potential advantages for solving

MMOPs since their population-based search manner maintains

multiple candidate solutions. However, most of the traditional

EAs only focus on locating a single optimal solution. To tackle

MMOPs, techniques known as “niching” have been proposed

to partition the whole population into several niches [34]-[52].

Following this idea, different niching methods have been

proposed, such as the crowding [34], speciation [35], clustering

[36], hill-valley [46], fitness sharing [46], recursive middling

[47], and topological species conservation [52]. Based on these

niching techniques, various EAs have been extended for

solving MMOPs, including GA [48]-[51], ACO [53], EDA [54],

PSO [55][56], and DE [34]-[45]. Among these existing

multimodal algorithms, DE variants have shown their

effectiveness and superiority in the reported results [34]-[45].

Therefore, this paper focuses on DE for tackling MMOPs.

However, when applying DE or other EAs variants in

MMOPs, there is still much room for improvement. One of the

most significant issues is that the current niching methods are

very sensitive to the niching parameters such as the crowding

size C in crowding [34], the species radius r in speciation [35],

or the cluster size M in clustering [36]. If the niching

parameters are not properly set, the performance of the

algorithms will deteriorate severely. There are also some

parameter-free niching methods using fitness evaluations (FEs)

Automatic Niching Differential Evolution with

Contour Prediction Approach for Multimodal

Optimization Problems

Zi-Jia Wang, Student Member, IEEE, Zhi-Hui Zhan, Senior Member, IEEE, Ying Lin, Member, IEEE,

Wei-Jie Yu, Member, IEEE, Hua Wang, Sam Kwong, Fellow, IEEE, and Jun Zhang, Fellow, IEEE

M

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

to discover hill and valley for better niching [46]. However,

how to design an efficient method to disperse the search of

population to locate different peaks is still a challenging issue

and a significant research topic in the MMOP community.

To overcome the above drawbacks, this paper proposes a

novel automatic niching method based on the affinity

propagation clustering (APC). APC is a famous clustering

approach which was published in Science [57] and has also

been applied in EAs [58]. It does not require the number of

clusters and the initial selection of exemplars for clustering. By

using the APC, the niching method can not only form niches

automatically to locate multiple peaks, but also can avoid

predefining the sensitive parameters such as the cluster size or

the number of clusters compared with other clustering niching

methods [36][37]. Meanwhile, compared with other

parameter-free niching methods [46], the use of APC niching

does not introduce any extra FEs.

As we focus on DE for tackling MMOPs in this paper, we

termed our proposed APC-based DE algorithm as automatic

niching DE (ANDE). After using APC to partition the

population into suitable clusters/niches automatically to locate

different peak regions, the DE evolutionary operators are

performed within each niche. Then after the evolution of each

generation, a contour prediction approach (CPA) is further

developed to estimate the contour landscape of each niche.

Specifically, the CPA utilizes the distribution information of

some individuals in the niche to predict the rough position of

the potential optima, so as to accelerate the convergence speed.

However, as the potential optimum predicted by CPA is a rough

position, it may still not be accurate enough. In order to enhance

the exploitation ability and improve the solution accuracy, a

two-level local search (TLLS) strategy is further performed

after the CPA.

Therefore, the performance of ANDE is guaranteed by not

only the APC, but also the CPA and TLLS. Noted that these

three components act different roles in ANDE and compensate

with each other. Specifically, the APC is used for automatically

forming niches and effectively locating different optimal areas

in solving MMOPs. Based on the results of APC niching, the

CPA and TLLS are further performed within each cluster/niche

for approaching the peaks. When dealing with the high

dimensional MMOPs, the principal component analysis (PCA)

technique is incorporated into ANDE to achieve dimensionality

reduction for better niching. Note that the PCA does not affect

the functional landscape because it performs on an additional

population to reduce the dimension so as to help the APC

cluster the individuals more easily and thus to obtain better

niching results. All the other operators in ANDE (such as the

evolutionary operators and fitness evaluations) are still

executed on the original space, which are not affected by the

PCA. Moreover, the locations of the optima and the topology of

the functional landscape are also not affected by the PCA. The

performance of ANDE is evaluated on 20 widely used

benchmark multimodal functions from the CEC2015

multimodal competition. Experimental results fully show the

superiority and feasibility of ANDE compared with many

state-of-the-art multimodal optimization algorithms and the

winner of the CEC2015 competition on multimodal

optimization.

The rest of this paper is organized as follows. Section II

reviews the DE algorithm and its current developments on

MMOPs. Section III describes the proposed ANDE algorithm

in detail. Experimental results and discussions are shown in

Section IV. Finally, conclusions are given in Section V.

II. RELATED WORK

A. DE Algorithm

DE is a population-based stochastic search algorithm, which

evolves according to the difference between individuals and by

a loop of operators, including mutation, crossover, and

selection. Recently, ensemble methods receive an increasing

attention in designing high-quality DE algorithms [59]-[61].

The operations of DE in each generation are described below.

Mutation: In each generation g, the mutation operation is

performed on each individual xi,g to create its corresponding

mutant vector vi,g. Three mutation strategies frequently used in

the literatures are listed below:

1) DE/rand/1

 vi,g=xr1,g+F×(xr2,g–xr3,g) (1)

2) DE/best/1

 vi,g=xbest,g+F×(xr1,g–xr2,g) (2)

3) DE/current-to-best/1

 vi,g=xi,g+F×(xbest,g–xi,g)+F×(xr1,g–xr2,g) (3)

where r1, r2, and r3 are different random integers selected from

{1, 2, …, N}, which are all different from i. The amplification

factor F is a positive control parameter, which amplifies the

differential vectors. xbest,g is the individual with the best fitness

value in generation g.

Crossover: Generally, after the mutation, DE performs a

binomial crossover operation on xi,g and vi,g to generate a trial

vector ui,g by:

, ,

, ,

, ,

 if (0,1)

 otherwise

i j g rand

i j g

i j g

v rand CR or j j
u

x

 =
=

 (4)

where jrand is an integer randomly selected from {1, 2, …, D} to

ensure that the trial vector has at least one dimension different

from xi,g. The crossover rate CR is another parameter, which

determines the fraction of vector components inherited from

the mutant vector.

 Selection: To determine whether the trial vector ui,g will

survive into the next generation, the ui,g is compared with the

xi,g. The one with the better fitness value enters the next

generation. For instance, for a maximization problem, the

individual with a larger fitness value survives into the next

generation, as:

, , ,

, 1

,

, if () ()

, otherwise

i g i g i g

i g

i g

f f

+

=

u u x
x

x
 (5)

where f(x) is the fitness evaluation function.

B. DE for MMOPs

Various algorithms have been proposed to solve MMOPs in

recent years. Among these existing multimodal algorithms, DE

variants have shown promising performance [34]-[45]. To have

a better view of these multimodal algorithms based on DE,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

which is also the focus of this paper, we briefly describe them

as follows.

1) Niching Methods for DE

Niching techniques have been widely used to help EAs solve

MMOPs [34]-[52]. The two most representative niching

methods are crowding [34] and speciation [35]. When applied

into DE, the algorithms are called crowding DE (CDE) and

speciation DE (SDE). In CDE, each newly generated offspring

is compared with its most similar parent X from a crowd, which

is formed by randomly selecting C individuals. The offspring

will replace X if it is better. In SDE, the population is

partitioned into several species according to the individuals’

fitness and a species radius r, and the DE operators are executed

within each species. However, these two niching methods are

very sensitive to their parameters, such as the crowding size C

in crowding and the species radius r in speciation.

To improve population partition, the self-adaptive

clustering-based DE (Self-CCDE and Self-CSDE) proposed by

Gao et al. [36] and the neighborhood mutation-based DE

(NCDE and

NSDE) proposed by Qu et al. [37] applied the clustering

techniques into crowding and speciation methods. These

clustering methods introduced a parameter, cluster size M,

which is less sensitive compared with the crowding size C and

the species radius r. However, the M also influences the

algorithm performance directly [36][37].

2) Improved Mutation Strategies for DE

Many efforts have been paid to improve the mutation

strategy in DE based multimodal algorithms. Biswas et al. [38]

improved the niching DE by developing an information sharing

mechanism, and the proposed algorithms were termed as

LoINDE (LoICDE and LoISDE). Meanwhile, they presented a

parent-centric normalized mutation with proximity-based

crowding DE (PNPCDE) which can fully utilize the

neighborhood information [39]. Dual-strategy DE with affinity

propagation clustering (DSDE), proposed by Wang et al. [40],

which used two mutation strategies and adaptively chooses one

of them for each individual, so as to balance the convergence

and diversity. Furthermore, they also proposed a new selection

operator based on affinity propagation clustering to select the

more suitable individuals. In [41], Hui and Suganthan proposed

ensemble and arithmetic recombination-based SDE, termed as

EARSDE, which applied arithmetic recombination in the

speciation method and used ensemble strategies in the

neighborhood mutation to balance the exploration and

exploitation.

3) Multi-objective Techniques for DE

Different from the methods mentioned above, some

researchers use multi-objective techniques to transfer a MMOP

into a multi-objective optimization problem (MOP), more

specifically, a bi-objective optimization problem. Generally,

the first objective is the multimodal function itself for fast

convergence, whereas the second objective is self-designed for

improving diversity. For example, the MOBiDE [44] used the

mean Euclidean distance of one individual to all the other

individuals as the second objective, which should be

maximized to prevent from converging to only one peak. Apart

from this, Wang et al. [45] designed the MOMMOP algorithm

using a quite different transformation, which designed two

conflict objectives for each dimension.

Although these techniques mentioned above have shown

their effectiveness in solving MMOPs, their performance is still

not satisfactory especially in the problems with high

dimensions or complexities.

III. ANDE

This section describes the proposed ANDE algorithm. Firstly,

the APC for efficiently partitioning the population to

automatically form niches and to locate different peaks is

described. Secondly, the CPA for predicting the rough position

of the potential optimum in each niche is designed. Moreover,

the TLLS strategy to improve the solution accuracy and

enhance the exploitation ability is introduced later. At last,

ANDE is extended for solving high dimensional MMOPs and

the whole ANDE algorithm is given.

