
406 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 3, JUNE 2019
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Abstract—In this paper, a novel and fast memetic evolutionary
algorithm is presented which can solve fully constrained generic
inverse kinematics with multiple end effectors and goal objec-
tives, leaving high flexibility for the design of custom cost
functions. The algorithm utilizes a hybridization of evolu-
tionary and swarm optimization, combined with the limited-
memory-Broyden–Fletcher–Goldfarb–Shanno with bound con-
straints algorithm for gradient-based optimization. Accurate
solutions can be found in real-time and suboptimal extrema
are robustly avoided, scaling well even for greatly higher
degree of freedom. The algorithm provides a general framework
for bounded continuous optimization which only requires two
parameters for the number of individuals and elites to be set, and
supports adding additional goals and constraints for inverse kine-
matics, such as minimal displacement between solutions, collision
avoidance, or functional joint relations. Experimental results on
several industrial and anthropomorphic robots as well as on vir-
tual characters demonstrate the algorithm to be applicable for
solving complex kinematic postures for different challenging tasks
in robotics, human-robot interaction and character animation,
including dexterous object manipulation, collision-free full-body
motion, as well as animation post-processing for video games and
films. Implementations are made available for Unity3D and robot
operating system.

Index Terms—Artificial intelligence, character animation, col-
lision avoidance, evolutionary computation, full-body motion,
inverse kinematics, optimization, robotics.
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Fig. 1. Relation between forward and inverse kinematics.

I. INTRODUCTION

K INEMATICS outlines one of the most fundamental
aspects in the general field of motion, covering the

transformation of objects with respect to position and orien-
tation, as well as velocity and acceleration, but regardless of
mass, force, and torque. It has particular relevance for various
applications in robotics and computer graphics, including the
design and control of robots, visualization and simulation, as
well as for creating and post-processing animations of virtual
characters.

A. Articulated Kinematic Geometry

The geometry of an articulated kinematic system can be
described by a set of kinematic chains, each consisting of a
consecutive set of links and joints from the root to the end
effectors. Each end effector results in a certain Cartesian con-
figuration X given a specific joint variable configuration θ .
The alignment of the joint axes define the either translational
or rotational motion of the joints, and all together the degree
of freedom (DOF) which often indicates the computational
complexity of the whole kinematic system. The robotic design
of industrial manipulators usually involves a six DOF serial
kinematic chain to reach full Cartesian poses in position and
orientation. Manipulators with higher DOF can be described
as hyper-redundant, mostly providing a continuous range of
joint configurations to reach identical poses [1], [2].

Particular challenges arise for human-like anthropomorphic
geometries, which have multiple connected kinematic chains,
and who are directly controlled by their preceding joints, such
as two arms affected by the configuration of the pelvis and
torso. The fundamental relation to map between joint and
Cartesian space is given by forward and inverse kinematics,
and is visualized in Fig. 1.

B. Forward Kinematics

The computation of forward kinematics (1) relates to
the mapping from joint to Cartesian space. Using the
joint variables θ1,...,n to recursively calculate the coordinate
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Fig. 2. Proposed algorithm solving generic full-body inverse kinematics for different geometries and application scenarios.

transformations along the kinematic chains gives the resulting
end effector transformations X1,...,k. There exist numerous
ways to realize the transformations through using either homo-
geneous matrices or quaternion-vector-based representations.
In particular, choosing quaternions should be preferred in order
to avoid the related singularity and gimbal lock issues of Euler
angles, and also requires less operations to be computed for
each frame transformation

f (θ) = X1,...,k. (1)

C. Inverse Kinematics

In contrast to forward kinematics, obtaining a solution for
inverse kinematics (2) is not straightforward, and zero up to
infinite solutions can exist in joint space to satisfy a Cartesian
configuration for position and orientation. The further pres-
ence of joint limits requires suboptimal extrema to be avoided,
which typically turns inverse kinematics into a nonconvex
optimization problem. Finally, including additional objectives
and constraints to prefer particular neighboring or collision-
free solutions, as well as to implement nonlinear couplings
between joints in a soft-constraint fashion is not generally
available for existing methods. However, handling such struc-
tures and complex posture specifications is essentially required
to solving full-body motion on humanoid robots, advances in
dexterous manipulation with anthropomorphic hands, as well
as for creating more realistic motion of animated characters

θ = f −1(X1,...,k
)
. (2)