A. APC to Locate Different Peaks

Different from other clustering methods, APC does not

require the number of clusters or cluster size and initial

selection of exemplars or clustering centers, which can avoid

the sensitive parameters. The motivation and rationality of APC

are that all the individuals are regarded as potential exemplars

for any other individual, and then the clusters/niches are

automatically formed according to the message-passing process

[57][58]. The message-passing process is a loop process to

calculate how suitable for an individual being the exemplar for

another individual, and how appropriate for an individual to

choose another individual as its exemplar. In order to calculate

such information, two kinds of messages are defined in APC for

exchanging information among individuals: “responsibility”

and “availability”. The “responsibility” between individual xi

and its candidate exemplar individual xk is denoted as r(i,k),

which is sent from xi to xk, as illustrated in Fig. 1(a). The

“availability” between individual xi and its candidate exemplar

individual xk is denoted as a(i,k), which is sent from xk to xi, as

shown in Fig. 1(b).

Particularly, the “responsibility” r(i,k) shows how suitable

for the individual xk being the exemplar for individual xi. It is

set to the similarity between individual xi and individual xk,

minus the largest of the availabilities and similarities between

individual xi and other competing candidate exemplars.

Inversely, the “availability” a(i,k) reflects how appropriate for

individual xi to choose individual xk as its exemplar. It is set to

the self-responsibility r(k,k) plus the sum of the positive

responsibilities the individual xk receives from other supporting

individuals. To limit the influence of strong incoming positive

responsibilities, the availability a(i,k) is no larger than zero.

Candidate

exemplar k

Competing

candidate

exemplar k'

Individual i

r(i,k)

Individual i

Supporting

individual i'

Candidate

exemplar k

a(i,k)

 (a) Responsibility (b) Availability
Fig. 1 Message passing in APC (a) Responsibility (b) Availability

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

To begin with, the availabilities a(i,k) are initialized as 0.

Then, in each iteration, the responsibilities and availabilities are

computed using the rules:

(,) (,) max{ (, ') (, ')} '=1,2,3... , 'r i k s i k a i k s i k k N k k= − + (6)

' 1, ' ,

(,) min{0, (,) max{0, (',)}}
N

i i i k

a i k r k k r i k
=

= + (7)

where s(i,k) is the similarity between individuals xi and xk,

which is set as the negative squared error (Euclidean distance):

s(i,k) = –|| xi – xk ||2.

During the message-passing process, each message is set as λ

times its value from the last iteration plus 1-λ times its current

value, shown as:

r(i,k)=λ×r(i,k)last+(1–λ)×r(i,k) (8)

 a(i,k)=λ×a(i,k)last+(1–λ)×a(i,k) (9)

For each individual xi, the individual xk that maximizes

a(i,k)+r(i,k) is identified as the exemplar for individual xi. The

message-passing process will terminate after the maximum

number of iterations Mits, or the estimated exemplars stay

stagnation for a certain number of iterations Cits. In that way,

the clusters are automatically formed. We have investigated the

influences of the parameters λ, Mits, and Cits and presented the

results in the Table S.I-III in the supplemental file. Considering

the aspects of promising results and light computational burden,

we use parameters of λ=0.9, Mits=100, Cits=30. Herein, the

relatively larger λ will maintain more message from the last

iteration, which will avoid numerical oscillations effectively

and make clustering results more stable. Besides, the Mits and

Cits with relatively smaller values can relieve the

computational burden of APC.

The complete procedure of APC can be shown as the

following five steps:

Step1. Initialize a(i,k)=0;

Step2. Calculate the temporary values of r(i,k) and a(i,k) by

using (6) and (7);

Step3. Keep the message from the last iteration and calculate

the final values of r(i,k) and a(i,k) by using (8) and (9);

Step4. For each individual xi, the individual xk that

maximizes a(i,k)+r(i,k) is identified as the exemplar for

individual xi.

Step5. Repeat Steps 2 to 4 until the clustering termination

criterion is satisfied.

After the clustering procedure, the clusters, so-called niches

are automatically formed. As we can see, the niching strategy

based on APC avoids using the sensitive parameters, such as

the number of clusters or the cluster size M. Besides, comparing

with other parameter-free niching strategies [46][47][52], the

whole message-passing process does not cost any extra FEs.

B. CPA to Predict Optimal Region

After forming niches automatically by APC, the basic DE

operators are executed within the niche to generate new

individuals. However, for the individuals in each niche, many

current multimodal algorithms do not make use of the

distribution information of the individuals to help the search. In

fact, if we can narrow the search space or speculate the

distribution of the potential optima by using the distribution

information of individuals, the search process will be quicker

and more effective. To this aim, a novel CPA is proposed for

predicting the peak by using the distribution information of

some individuals in each niche.

The contour method is first used by Lin et al. [62] in GA to

solve unimodal optimization problems. Here we modified and

applied this method into DE to tackle the MMOPs.

A contour in topography is a smooth line which connects the

points with the same elevation. Fig. 2 displays an example of

contours. Obviously, the potential summit is also enclosed in

the contour.

Inspired by the contours in topography, the CPA is proposed

for effectively solving MMOPs by estimating the contour

landscape of the problem and predicting the rough position of

the potential optima. In CPA, the solutions can be regarded as

the positions, whereas the fitness values of the solutions can be

perceived as the elevations of the positions. Taking a

two-dimensional problem for instance, each solution xi can be

represented by (xi,1, xi,2). When several niches are formed, each

niche Sj will have a niche seed which is with the best fitness

value. For each niche Sj, we found some individuals nearest to

the niche seed in Sj to form a network, as shown in Fig. 3(a). In

this figure, the solid cycles denote the niche seeds, while the

hollow cycles denote the individuals nearest to the niche seed.

Each position (solution/individual) is denoted by (a, b) c in the

figure, where (a, b) is the coordinate of the current individual

and c is the elevation (fitness value) of the current individual.

Then, we calculate each dimension of each interpolated point

xi' as:

'

,1 ,1 ,1 ,1

'

,2 ,2 ,2 ,2

()

()

−
= + − −

− = + −

 −

lbest

i lbest i lbest

i lbest

lbest

i lbest i lbest

i lbest

f f
x x x x

f f

f f
x x x x

f f

 (10)

0 5 10 15 20

0

 5

1
0

 1

5

2
0

(5,15) 7

(16,17) 9

(15,4) 8(4,5) 6

(10,8) 15

0 5 10 15 20

0

 5

1
0

 1

5

2
0

(5,15) 7

(16,17) 9

(15,4) 8(4,5) 6

(10,8) 15

18

(a) Form the networks (b) Draw contours and predict peaks

Fig. 3 Contour prediction approach (CPA) in a two-dimensional example

(a) Form the networks (b) Draw contours and predict peaks
Sea Level

100

200

300

400

500

200 300
400500

Sea Level
100

Fig. 2 An example of contours

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

where the xlbest and xi are the niche seed and its ith adjacency

individual in the niche, flbest and fi are the fitness values of xlbest

and xi, respectively, whereas f is the contour value. In order to

accelerate the approaching speed to the summit or the best

solution, f is set larger than flbest for a maximization problem or

smaller than flbest for a minimization problem, shown as:

0.2 0.1, maximization problem

0.2 0.1, minimization problem

lbest

lbest

lbest

f
f f

f

 +
− =

− −

 (11)

where 0.2 is the coefficient of |flbest| to control the approaching

speed to the summit and 0.1 is the disturbance to deal with the

condition that the function is with zero fitness value. We have

investigated these two values in Table S.IV-V in the

supplemental file. The results show that setting the coefficient

as 0.2 (-0.2 for minimization problems) can achieve the balance

between fast convergence and avoiding distortion. Moreover,

the disturbance is not sensitive and is simply set as 0.1 herein.

In Fig. 3(b), the contour value is set to 18, and the symbol ‘x’

denotes the interpolated points. After obtaining the interpolated

points, we draw the contours by connecting all these

interpolated points.

As we mentioned before, the potential summits are enclosed

in a contour. Therefore, after getting several interpolated points

and drawing the contours, the potential summits within the

contours will be determined. In this paper, we use the centroid

x' of the contour to approximately estimate the optima, which

can be expressed as:

 1

'

'

K

i

i

K

==

x

x

 (12)

where the K is the number of interpolated points and no more

than 5, xi' is the ith interpolated point. Note that if the legal

interpolated points are fewer than 3, the contour cannot be

drawn. In other words, if the niche Sj has fewer than 4

individuals, CPA is not used. In Fig. 3(b), the stars represent the

potential optima we estimated using (12). For each niche, if the

fitness of the estimated optimum is better than the niche seed,

the estimated optimum will replace the niche seed, otherwise

the estimated optimum is ignored.

Now we extend CPA into any dimensional problems. In a

D-dimensional problem, each individual xi can be expressed as

(xi,1, xi,2, … , xi,D). Similarly, we use the formula like (10) to

determine each dimension of the interpolated point xi' as:

'

,1 ,1 ,1 ,1

'

.2 ,2 ,2 ,2

'

, , , ,

()

()

...

()

−
= + − −

 −

= + −
−

−
= + −

−

lbest

i lbest i lbest

i lbest

lbest

i lbest i lbest

i lbest

lbest

i D lbest D i D lbest D

i lbest

f f
x x x x

f f

f f
x x x x

f f

f f
x x x x

f f

 (13)

After that, we also use (12) to predict the potential optima.

The whole procedure of CPA can be seen in Fig. 4 as a

flowchart, where n is the number of niches identified in APC.

Based on CPA, ANDE can locate the ranges of the potential

summits effectively, which will give a proper guidance of

evolution. Meanwhile, forecasting the optima directly will

simplify the search process and accelerate the convergence

speed. The effectiveness and feasibility of CPA will be fully

investigated in the Section IV-D(2).

C. TLLS to Refine Solution Accuracy

Although CPA can predict the potential optima and

accelerate convergence to some degree, it may still not be

accurate enough. Motivated by this, a TLLS is proposed in this

paper to enhance the exploitation ability of algorithm and

increase the accuracy of solutions. Gaussian distribution is

utilized here due to its promising local search performance by

sampling small areas, shown in (14a):

xnew= Gaussian(x, σ) (14a)

where xnew is the new generated individual by the Gaussian

distribution with the individual x as the mean and a standard

deviation σ.

During the evolutionary process, the standard deviation σ in

Gaussian distribution is decreased using an exponential model,

shown in (14b), to sample relatively wide areas in the early

stage and sample narrow areas at late. Besides, to keep

population diversity and avoid getting trapped in the local

optima, σ is set larger for the problems with higher dimensions

to sample wide areas while smaller for problems with lower

dimensions. Herein, the exponent 3 is used to control the lower

Cluster 1

(Niche 1)

Cluster 2

(Niche 2)

Cluster 3

(Niche 3)

Cluster 4

(Niche 4)

Cluster 5

(Niche 5)

Fig. 5 Illustration of two-level local search

Start

Find the xlbest and its neighborhoods in Sj

Calculate the interpolated points using (13)

Finish

j=j+1

yes

Determine the contour value using (11)

j<=n?

Sj has at least four

individuals?

Estimate the potential optima x' using (12)

f(x')>f(xlbest)

xlbest=x'

j=1

no

no

no

yes

yes

Fig. 4 The flowchart of CPA

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

bound of the σ. We have investigated the exponent used in (14b)

in Table S.VI in the supplemental file. The results show that

setting the exponent as 3 can achieve the balance between

exploration and exploitation.

()10/ 3
1

10

D FEs

MaxFEs
+

− −

= (14b)

As indicated by its name, the TLLS has two-level local

search, including a niching-level local search and an

individual-level local search. As locating more optima is the

main objective of MMOPs, we first execute the local search

operator on niching-level because different niches focus on

different peaks. On niching-level, the local search is executed

on the niche seed for finding more promising solutions. As

there are many niche seeds (each niche has one), it is intuitive

that the better niche seed is, the greater chance it is close to the

global optima and should do local search. This indicates the

opportunity of executing local search should be related to the

fitness values of niche seeds. Therefore, we first sort the niche

seeds in ascending order according to their fitness values (from

worse to better). Then, set the probability of the ith niche to do

local search as:

Pi=ri/n (15)

where ri is the rank of the ith niche seed in the sort of fitness, and

n is the number of niches.

However, without any heuristic information or prior

knowledge about the distribution of peaks in MMOPs, several

peaks may be covered by the same niche if the peaks are close

to each other or the number of peaks is too large. Suppose the

current population distribution is shown in Fig. 5. The niche 1

covers two peaks because they are very close to each other.

Niche 2 and niche 3 cover one peak respectively. While the

niche 4 and niche 5 cover the local optima. Our proposed

niching-level local search based on Pi can avoid wasting the

local search FEs on local optima to some degree. For example,

the chance of performing local search in the niche 4 and niche 5

is small because their Pi values are small. However, if we only

do local search on niching-level, the accuracy of some optima

may not be improved, e.g., only one peak in the niche 1 can be

refined. Consequently, after executing local search operator at

niching-level, an individual-level local search is also executed.

Specifically, if the current niche i satisfies the probability Pi to

do local search, some individuals with better fitness value in

this niche should also do local search. The method is similar to

that in niching-level, which is first sorting the individuals in

ascending order according to their fitness values in the current

niche (from worse to better). Then set the probability of the kth

individual to do local search in the ith niche as:

Pik=rk/ni (16)

where rk is the rank of the kth individual in the sort of fitness,

and ni is size of ith niche.

The number of points sampled by local search is set as 2. The

whole framework of the TLLS is shown in Algorithm 1.

Using this TLLS scheme, we can enhance the exploitation

ability of algorithm and increase the accuracy of all the global

optima. Moreover, the fitness rank based probabilistic scheme

(i.e., Eqs. (15) and (16)) can avoid wasting FEs on local optima

and inferior individuals.

D. ANDE for High Dimensional Problems

However, when dealing with the high dimensional problems,

the niching strategy based on APC may also face the difficulty

of “curse of dimensionality” like other clustering methods. In

order to relieve this difficulty, we do not apply the APC directly

on the original population whose individuals (solutions) are in

high dimension, but firstly construct an additional population

that is with dimensionality reduction from the original

population. This way, the APC can be performed on the

individuals of the additional population that are with low

dimension, so as to cluster the individuals more easily and more

efficiently.

PCA is an effective method to achieve dimensionality

reduction using mathematical projection. Therefore, we apply

PCA into our ANDE algorithm to construct the additional

population by reducing the D dimensions to k dimensions. The

specific implementation is shown as the following six steps:

1) Construct a D×N matrix X using the current population,

where D is the dimension of problem and N is the

population size.

2) Transform the average value of each row in X to zero.

3) Generate the covariance matrix 1 TC XX
D

= .

4) Calculate the eigenvalues and eigenvectors of C.

Algorithm 2: ANDE

Begin

1. Randomly generate N individuals as the population P.

2. While FEs≤MaxFEs

3. (For problems with dimensions higher than 3, using PCA

method to achieve dimensionality reduction.)

4. Using APC for niching.

5. For each niche Si

6. If ni≥4 // ni is the size of Si.

7. Generate offspring using standard DE;

8. For each offspring in Si

9. Compare its fitness with the fitness of its most similar

parent X in Si and replace X if the offspring is better;

10. End For

11. End If

12. Predict the potential optima using CPA in Fig. 4.

13. End For

14. Execute the TLLS using Algorithm 1.

15. End While

End

Algorithm 1: TLLS

Begin

1. Generate the sample standard deviation σ using (14b).

2. Calculate the niche-level local search probability Pi using (15).

3. For each niche Si

4. If rand<Pi

5. For each individual xik in Si;

6. Calculate the individual-level local search probability

Pik using (16);

7. If rand<Pik

8. Sample 2 points around individual xik based on

Gaussian distribution in (14a);

9. Evaluate these 2 points and denote the better one as xik';

10. If xik' is better than xik

11. Replace xik by xik';

12. End If

13. End If

14. End For

15. End If

16. End For

End

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

5) Sorting the eigenvectors according to their eigenvalues, and

we choose the first k eigenvectors as a new matrix P,

where k is the dimension we wish to obtain.

6) Obtain X'=PX, where X' is the matrix after dimensionality

reduction.

In our algorithm, for problems with higher than 3 dimensions

(D>3), we set k=3. In other words, we additionally construct a

3×N matrix X' using PCA. Accordingly, we can obtain the

additional population with N individuals and 3 dimensions.

This way, the additional population is a dimension reduced

version of the original population. The APC can be carried out

on this additional population to help cluster the individuals

more easily and thus obtain better niching results. However, all

the other operators in ANDE (such as the evolutionary

operators and fitness evaluations) are still executed on the

original space and using the original population. Therefore, the

topology of the functional landscape of the solving problems,

the locations of the optima, and the search information of the

evolutionary population are not affected by PCA.

Based on PCA technique, we can achieve better niching

using APC when dealing with the problems with high

dimensions.

E. The Complete Algorithm ANDE

Overall, based on all the components mentioned above, the

complete algorithm ANDE is shown in Algorithm 2 as the

pseudo-code, together with the following advantages.

1) Niching strategy based on APC forms the niches

automatically without sensitive parameters or any extra

FEs, which is efficient to locate different peaks of

MMOPs.

2) After the population partition and evolutionary operations,

CPA can effectively speculate the rough position of the

potential optimum in each niche, which can give a proper

guidance of evolution and accelerate convergence.

3) The TLLS refines the solutions and enhances the

exploitation ability of algorithm, which attempts to

increase the accuracy of all the global optima. Moreover,

the two-level fitness rank based probabilistic scheme can

avoid wasting FEs on local optima and inferior

individuals.

IV. EXPERIMENTAL RESULTS

A. Benchmark Functions and Performance Measures

All the 20 frequently used multimodal benchmark functions

from CEC2015 competition are used to test the performance of

ANDE and compared state-of-the-art multimodal optimization

algorithms (CEC2015 competition contains the same problems

as the CEC2013 test suite) [63]. The main characteristics of

these functions are summarized in Table S.VII in the

supplemental file due to the page limitation.

Besides, three performance measures including peak ratio

(PR), success rate (SR), and convergence speed (AveFEs) are

utilized to evaluate the performance of all the multimodal

algorithms. Given a fixed maximum fitness evaluations

(MaxFEs) and a fixed accuracy level ε, the PR reflects the mean

percentage of all global optima found over multiple runs. SR is

the percentage of successful runs, where a successful run means

all global optima are found in a single run. The AveFEs is the

average fitness evaluations required to find all the global

optima. The mathematical formulas can be expressed below:

 1 1, ,

R R

i i

i i

NFP FEs
NSR

PR SR AveFEs
NP R R R

= == = =

 (17)

where NFPi is the number of optima found in ith run, NP is the

number of peaks, NSR is the number of successful runs, FEsi is

the number of fitness evaluations required in ith run, and R is the

number of runs. Note that if an algorithm cannot find all global

optima in the ith run, the FEsi is set as MaxFEs.

Five accuracy levels, ε=1.0E-01, ε=1.0E-02, ε=1.0E-03,

ε=1.0E-04, and ε=1.0E-05, are frequently used in the literatures.

However, in this paper, only the last three accuracy levels

ε=1.0E-03, ε=1.0E-04, and ε=1.0E-05 are adopted because the

accuracy levels ε=1.0E-01 and ε=1.0E-02 are not accurate

enough. Moreover, unless otherwise stated, we mainly discuss

the results with accuracy level ε=1.0E-04, which is common in

[34]-[45], [52]-[56]. Readers can refer to [63] for more details

about the performance measures and the approach for

calculating the number of global optima found.

Moreover, the population size is set as in Table I, where the

MaxFEs is adopted directly from CEC2015 competition [63].

DE/rand/1 mutation strategy is used in ANDE, and the

amplification factor F and crossover rate CR in ANDE are set

as 0.9 and 0.1, respectively. The experiments are conducted on

a PC with 4 Intel Core i5-7400 3.00 GHz CPUs, 8 GB memory,

the Windows 10 64-bit system and MATLAB 2015b edition.

All algorithms run 51 times on each function independently and

the mean results are reported.