While both domains have their own algorithms and methods
developed and applied for their specific needs, their benefits
and limitations in terms of computational cost, robustness,
scalability, and flexibility to control complex geometries tend
to remain mutually exclusive. Finally, the question remains
how to integrate additional goals which specify the solution
quality for a particular task, such as for grasping, interaction or
natural motion. The motivation of this paper is to propose an
efficient solution for inverse kinematics that combines multiple
objectives into a single-objective problem, and can serve the
various aspects in performance requirements both in robotics
and character animation on generic kinematic geometries.
Although general approaches like evolutionary algorithms
are well suited for such demands, they have so far only
been applied relatively scarcely to solving inverse kinemat-
ics problems. In this paper, a memetic evolutionary approach

Fig. 3. Algorithmic methodologies for inverse kinematics.

combining the characteristic strengths of hybrid biologically
inspired and gradient-based optimization is presented. As
demonstrated in Fig. 2, our algorithm can be successfully
applied to different types of kinematic geometries and appli-
cation scenarios.

II. RELATED WORK

Although inverse kinematics is well researched on serial
kinematic chains, many methods still seem rather limited in
solving full-body postures on more complex geometries or
while incorporating multiple constraints. In particular, no gen-
eral solution to this problem could yet be found. The various
sophisticated approaches originate from very different research
areas, and which can be divided as shown in Fig. 3.

A. Analytic

Given a particular kinematic geometry, analytic methods
can be constructed specifically to provide closed-form expres-
sions. The obtained solutions are exact, and can also return all
existing joint configurations for a desired reachable Cartesian
pose. The IKFast [3], [4] module is a recent implementa-
tion which automatically generates the algebraic equations.
Although these methods are often significantly faster than
related approaches, they are typically only available for rather
simple geometries, as the complexity rapidly increases with
each additional DOF. Hence, they are rather used for serial
industrial manipulators and impractical for solving multiple
and highly articulated chains simultaneously. In this context,
larger focus has been paid to iterative and numerical methods.
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B. Heuristic

Heuristic methods for inverse kinematics aim to iteratively
estimate the required joint updates using geometric calcu-
lations. The cyclic coordinate descent (CCD) [5], [6] is a
traditional and one of the most popular related algorithms. It
is simple to implement and only requires little computational
cost per iteration since each joint along the kinematic chain is
updated independently, iterating from the last to the first link.
Therefore, it is predominantly applied in computer graphics
and for animation tasks where motion on multiple characters
must be generated in real-time. The calculations can be done
by using dot and cross product operations between the posi-
tions of the end effector and the current joint pee and pi with
respect to the target position pt, where (3) gives the angular
change �θi of the current joint about the vector �n

�θi = cos−1
(

pee − pi

||pee − pi|| · pt − pi

||pt − pi||
)

(3)

�n = pee − pi

||pee − pi|| × pt − pi

||pt − pi|| . (4)

Note that this method only optimizes the position of the end
effector and becomes more complex if solving an orientation
goal is also desired. Additionally, it can be observed to produce
unrealistic motion as it tends to overestimate particular joints
along the kinematic chain. Since CCD operates locally on each
joint, it is rather difficult to efficiently combine multiple kine-
matic chains, and working in Cartesian space can finally cause
joint limits to be violated without further post-processing.

Forward and backward reaching inverse kinematics
(FABRIK) [7], [8] is a more recent algorithm which has
quickly gained high relevance in character animation. Instead
of traversing a single direction along the chain, it consists of
two consecutive phases in an iterative forward and backward
reaching mode. Let λi = (di/ri) be defined by the initial and
new distances di and ri between two joint positions pi and pi+1
with i = 1, . . . , n − 1 and pn being the target position of the
end effector, then the forward (5) and backward (6) calcula-
tions iteratively optimize the required joint locations p1,...,n to
reach a desired position for the end effector

pi = (1 − λi)pi+1 + λipi (5)

pi+1 = (1 − λi)pi + λipi+1. (6)

Thus, articulated postures are solved through finding points
on lines rather than calculating rotational joint updates. This
technique is extremely fast, scalable, and provides several
advantages over CCD, as it can efficiently solve multiple end
effectors simultaneously. However, extending it to support ori-
entational constraints and joint limits again makes it rather
complex to deploy for more challenging needs, and inapplica-
ble for robotics where solutions in joint space are preferred. In
more detail, FABRIK differs from other methods in terms that
it avoids optimizing particular joint configurations in order to
find a posture to reach the target.

Implementations for different variants of CCD and FABRIK
are provided by [9] and [10], and are used in modern graphics
engines such as Unity3D [11], Unreal [12], and Maya [13].

C. Gradient-Based

In robotics, gradient-based methods for nonlinear
optimization are among the most widely applied techniques
for solving inverse kinematics. As they require approximating
first- or second-order derivatives, they are more computationally
expensive than the previous introduced heuristic algorithms.
However, they can directly operate in joint space which eases
the use of joint limits, and are slightly more flexible to include
additional constraints as well as for solving full-pose goals.