B. Comparisons with State-of-the-Art Multimodal Algorithms

To examine the performance of ANDE, we compare ANDE

with the following state-of-the-art 9 DE multimodal algorithms,

including CDE [34], SDE [35], Self-CCDE, Self-CSDE [36],

NCDE, NSDE [37], LoICDE, LoISDE [38], and PNPCDE [39].

Moreover, we also compare ANDE with other 5 EA

multimodal algorithms, including PSO with ring topology

(R2PSO and R3PSO) [55], locally informed PSO (LIPS) [56],

multimodal EDA (LMCEDA and LMSEDA) [54] and a

multi-objective technique MOMMOP [45]. All these

competing multimodal algorithms use the same population size

N and MaxFEs in Table I, the same as ANDE, to solve

CEC2015 problems well and to make the comparisons fair.

Table II summarizes the comparison results between ANDE

and other multimodal algorithms in PR and SR at all the three

accuracy levels, while the detailed comparison results are

shown in Tables S.VIII-S.XIII in the supplemental file for

saving space. The best PRs are highlighted by boldface for

clarity. Besides, Wilcoxon’s rank sum test [64] at α=0.05 in PR

is used to evaluate the statistical significance between ANDE

and the compared multimodal algorithms. The symbols “+”, “-”,

or “≈” indicate that ANDE is significantly better than, worse

TABLE I. PARAMETER SETTINGS
Test Function N MaxFEs

F1-F5 80 5.00E+04

F6 100 2.00E+05

F7 300 2.00E+05

F8-F9 300 4.00E+05

F10 100 2.00E+05

F11-F13 200 2.00E+05

F14-F20 200 4.00E+05

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

than, or similar to the compared multimodal algorithms.

According to the results in Table II and Tables S.VIII-S.XIII,

we find that with the accuracy level increases, the performance

of many multimodal algorithms deteriorates rapidly, except

ANDE. In particular terms:

1) For the first 15 functions F1-F15 with no more than 3

dimensions (D≤3), ANDE performs significantly better

than other algorithms on most functions, no matter on

which accuracy level. Take accuracy level ε=1.0E-04 as

an instance. As we can see from Table S.X in the

supplemental file, ANDE dominates SDE, R2PSO,

R3PSO, NSDE, Self-CSDE, and LoISDE on at least 10

functions; dominates CDE, LIPS, NCDE, PNPCDE,

Self-CCDE, LoICDE, LMCEDA, and LMSEDA on at

least 7 functions. Significantly, the results show that all

the competitors cannot outperform ANDE more than 1

function, except MOMMOP. Note that ANDE performs

similarly to MOMMOP on these 15 functions. However,

ANDE shows an obvious advantage on the last 5 functions,

which will be discussed next.

2) For the last 5 functions F16-F20 with more than 3

dimensions (D>3), ANDE outperforms all the

competitors on almost all the 5 functions. Take accuracy

level ε=1.0E-04 in Table S.XI in the supplemental file for

example again, ANDE dominates CDE, SDE, LIPS,

R2PSO, R3PSO, NSDE, PNPCDE, Self-CCDE,

Self-CSDE, LoICDE, and LoISDE on all the 5 functions.

It is noteworthy that ANDE dominates MOMMOP and

NCDE on 4 and 3 out of the 5 functions, respectively,

while is dominated by MOMMOP on only 1 function.

Such observation fully illustrates that ANDE can tackle

MMOPs effectively when the dimensions and

complexities increase. Even though ANDE performs a

little worse than LMCEDA and LMSEDA on these 5

functions, ANDE still outperforms and shows a great

dominance than these two algorithms on F1-F15,

especially on F6-F9, where exist numerous peaks as shown

in Table S.X and discussed above.

Therefore, ANDE is much more promising and suitable than

these state-of-the-art multimodal algorithms. The superiority

and dominance of ANDE are increasingly obvious with the

required accuracy level increases. Besides, ANDE can maintain

its dominance when dealing with the MMOPs with a larger

number of peaks and with higher dimensions or complexities.

For the comparison in AveFEs, since it is no sense to

evaluate this performance metric on functions that no algorithm

TABLE II. SUMMARIZED RESULTS IN PR AND SR ON PROBLEMS AT ALL THE THREE ACCURACY LEVELS
ANDE V.S. CDE SDE LIPS R2PSO R3PSO NCDE NSDE PNPCDE

ε=1.0E-03

+ 13 18 14 16 16 11 18 14

- 0 0 0 0 0 0 0 0

≈ 7 2 6 4 4 9 2 6

ε=1.0E-04

+ 13 19 14 16 16 11 18 14

- 0 0 1 0 0 0 0 0

≈ 7 1 5 4 4 9 2 6

ε=1.0E-05

+ 14 19 14 16 17 12 18 15

- 0 0 1 0 0 0 0 0

≈ 6 1 5 4 3 8 2 5

ANDE V.S. Self-CCDE Self-CSDE LoICDE LoISDE LMCEDA LMSEDA MOMMOP

ε=1.0E-03

+ 11 15 12 18 7 7 8

- 1 0 0 0 3 3 4

≈ 8 5 8 2 10 10 8

ε=1.0E-04

+ 13 17 13 18 8 7 7

- 1 0 0 0 3 3 4

≈ 6 3 7 2 9 10 9

ε=1.0E-05

+ 13 18 14 18 8 7 7

- 1 0 0 0 2 3 4

≈ 6 2 6 2 10 10 9

(a) F1 (b) F2 (c) F4 (d) F6

(e) F7 (f) F10 (g) F11 (h) F12

Fig. 6 Final population distribution on 8 selected functions (a) F1 (b) F2 (c) F4 (d) F6 (e) F7 (f) F10 (g) F11 (h) F12

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

has a successful run, therefore, we only select the first 5

functions F1-F5 for investigations. Meanwhile, we only

compare ANDE with CDE, NCDE, Self-CCDE, LoICDE,

PNPCDE, MOMMOP, LMCEDA, and LMSEDA because they

can achieve the comparable performance. Table S.XIV in the

supplemental file shows the comparison results in AveFEs at all

these three accuracy levels, and the best results are emphasized

by boldface. As we can see, ANDE generally achieves a faster

convergence speed than other multimodal algorithms at

accuracy level ε=1.0E-03, except NCDE. That may be due to

the CPA in ANDE can speculate the approximate position of

the potential optima and accelerate convergence speed.

However, when the accuracy level increases from ε=1.0E-03 to

ε=1.0E-05, ANDE performs a little worse than both NCDE and

LMSEDA. That may be explained by the TLLS in ANDE,

which will consume more FEs to get more accurate results.

However, the more FEs brought by TLLS can be compensated

by the high solution accuracy and better PR and SR results,

shown above. Even so, ANDE still maintains a faster

convergence speed in locating all the global optima at all the

three accuracy levels than other algorithms.

From all the above comparison results (including PR, SR,

and AveFEs), we can observe that ANDE can locate more

global optima within fewer FEs, especially when solving the

problems with high complexities and numerous global optima,

which fully proves the superiority of ANDE. The advantages of

ANDE may be due to its novel techniques in ANDE: 1) APC; 2)

CPA; 3) TLLS; and 4) PCA. The first APC niching technique

can generate suitable niches automatically to match the

landscape of the problem, without sensitive parameter and extra

FEs. The second CPA technique can effectively predict the

rough position of the potential optimum in each niche, which

can provide a proper guidance of evolution and lead to fast

convergence. The third TLLS strategy aims to refine the

solution, which enhances the exploitation ability of ANDE and

increases the accuracy of all the global optima. In addition, the

dimensionality reduction technique using PCA can achieve

better niching, which is more suitable for dealing with the

complicated and high dimensional MMOPs. The effects of

these techniques will be further discussed in the Section IV-D.

Therefore, equipped with the novel techniques mentioned

above, ANDE outperforms other state-of-the-art algorithms.

To have a more intuitive view of the ANDE, we display the

final population distribution on 8 selected functions in Fig. 6.

As we can see from the Fig. 6, ANDE can locate all the

global optima, even there exist many global optima, such as the

F6 and F7 in Fig. 6 (d)&(e). For the more complex functions

which contain massive local optima, such as the F11 and F12 in

Fig. 6 (g)&(h), ANDE maintains the exploration ability and

population diversity, also avoids local optima and locates all

the global optima.

C. Comparison with Winner of CEC2015 Competition

To further demonstrate the superiority of ANDE, in this

subsection, we compare ANDE with the winner of the

CEC2015 competition on multimodal optimization, NMMSO

[64]. For fair comparison, we directly cite the mean results of

NMMSO from the CEC2015 competition

(https://github.com/mikeagn/CEC2013/tree/master/NichingCo

mpetition2015FinalData).

The detailed comparison results with respect to PR and SR

between ANDE and NMMSO on all the three accuracy levels

are listed in Table III. The best PR results are highlighted in

boldface. Due to the lack of the detailed results of NMMSO in

each run, we cannot conduct the Wilcoxon’s rank sum test to

evaluate the statistical significance between ANDE and

NMMSO. Therefore, whether ANDE is better than (+), worse

than (-), or similarly to (≈) NMMSO is just measured by the

values of PR.

From Table III, we find that ANDE still keeps its promising

performance compared with NMMSO. First, at the accuracy

level ε=1.0E-03 and ε=1.0E-04, ANDE dominates NMMSO on

8 and 7 functions, respectively, while only dominated by

NMMSO on 6 functions. Second, at the last accuracy level

ε=1.0E-05, ANDE achieves the equivalent performance

compared to NMMSO, where the number of functions that

TABLE III. EXPERIMENTAL RESULTS IN PR AND SR BETWEEN ANDE AND NMMSO ON PROBLEMS F1-F20 AT ALL THE THREE ACCURACY LEVELS
ε=1.0E-03 ε=1.0E-04 ε=1.0E-05

Func
ANDE NMMSO

Func
ANDE NMMSO

Func
ANDE NMMSO

PR SR PR SR PR SR PR SR PR SR PR SR

F1 1.000 1.000 1.000(≈) 1.000 F1 1.000 1.000 1.000(≈) 1.000 F1 1.000 1.000 1.000(≈) 1.000

F2 1.000 1.000 1.000(≈) 1.000 F2 1.000 1.000 1.000(≈) 1.000 F2 1.000 1.000 1.000(≈) 1.000

F3 1.000 1.000 1.000(≈) 1.000 F3 1.000 1.000 1.000(≈) 1.000 F3 1.000 1.000 1.000(≈) 1.000

F4 1.000 1.000 1.000(≈) 1.000 F4 1.000 1.000 1.000(≈) 1.000 F4 1.000 1.000 1.000(≈) 1.000

F5 1.000 1.000 1.000(≈) 1.000 F5 1.000 1.000 1.000(≈) 1.000 F5 1.000 1.000 1.000(≈) 1.000

F6 1.000 1.000 0.992(+) 0.880 F6 1.000 1.000 0.992(+) 0.880 F6 1.000 1.000 0.000(+) 0.000

F7 0.936 0.176 1.000(-) 1.000 F7 0.933 0.176 1.000(-) 1.000 F7 0.941 0.196 1.000(-) 1.000

F8 0.947 0.078 0.922(+) 0.020 F8 0.944 0.078 0.899(+) 0.020 F8 0.948 0.039 0.870(+) 0.000

F9 0.516 0.000 0.978(-) 0.120 F9 0.512 0.000 0.978(-) 0.120 F9 0.506 0.000 0.978(-) 0.120

F10 1.000 1.000 1.000(≈) 1.000 F10 1.000 1.000 1.000(≈) 1.000 F10 1.000 1.000 1.000(≈) 1.000

F11 1.000 1.000 0.990(+) 0.940 F11 1.000 1.000 0.990(+) 0.940 F11 1.000 1.000 0.990(+) 0.940

F12 1.000 1.000 0.995(+) 0.960 F12 1.000 1.000 0.993(+) 0.940 F12 1.000 1.000 0.990(+) 0.920

F13 0.771 0.078 0.983(-) 0.900 F13 0.686 0.000 0.983(-) 0.900 F13 0.686 0.000 0.983(-) 0.900

F14 0.667 0.000 0.723(-) 0.020 F14 0.667 0.000 0.720(-) 0.000 F14 0.667 0.000 0.720(-) 0.000

F15 0.645 0.000 0.642(+) 0.000 F15 0.632 0.000 0.632(≈) 0.000 F15 0.632 0.000 0.632(≈) 0.000

F16 0.667 0.000 0.660(+) 0.000 F16 0.667 0.000 0.660(+) 0.000 F16 0.667 0.000 0.660(+) 0.000

F17 0.397 0.000 0.470(-) 0.000 F17 0.397 0.000 0.468(-) 0.000 F17 0.397 0.000 0.460(-) 0.000

F18 0.654 0.000 0.650(+) 0.000 F18 0.654 0.000 0.650(+) 0.000 F18 0.650 0.000 0.650(≈) 0.000

F19 0.363 0.000 0.457(-) 0.000 F19 0.363 0.000 0.450(-) 0.000 F19 0.363 0.000 0.437(-) 0.000

F20 0.250 0.000 0.172(+) 0.000 F20 0.248 0.000 0.172(+) 0.000 F20 0.248 0.000 0.172(+) 0.000

+(ANDE is better) 8 +(ANDE is better) 7 +(ANDE is better) 6

-(ANDE is worse) 6 -(ANDE is worse) 6 -(ANDE is worse) 6

≈ 6 ≈ 7 ≈ 8

https://github.com/mikeagn/CEC2013/tree/master/NichingCompetition2015FinalData
https://github.com/mikeagn/CEC2013/tree/master/NichingCompetition2015FinalData

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

ANDE dominates NMMSO is the same to the number of

functions that ANDE is dominated by NMMSO. However, we

can see that ANDE performs much better than NMMSO on F6

and F8 at the accuracy level ε=1.0E-05. In particularly, on F6,

ANDE can locate all the global optima in all the runs with

1.000 for PR and 1.000 for SR, while NMMSO cannot locate

any global optima in each run with 0.000 for PR and 0.000 for

SR. Even on the functions where ANDE is dominated by

NMMSO, ANDE still achieves the comparable performance to

NMMSO. For example, at the accuracy level ε=1.0E-05, on F14,

F17, and F19, ANDE achieves the PR with 0.667, 0.397, and

0.363 respectively, which is very close to the PR in NMMSO

with 0.720, 0.460, and 0.437 respectively. Third, when dealing

with the complicated problems with higher dimensions F16-F20,

especially with 20D in F20, ANDE performs better than

NMMSO, no matter on which accuracy level, further showing

the superiority of ANDE for dealing with the high complexities

or high dimensional problems.

Overall, we can see that ANDE is competitive or even better

than the winner of the CEC2015 competition.

D. Influence of Each Component in ANDE

The main components in ANDE are 1) APC; 2) CPA; 3)

TLLS; and 4) PCA. Herein, we will discuss the influence of

each component in ANDE.

1) APC: Clustering techniques have been applied in

crowding and speciation niching in [36][37]. However, these

two clustering niching methods both have a parameter, cluster

size M, which will directly affect the performance of algorithm.

Herein, to investigate the effectiveness of the new proposed

niching method, the ANDE variants, where the APC-based

niching is replaced by the crowding or speciation clustering

niching is compared with ANDE on F1-F20. The cluster size M

is set as 5 or 10, which are also frequently used in [36][37]. The

ANDE with clustering niching of crowding or speciation and

with a fixed cluster size M=a is termed as ANDE-C(a) or

ANDE-S(a), respectively. For example, ANDE with crowding

clustering and with cluster size M=10 is denoted as

ANDE-C(10). The comparison results between ANDE and its

variants in PR and SR at accuracy level ε=1.0E-04 are shown in

Table S.XV in supplemental file.

As we can see, on functions F1-F6, and F10, all the 5

competitors can locate all the global optima. The ANDE-C(10)

(a) FEs=0 (b) FEs=20000 (c) FEs=40000 (d) FEs=60000 (e) FEs=80000

Fig. 7 Population distribution on F6 using different niching strategies after a certain number of FEs

A
N

D
E

A

N
D

E
-C

(5
)

A
N

D
E

-C
(1

0
)

A
N

D
E

-S
(5

)
A

N
D

E
-S

(1
0

)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

performs the best on the functions F7-F9. However, on F11-F15,

with a huge number of local optima, ANDE gradually shows its

tremendous advantage. ANDE obtains the best results on both

PR and SR performance metrics on all these complex functions,

while the other algorithms can only obtain similar results on F12

and F14. ANDE-C(10) also obtains equivalent performance on

F11, but is significantly worse than ANDE on F13 and F15.

Particularly, when the dimensions and complexities increase,

especially on F18-F20 with 10 and 20 dimensions, the

superiority of ANDE is more obvious.

Besides, different niching strategy and different cluster size

M are suitable for different problems. For instance, the

crowding cluster niching strategy may be suitable for the

problems with numerous global optima, such as on F7-F9.

While the speciation cluster niching strategy is probably

suitable for the problems with high complexities, such as on

F17-F19. In addition, the large cluster size contains a wide range

of information, which may be appropriate for diversity

maintaining, performs well on F7-F9. While the small cluster

size covers narrow areas, which may be suitable for

exploitation, performs well on F13.

Overall, neither a small nor a large cluster size and neither

crowding clustering nor speciation clustering is attractive, and

these two clustering niching methods are both sensitive to the

cluster size and lose their feasibilities on some sophisticated

functions. However, without any heuristic information and any

sensitive parameters, ANDE still generally outperforms

ANDE-S(5), ANDE-S(10), ANDE-C(5), and ANDE-C(10) on

8, 7, 7, and 5 functions, while is dominated by these 4 variants

on only 1, 2, 3, and 3 functions, respectively.

Moreover, to further present the cluster behaviors of ANDE

and ANDE variants, we draw the population distribution during

the evolutionary process on the contour landscape of F6, shown

in Fig. 7. The line connected between two individuals means

they belong to the same cluster/niche. As we can see, only

ANDE can produce the stable niches to match the landscape of

the problem, while the niching results in other variants are in a

mess, which may mislead the evolution.

From the Table S.XV and Fig. 7, we find that the APC-based

niching strategy is almost not affected by the random initialized

solutions in the search space in different runs and is more

suitable for solving MMOPs than crowding clustering and

speciation clustering. On the one hand, it can form stable niches

automatically for better evolution, on the other hand, it does not

use the sensitive parameter such as the number of clusters or the

cluster size M and does not take up any extra FEs.

As for the computational time shown in Table S.XV, we can

see that ANDE generally consumes more computational time

than its variants with other clustering niching techniques. That

is due to the APC-based niching actually involves the iterative

process. Although the APC induces some extra computational

time to ANDE, it also helps ANDE form stable niches

automatically for better evolution and locate all the global

optima more accurately. As a result, the improvements in

performance are much worth since the increased computational

time can be compensated by the stable niching result and high

solution accuracy.

2) CPA: In this part, to investigate the influence of CPA, the

ANDE variant without CPA, termed as ANDE-noCPA is

compared with ANDE. Since CPA is used to estimate the rough

position of the potential peak to accelerate convergence and

save FEs, we only use the performance metric AveFEs herein to

show the effectiveness of CPA. Similarly, since it is no sense to

evaluate this performance metric on complicated functions

where ANDE cannot achieve a successful run, only the first 5

functions F1-F5 are used for investigations. The comparison

results at all the three accuracy levels are listed in Table S.XVI

in supplemental file. From Table S.XVI, we find that ANDE

can achieve faster convergence speed and save FEs effectively

than ANDE-noCPA on 3 functions on accuracy levels

ε=1.0E-03 and ε=1.0E-04, which fully illustrates the advantage

of the peak prediction. When accuracy level increases to

ε=1.0E-05, the superiority of ANDE is not significantly

obvious. That may be due to the fact that both ANDE and

ANDE-noCPA use the TLLS method to refine the solution

accuracy, which will also consume some FEs. Even so, ANDE

still achieves the fast search process than ANDE-noCPA on F4

and F5, while ANDE-noCPA cannot surpass ANDE on any

functions. As a result, we may reasonably come to the

conclusion that CPA can effectively speculate the appropriate

position of potential optima and save FEs.

Table S.XVI also shows the time required to find all the

global optima to test the time influence of CPA. As we can see,

ANDE generally consumes less computational time than its

variant without CPA component. That is due to the CPA in

ANDE can speculate the approximate position of the potential

optima and accelerate convergence speed. With the help of

CPA, we can locate all the global optima more quickly by using

fewer FEs, which will save the computational time.

3) TLLS: The local search method is mainly to increase the

accuracy of solution and enhance the exploitation ability of

algorithm. Herein, we take a close observation at the influence

of the local search and the two-level scheme. We denote the

ANDE without local search and with only niche-level local

search as ANDE-noLS and ANDE-onlyN, respectively. The

ANDE with only niche-level local search is to sample the

individuals only around the niche seed xsi of the ith niche Si. The

complete niche-level local search is shown in Algorithm S1 in

the supplemental file. Table S.XVII in the supplemental file

presents the comparison results with respect to PR and SR at

accuracy level ε=1.0E-04. We first illustrate the effectiveness

of local search. According to the comparison results, we find

both ANDE and ANDE-onlyN can surpass than ANDE-noLS

on many functions, such as F6-F9, F11-F13, and F17-F20. As a

whole, the local search is extremely useful for ANDE, which

can increase the accuracy of solutions. Next we illustrate the

advantage of the two-level scheme. From the comparison

results between ANDE and ANDE-onlyN, ANDE still

outperforms ANDE-onlyN on many functions, such as F6-F9,

F11-F12. That may be due to the fact that some peaks are

covered by the same niche, so that some peaks cannot improve

their accuracy if performing local search only on niche-level.

However, as we all known, to get more accurate results, the

local search scheme will take up some extra FEs. On F17 and

F19, ANDE-onlyN performs slightly better than ANDE, which

may be due to the TLLS has to consume more extra FEs on both

the niche and individual levels than the local search on only

niche level. Even so, ANDE still shows its superiority on other

functions.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

Besides, ANDE generally consumes less computational time

than its variants without local search and with only niche-level

local search, shown in Table S.XVII. That is due to the TLLS

has to be allocated FEs to further enhance the exploitation

ability and improve the solution accuracy. As a result, the

number of generations in evolutionary process will decrease

due to some FEs are allocated for TLLS. Therefore, fewer

APC-based niching and evolutionary operators are needed,

which can save the computational time.

In short, we can conclude that the TLLS is beneficial for

ANDE in locating more global optima and increasing accuracy.

4) PCA: ANDE shows its prominent advantages when

dealing with MMOPs, which can be seen from Section IV.B

and Section IV.C. However, when dealing with the high

dimensional MMOPs, the niching method based on APC is

somehow affected by the dimensions of problems. Therefore,

PCA is used here to achieve dimensionality reduction for better

niching. In that way, in order to study the usefulness of PCA,

ANDE is compared with the ANDE variant without PCA,

termed as ANDE-noPCA. We only choose the last 5 functions

F16-F20 to compare because PCA is only used for problems with

more than 3 dimensions (D>3). The detailed experimental

results in PR and SR at accuracy level ε=1.0E-04 are shown in

Table S.XVIII in the supplemental file. Obviously, on F16-F17,

there is no significant difference between ANDE and

ANDE-noPCA, which illustrates the property of APC is not

severely affected when the dimension is less than or equal to 5.

However, ANDE-noPCA deteriorates rapidly on F18-F20,

where the dimension increases to 10 or 20. While ANDE

maintains a stable performance and dominates ANDE-noPCA

on these 3 functions. Such an observation directly shows the

effectiveness of PCA, which can achieve the dimensionality

reduction for better niching.

Moreover, ANDE generally consumes less computational

time than its variant without PCA component. That is due to the

PCA in ANDE can achieve the dimensional reduction, which

helps clustering faster and save computational time.

E. FEs Consumed of Each Component in ANDE

We further discuss the FEs consumed of each component in

ANDE. The detailed experimental results are listed in Table

S.XIX and Fig. S1 in the supplemental file.

The first component of ANDE is APC for population

partition. The APC is an automatic niching technique, which

can form clusters/niches automatically without any extra FEs.

So the APC does not consume any extra FEs.

After using APC to partition the population into suitable

clusters/niches automatically to locate different peak regions,

the DE evolutionary operators are performed within each niche.

Each individual will evolve and consume 1 FE. However, for

the niches with fewer than 4 individuals, the DE operators are

not executed because DE must have at least 4 individuals.

Therefore, the FEs consumed in DE is about N or a little fewer

than N in each generation.

Then, CPA is further developed to estimate the contour

landscape of each niche. Each niche will consume 1 FE to

estimate the optimum. However, if the legal interpolated points

are fewer than 3, the contour cannot be drawn. In other words,

if the current niche has fewer than 4 individuals, CPA is not

used. Therefore, the FEs consumed in CPA is about n or a little

fewer than n (n is the number of niches) in each generation.

At last, in order to enhance the exploitation ability and

improve the solution accuracy, TLLS strategy is further

performed after the CPA. About 50% niches will execute the

niche-level local search according to the probability Pi. If the

current niche i satisfies the probability Pi to do local search,

about 50% individuals will execute the individual-level local

search in the current niche according to the probability Pik. As a

result, there are about 25% (50%×50%) individuals will

execute TLLS and each individual will consume 2 FEs to

sample 2 individuals. Therefore, the FEs consumed in TLLS is

about N/2 (25%×2) in each generation.

Additionally, we also use a PCA component for dimension

reduction to assistant the APC-based niching in high

dimensional problems. However, this component does not

consume any extra FEs.

To sum, the number of FEs consumed in each generation of

ANDE is approximately 1.5N+n. However, when comparing

ANDE with other algorithms, their termination criteria are set

the same by the same MaxFEs. The comparison results show

that ANDE can achieve better performance using the same

computational budget, suggesting that the extra components

(i.e., APC, CPA, and TLLS) can promote the efficiency of

ANDE despite of certain computational load.

V. CONCLUSION

In this paper, the DE with APC, CPA, and TLLS, termed as

ANDE is proposed for solving MMOPs. First, we proposed a

new automatic niching strategy using APC for population

partition, which can relieve the algorithm from sensitivity of

parameter such as the cluster size or the number of clusters and

form stable niches automatically to match the landscape of the

problems without any extra FEs. Second, CPA can predict the

rough position of the potential peak in each niche, and then

provide a proper guidance for evolution, which can accelerate

the convergence speed. Third, the TLLS is embed for

enhancing the exploitation ability of algorithm and improving

the accuracy of solutions. In addition, for MMOPs with high

dimensions, PCA is utilized to achieve dimension reduction for

better niching.

Based on these techniques, ANDE can find a balance

between diversity and convergence, leading to a competitive

feasibility and effectiveness when tackling with MMOPs. The

experimental results fully show the superiority of ANDE when

compared with other 15 state-of-the-art multimodal algorithms

and the winner of CEC2015 competition, which can find more

global optima using fewer FEs, and the dominance of ANDE

becomes increasingly obvious with the increasing accuracy

level.

However, APC-based niching technique in ANDE will

generally consume more computational time compared with

other clustering niching techniques. Even so, APC also helps

ANDE form stable niches automatically for better evolution

and locate all the global optima more accurately. Therefore, the

improvements in performance are much worth since the

increased computational time can be compensated by the stable

niching result and high solution accuracy.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

Even though the performance of ANDE shows its apparent

advantage when dealing with MMOPs, with the complexity and

dimension increases, ANDE still cannot locate all the global

optima. For future work, we wish to further improve the

performance of ANDE on more complex MMOPs with higher

dimensions and large number of global or local peaks.

Moreover, we wish to apply ANDE in dynamic multimodal

environments [66]-[68], and to explore the information sharing

mechanism in algorithm design [69]-[71].

REFERENCES

[1] K. C. Wong, K. S. Leung, and M. H. Wong, “Protein structure prediction

on a lattice model via multimodal optimization techniques,” in Proc.

Genet. Evol. Comput. Conf., Portland, OR, USA, 2010, pp. 155–162.
[2] D. K. Woo, J. H. Choi, M. Ali, and H. K. Jung, “A novel multimodal

optimization algorithm applied to electromagnetic optimization,” IEEE

Trans. Magn., vol. 47, no. 6, pp. 1667–1673, 2011.

[3] D. Z. Tan, W. N. Chen, J. Zhang, and W. J. Yu, “Fast pedestrian

detection using multimodal estimation of distribution algorithms,” in

Proc. Genetic Evol. Comput. Conf., 2017, pp. 1248-1255.
[4] E. Cuevas, M. González, D. Zaldívar, and M. Pérez-Cisneros,

“Multi-ellipses detection on images inspired by collective animal

behavior,” Neural Computing and Applications, vol. 24, no. 5, pp.
1019-1033, 2014.

[5] K. Deb and A. Srinivasan, “Innovization: Innovating design principles

through optimization,” in Proc. Genetic Evol. Comput. Conf., 2006, pp.
1629-1636.

[6] X. Y. Zhang, J. Zhang, Y. J. Gong, Z. H. Zhan, W. N. Chen, and Y. Li,

“Kuhn-Munkres parallel genetic algorithm for the set cover problem and
its application to large-scale wireless sensor networks,” IEEE Trans.

Evol. Comput., vol. 20, no. 5, pp. 695-710, 2016.

[7] Z. J. Wang, Z. H. Zhan, and J. Zhang, “Solving the energy efficient
coverage problem in wireless sensor networks: A distributed genetic

algorithm approach with hierarchical fitness evaluation,” Energies, vol.

11, no. 12, 3526, pp. 1-14, 2018.

[8] T. Friedrich, T. Kötzing, M. S. Krejca, and A. M. Sutton, “The compact

genetic algorithm is efficient under extreme gaussian noise,” IEEE Trans.

Evol. Comput., vol. 21, no. 3, pp. 477-490, 2017.
[9] M. A. Rashid, F. Khatib, M. T. Hoque, and A. Sattar, “An enhanced

genetic algorithm for Ab initio protein structure prediction,” IEEE Trans.

Evol. Comput., vol. 20, no. 4, pp. 627-644, 2016.
[10] Z. Y. Wang, H. L. Xing, T. R. Li, Y. Yang, R. Qu, and Y. Pan, “A

modified ant colony optimization algorithm for network coding resource
minimization,” IEEE Trans. Evol. Comput., vol. 20, no. 3, pp. 325-342,

2016.

[11] Z. G. Chen, Z. H. Zhan, Y. Lin, Y. J. Gong, T. L. Gu, F. Zhao, H. Q.
Yuan, X. Chen, Q. Li, and J. Zhang, “Multiobjective cloud workflow

scheduling: A multiple populations ant colony system approach,” IEEE

Trans. Cybern., DOI: 10.1109/TCYB.2018.2832640. 2018.
[12] F. F. Zheng, A. C. Zecchin, J. P. Newman, H. R. Maier, and G. C. Dandy,

“An adaptive convergence-trajectory controlled ant colony optimization

algorithm with application to water distribution system design
problems,” IEEE Trans. Evol. Comput., vol. 21, no. 5, pp. 773-791,

2017.

[13] X. F. Liu, Z. H. Zhan, D. Deng, Y. Li, T. L. Gu, and J. Zhang, “An
energy efficient ant colony system for virtual machine placement in

cloud computing,” IEEE Trans. Evol. Comput., vol. 22, no. 1, pp.

113-128, Feb. 2018.
[14] J. Wang, K. Tang, J. A. Lozano, and X. Yao, “Estimation of the

distribution algorithm with a stochastic local search for uncertain

capacitated arc routing problems,” IEEE Trans. Evol. Comput., vol. 20,
no. 1, pp. 96-109, 2016.

[15] A. M. Zhou, J. Y. Sun, and Q. F. Zhang, “An estimation of distribution

algorithm with cheap and expensive local search methods,” IEEE Trans.
Evol. Comput. vol. 19, no. 6, pp. 807-822, 2015.

[16] X. L. Liang, H. P. Chen, and J. A. Lozano, “A Boltzmann-based

estimation of distribution algorithm for a general resource scheduling
model,” IEEE Trans. Evol. Comput., vol. 19, no. 6, pp. 793-806, 2015.

[17] W. N. Chen, J. Zhang, Y. Lin, N. Chen, Z. H. Zhan, H. S. H. Chung, Y.

Li, and Y. H. Shi, “Particle swarm optimization with an aging leader and

challengers,” IEEE Trans. Evol. Comput., vol. 17, no. 2, pp. 241-258,
2013.

[18] Z. H. Zhan, J. Li, J. Cao, J. Zhang, H. Chung, and Y. H. Shi, “Multiple

populations for multiple objectives: A coevolutionary technique for
solving multiobjective optimization problems,” IEEE Trans. Cybern.,

vol. 43, no. 2, pp. 445-463, April. 2013.

[19] M. R. Bonyadi and Z. Michalewicz, “Impacts of coefficients on
movement patterns in the particle swarm optimization algorithm,” IEEE

Trans. Evol. Comput., vol. 21, no. 3, pp. 378-390, 2017.

[20] S. Zhang, J. Xu, L. H. Lee, E. P. Chew, W. P. Wong, and C. H. Chen,
“Optimal computing budget allocation for particle swarm optimization

in stochastic optimization,” IEEE Trans. Evol. Comput., vol. 21, no. 2,

pp. 206-219, 2017.
[21] X. F. Liu, Z. H. Zhan, Y. Gao, J. Zhang, S. Kwong, and J. Zhang,

“Coevolutionary particle swarm optimization with bottleneck objective

learning strategy for many-objective optimization,” IEEE Trans. Evol.
Comput., DOI:10.1109/TEVC.2018.2875430. 2018.

[22] M. R. Bonyadi and Z. Michalewicz, “Stability analysis of the particle

swarm optimization without stagnation assumption,” IEEE Trans. Evol.
Comput., vol. 20, no. 5, pp. 814-819, 2016.

[23] Z. H. Zhan, Z. H. Zhan, J. Zhang, Y. Li, and Y. H. Shi, “Orthogonal

learning particle swarm optimization,” IEEE Trans. Evol. Comput., vol.
15, no. 6, pp. 832-847, 2011.

[24] R. A. Sarker, S. M. Elsayed, and T. Ray, “Differential evolution with

dynamic parameters selection for optimization problems,” IEEE Trans.
Evol. Comput., vol. 18, no. 5, pp. 689-707, 2014.

[25] X. F. Liu, Z. H. Zhan, Y. Lin, W. N. Chen, Y. J. Gong, T. L. Gu, H. Q.
Yuan, and J. Zhang, “Historical and heuristic-based adaptive differential

evolution,” IEEE Transactions on Systems, Man, and Cybernetics:

Systems, DOI: 10.1109/TSMC.2018.2855155. 2018.
[26] Z. H. Zhan, X. Liu, H. Zhang, Z. Yu, J. Weng, Y. Li, T. Gu, and J. Zhang,

“Cloudde: A heterogeneous differential evolution algorithm and its

distributed cloud version,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 3, pp. 704-716, March. 2017.

[27] Y. Wang, B. Xu, G. Sun, and S. Yang, “A two-phase differential

evolution for uniform designs in constrained experimental
domains,” IEEE Trans. Evol. Comput., vol. 21, no. 5, pp. 665-680, 2017.

[28] N. R. Sabar, J. Abawajy, and J. Yearwood, “Heterogeneous cooperative

co-evolution memetic differential evolution algorithm for big data

optimization problems,” IEEE Trans. Evol. Comput., vol. 21, no. 2, pp.

315-327, 2017.

[29] V. Santucci, M. Baioletti, and A. Milani, “Algebraic differential
evolution algorithm for the permutation flowshop scheduling problem

with total flowtime criterion,” IEEE Trans. Evol. Comput., vol. 20, no. 5,

pp. 682-694, 2016.
[30] N. M. Hamza, D. L. Essam, and R. A. Sarker, “Constraint consensus

mutation-based differential evolution for constrained optimization,”
IEEE Trans. Evol. Comput., vol. 20, no. 3, pp. 447-459, 2016.

[31] X. Qiu, J. X. Xu, K. C. Tan, and H. A. Abbass, “Adaptive

cross-generation differential evolution operators for multiobjective

optimization,” IEEE Trans. Evol. Comput., vol. 20, no. 2, pp. 232-244,
2016.

[32] S. M. Guo, C. C. Yang, P. H. Hsu, and J. S. H. Tsai, “Improving

differential evolution with a successful-parent-selecting
framework,” IEEE Trans. Evol. Comput., vol. 19, no. 5, pp. 717-730,

2015.

[33] L. X. Tang, Y. Dong, and J. Y. Liu, “Differential evolution with an

individual-dependent mechanism,” IEEE Trans. Evol. Comput., vol. 19,

no. 4, pp. 560-574, 2015.

[34] R. Thomsen, “Multimodal optimization using crowding-based
differential evolution,” in Proc. IEEE Congr. Evol. Comput., 2004, pp.

1382-1389.

[35] X. Li, “Efficient differential evolution using speciation for multimodal
function optimization,” in Proc. Genetic Evol. Comput. Conf., 2005, pp.

873-880.

[36] W. Gao, G. G. Yen, and S. Liu, “A cluster-based differential evolution
with self-adaptive strategy for multimodal optimization,” IEEE Trans.

Cybern., vol. 44, no. 8, pp. 1314-1327, 2014.

[37] B. Y. Qu, P. N. Suganthan, and J. J. Liang, “Differential evolution with
neighborhood mutation for multimodal optimization,” IEEE Trans. Evol.

Comput., vol. 16, no. 5, pp. 601-614, 2012.

[38] S. Biswas, S. Kundu, and S. Das, “Inducing niching behavior in
differential evolution through local information sharing,” IEEE Trans.

Evol. Comput., vol. 19, no. 2, pp. 246-263, 2015.

[39] S. Biswas, S. Kundu, and S. Das, “An improved parent-centric mutation

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

with normalized neighborhoods for inducing niching behavior in
differential evolution,” IEEE Trans. Cybern., vol. 44, no. 10, pp.

1726-1737, 2014.

[40] Z. J. Wang, Z. H. Zhan, Y. Lin, W. J. Yu, H. Q. Yuan, T. L. Gu, S.
Kwong, and J. Zhang, “Dual-strategy differential evolution with affinity

propagation clustering for multimodal optimization problems,” IEEE

Trans. Evol. Comput., vol. 22, no. 6, pp. 894-908, Dec. 2018.
[41] S. Hui and P. N. Suganthan, “Ensemble and arithmetic

recombination-based speciation differential evolution for multimodal

optimization,” IEEE Trans. Cybern., vol. 46, no. 1, pp. 64-74, 2016.
[42] B. Y. Qu and P. N. Suganthan, “Novel multimodal problems and

differential evolution with ensemble of restricted tournament selection,”

in Proc. IEEE Congr. Evol. Comput., 2010, pp. 1-7.
[43] M. G. Epitropakis, X. Li, and E. K. Burke, “A dynamic archive niching

differential evolution algorithm for multimodal optimization,” in Proc.

IEEE Congr. Evol. Comput., 2013, pp. 79-86.
[44] A. Basak, S. Das, and K. C. Tan, “Multimodal optimization using a

biobjective differential evolution algorithm enhanced with mean

distance-based selection,” IEEE Trans. Evol. Comput., vol. 17, no. 5, pp.
666-685, 2013.

[45] Y. Wang, H. X. Li, G. G. Yen, and W. Song, “MOMMOP:

Multiobjective optimization for locating multiple optimal solutions of
multimodal optimization problems,” IEEE Trans. Cybern., vol. 45, no. 4,

pp. 830-843, 2014.

[46] R. K. Ursem, “Multinational evolutionary algorithms,” in Proc. IEEE
Congr. Evol. Comput., 1999, pp. 1633-1640.

[47] J. Yao, N. Kharma, and Y. Q. Zhu, “On clustering in evolutionary
computation,” in Proc. IEEE Congr. Evol. Comput., 2006, pp.
1752-1759.

[48] J. P. Li, M. E. Balazs, G. T. Parks, and P. J. Clarkson, “A species

conserving genetic algorithm for multimodal function optimization,”
Evol. Comput., vol. 10, no. 3, pp. 207-234, 2002.

[49] J. Gan and K. Warwick, “Dynamic niche clustering: A fuzzy variable

radius niching technique for multimodal optimisation in GAs,” in Proc.
IEEE Congr. Evol. Comput., 2001, pp. 215-222.

[50] A. Pétrowski, “A clearing procedure as a niching method for genetic

algorithms,” in Proc. IEEE Congr. Evol. Comput., 1996, pp. 798-803.
[51] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for

multimodal function optimization,” in Proc. Int. Conf. Genet.

Algorithms, 1987, pp. 41-49.

[52] C. Stoean, M. Preuss, R. Stoean, and D. Dumitrescu, “Multimodal

optimization by means of a topological species conservation algorithm,”

IEEE Trans. Evol. Comput., vol. 14, no. 6, pp. 842-864, 2010.
[53] Q. Yang, W. N. Chen, Z. T. Yu, T. L. Gu, Y. Li, H. X. Zhang, and J.

Zhang, “Adaptive multimodal continuous ant colony optimization,”

IEEE Trans. Evol. Comput. vol. 21, no. 2, pp. 191-205, 2017.
[54] Q. Yang, W. N. Chen, Y. Li, C. L. P. Chen, X. M. Hu, and J. Zhang,

“Multimodal estimation of distribution algorithms,” IEEE Trans. Cybern.

vol. 47, no. 3, pp. 636-650, 2017.
[55] X. Li, “Niching without niching parameters: Particle swarm optimization

using a ring topology,” IEEE Trans. Evol. Comput., vol. 14, no. 1, pp.

150-169, 2010.
[56] B. Y. Qu, P. N. Suganthan, and S. Das, “A distance-based locally

informed particle swarm model for multimodal optimization,” IEEE

Trans. Evol. Comput., vol. 17, no. 3, pp. 387-402, 2013.
[57] B. J. Frey and D. Dueck, “Clustering by passing messages between data

points,” Science, vol. 315, no. 5814, pp. 972-976, 2007.

[58] B. H. Chen and J. L. Hu, “An adaptive niching EDA based on clustering

analysis,” in Proc. IEEE Congr. Evol. Comput., 2010, pp. 1-7.

[59] G. Wu, X. Shen, H. Li, H. Chen, A. Lin, and P. N. Suganthan, “Ensemble

of differential evolution variants,” Information Sciences, vol. 423, pp.
172-186, 2018.

[60] G. Wu, R. Mallipeddi, and P. N. Suganthan, “Ensemble strategies for

population-based optimization algorithms: A survey,” Swarm Evol.
Comput., vol. 44, pp. 695-711, 2019.

[61] G. Wu, R. Mallipeddi, P. N. Suganthan, R. Wang, H. Chen, “Differential

evolution with multi-population based ensemble of mutation
strategies,” Information Sciences, vol. 329, pp. 329-345, 2016.

[62] Y. Lin, J. Zhang, and L. K. Lan, “A Contour method in population-based
stochastic algorithms,” in Proc. IEEE Congr. Evol. Comput., 2008, pp.

2388-2395.

[63] X. Li, A. Engelbrecht, and M. G. Epitropakis, “Benchmark functions for
CEC’2013 special session and competition on niching methods for

multimodal function optimization,” Evol. Comput. Mach. Learn. Group,

RMIT Univ., Melbourne, VIC, Australia, Tech. Rep., 2013. [Online].

Available:http://goanna.cs.rmit.edu.au/∼xiaodong/cec13-lsgo/competiti

on/
[64] J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on

the use of nonparametric statistical tests as a methodology for comparing

evolutionary and swarm intelligence algorithms,” Swarm Evol. Comput.,
vol. 1, no. 1, pp. 3-18, 2011.

[65] J. E. Fieldsend, “Running up those hills: multi-modal search with the

niching migratory multi-swarm optimiser,” in Proc. IEEE Congr. Evol.
Comput., 2014, pp. 2593-2600.

[66] S. Biswas, S. Kundu, S. Das, and A. Vasilakos, “Information sharing in

bee colony for detecting multiple niches in non-stationary
environments,” in Proc. Genetic Evol. Comput. Conf., 2013, pp. 1-2.

[67] X. F. Liu, Z. H. Zhan, and J. Zhang, “Neural network for change

direction prediction in dynamic optimization,” IEEE Access, vol. 6, pp.
72649-72662, 2018.

[68] S. Kundu, S. Biswas, S. Das, and P. N. Suganthan, “Crowding-based

local differential evolution with speciation-based memory archive for
dynamic multimodal optimization,” in Proc. Genetic Evol. Comput.

Conf., 2013, pp. 33-40.

[69] S. Biswas, S. Kundu, D. Bose, S. Das, and P. N. Suganthan,
“Synchronizing differential evolution with a modified affinity-based

mutation framework,” in Proc. IEEE Symposium on Differential

Evolution, 2013, pp. 61-68.
[70] Y. H. Li, Z. H. Zhan, S. J. Lin, J. Zhang, and X. N. Luo, “Competitive

and cooperative particle swarm optimization with information sharing

mechanism for global optimization problems,” Information Sciences, vol.
293, no. 1, pp. 370-382, Feb. 2015

[71] S. Biswas, M. A. Eita, S. Das, and A. Vasilakos, “Evaluating the

performance of group counseling optimizer on CEC 2014 problems for
computational expensive optimization,” in Proc. IEEE Congr. Evol.

Comput., 2014, pp. 1076-1083.

Zi-Jia Wang (S’15) received the B.S. degree in

automation in 2015, from Sun Yat-Sen University,

Guangzhou, China, where he is currently working toward
the Ph.D. degree. His current research interests include

evolutionary computation algorithms like differential

evolution, particle swarm optimization, and their
applications in design and optimization such as cloud

computing resources scheduling.

Zhi-Hui Zhan (M’13-SM’18) received the Bachelor’s

degree and the Ph. D degree in 2007 and 2013,
respectively, from the Department of Computer Science

of Sun Yat-Sen University, Guangzhou, China.

He is currently the Changjiang Scholar Young
Professor and the Pearl River Scholar Young Professor

with School of Computer Science and Engineering,

South China University of Technology, China. His
current research interests include evolutionary

computation algorithms, swarm intelligence algorithms, and their applications
in real-world problems, and in environments of cloud computing and big data.

He has published over 100 research papers in international journals and

conference proceedings.
Dr. Zhan’s doctoral dissertation was awarded the China Computer

Federation (CCF) Outstanding Ph. D Dissertation and the IEEE Computational

Intelligence Society (CIS) Outstanding Ph. D Dissertation. Dr. Zhan received
the Outstanding Youth Science Foundation from National Natural Science

Foundations of China (NSFC) in 2018, the Wu Wen Jun Artificial Intelligence

Excellent Youth from the Chinese Association for Artificial Intelligence in
2017, and the First Grade Award in Natural Science from Guangdong Province

in 2018. Dr. Zhan is listed as one of the Most Cited Chinese Researchers in

Computer Science. He is currently an Associate Editor of the Neurocomputing.

Ying Lin (M’13) received the B.Sc. degree in computer

science from Sun Yat-sen University, China, in 2007,
and the Ph.D. degree in computer applied technology

from the same university in 2012.

She is currently an assistant professor with the
Department of psychology, Sun Yat-sen University,

China and also a research fellow in South China

University of Technology, China. Her main research
interests include computational intelligence and its

applications in psychology.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

15

Wei-Jie Yu (S’10–M’14) received the Bachelor’s

degree and the Ph.D. degree from Sun Yat-Sen

University, Guangzhou, China, in 2009 and 2014,
respectively.

He is currently a lecturer with the School of

Information Management, Sun Yat-Sen University,
China and also a research fellow in South China

University of Technology, China. His current research

interests include computational intelligence and its
applications on intelligent information processing, big

data, and cloud computing.

Hua Wang received his Ph.D. degree from the

University of Southern Queensland, Australia. He is

now a full time Professor at Victoria University. He was
a professor at the University of Southern Queensland

before he joined Victoria University. Hua has more than

ten years teaching and working experience in Applied
Informatics at both enterprise and university. He has

expertise in electronic commerce, business process

modeling and enterprise architecture. As a Chief
Investigator, three Australian Research Council (ARC) Discovery grants have

been awarded since 2006, and 200 peer reviewed scholar papers have been

published. Six Ph.D. students have already graduated under his principal
supervision.

Sam Kwong (M’93–SM’04–F’14) received his B.S.

degree and M.S. degree in electrical engineering from

the State University of New York at Buffalo, USA and
University of Waterloo, Canada, in 1983 and 1985

respectively. In 1996, he later obtained his Ph.D. degree

from the University of Hagen, Germany.
From 1985 to 1987, he was a diagnostic engineer

with the Control Data Canada where he designed the

diagnostic software to detect the manufacture faults of
the VLSI chips in the Cyber 430 machine. He later joined the Bell Northern

Research Canada as a Member of Scientific staff. In 1990, he joined the City

University of Hong Kong as a lecturer in the Department of Electronic

Engineering. He is currently a Professor in the Department of Computer

Science.

Prof. Kwong is the Vice President for IEEE Systems, Man and
Cybernetics for conferences and meetings from 2014 till present. He was

elevated to IEEE fellow for his contributions on optimization techniques for

cybernetics and video coding in 2014. He is also appointed as IEEE
Distinguished Lecturer for IEEE SMC society from March 2017. His research

areas are in pattern recognition, evolutionary computations and video analytics.

Jun Zhang (F’17) received the Ph.D. degree from the

City University of Hong Kong, Kowloon, Hong Kong,

in 2002.
He is currently a Changjiang Chair Professor with

the School of Computer Science and Engineering,

South China University of Technology and a visiting
professor in Victoria University. He has published over

100 technical papers in his research areas. His current

research interests include computational intelligence,

cloud computing, high performance computing, data

mining, wireless sensor networks, operations research,

and power electronic circuits.
Dr. Zhang was a recipient of the China National Funds for Distinguished

Young Scientists from the National Natural Science Foundation of China in

2011 and the First-Grade Award in Natural Science Research from the Ministry
of Education, China, in 2009. He is currently an Associate Editor of the IEEE

Transactions on Evolutionary Computation, the IEEE Transactions on

Cybernetics, and the IEEE Transactions on Industrial Electronics.