Most popular approaches are based on computing the
Jacobian (7), which is a matrix of first-order partial derivatives
of each joint variable which gives a linear approximation of
the resulting end effector velocities in Cartesian space [14]

J(θ)ij =
(

δXi

δθj

)
. (7)

The challenge then becomes to find an appropriate update of
the whole joint variable configuration θ ′ = θ + �θ such that
the error vector �e is minimized as smoothly and quickly as
possible. The most simple and computationally cheap version
is to use the transpose method with α defining a small factor
to move in direction of the gradient. This solution generates
smooth motion, but usually has slow convergence

�θ = αJT�e. (8)

Using the pseudoinverse (9) provides a significantly faster con-
vergence, but becomes unstable in near-singular configurations
which can cause jittery motion and no solutions to be found

�θ = JT(
JJT)−1�e. (9)

A way to avoid such issues is by using the damped least
squares method (10). However, choosing the damping constant
λ is not trivial in order not to slow down the optimization

�θ = JT
(

JJT + λ2I
)−1�e. (10)

An extended version of the Jacobian [15] was used to solve
inverse kinematics on humanoid robots, and [16] successfully
used it for real-time character animation tasks. An implementa-
tion is available by the Orocos KDL framework [17], which is
commonly being used with robot operating system (ROS) [18].
Nevertheless, a major drawback of these methods is that they
largely suffer from multiple local extrema, which can cause no
acceptable solution to be found at all. Improvements could be
achieved by introducing heuristic restarts from random initial
seeds [19], and combining with sequential quadratic program-
ming returned good results [20] on serial kinematic chains of
various industrial and humanoid robots.

Another well-known algorithm is the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) [21] which originates from the
family of Newton approaches to approximate the Hessian
matrix for solving nonlinear optimization problems. Although
it is more costly, a particular advantage of this method (11) is
that it allows a custom objective function � to be minimized
by additionally using its gradient, which makes it flexibly
applicable and suitable for complex inverse kinematics [22].
It provides smooth convergence and has been observed to
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perform notably well under nonsmooth optimization prob-
lems [23] compared to Jacobian methods, and does also not
suffer from singular configurations

�(x + σ) ≈ �(x) + [∇�(x)]Tσ + 1

2
σ TH�(x)σ. (11)

D. Sampling-Based

Sampling-based methods, such as genetic algorithms
(GAs) [24] and particle swarm optimization (PSO) [25],
provide a general and yet efficient technique for bounded
nonlinear optimization. They offer maximum flexibility in
terms of objective function design, and perform well even
under high-dimensional and nonconvex search spaces. In par-
ticular, they are more robust in avoiding suboptimal extrema
than previous introduced methods, do also not suffer from sin-
gularities, and directly operate in joint space through encoding
joint variable configurations as individuals. In [26], GA were
successfully applied to find multiple existing inverse kinemat-
ics solutions on industrial manipulators. A memetic variant
of differential evolution (DE) [27] was proposed in [28] for
solving more complex anthropomorphic geometries. Further,
Aguilar and Huegel [29] demonstrated their computational
performance increase when using a parallel implementation,
and Stollenga et al. [30] were able to generate task-specific
motion trajectories with multiple constraints on the iCub
humanoid robot. In [31] and [32], PSO was successfully used
to solve inverse kinematics on serial kinematic chains, and
Collins and Shen [33] demonstrated its scalability on hyper-
redundant serial manipulators with up to 120 DOF. However,
although such methods can typically achieve a fast and robust
initial convergence, the total time to obtain high accuracy is
not able to compete with one of gradient-based methods unless
further heuristics are used.

E. Learning

Learning methods have also been applied to approximate
the inverse kinematics function between joint and Cartesian
space. Once this function is learned, solutions can be gen-
erated very quickly and repeatedly. However, since inverse
kinematics typically includes multiple solutions for identi-
cal Cartesian queries, the learning algorithm might interpolate
between multiple training samples. As a result, the learning
error often remains too large for many practical applica-
tions. Several research using artificial neural networks reports
achievable accuracies of approximately 10−2m/rad [34], [35]
for lower DOF manipulators, whereas 10−3–10−5m/rad is
usually requested in robotics. Though, Almusawi et al. [36]
recently modified the input to additionally use the current
joint variable state of the robot and reported considerably
better accuracy. Similar results could also be achieved using
support vector machines with an additional spatial decompo-
sition method [37]. However, these methods require individual
training for each kinematic geometry and for any change in
objectives and constraints, and thus are difficult to use for
dynamic tasks.

Fig. 4. Scheme of memetic evolutionary algorithm.

III. ALGORITHMIC APPROACH

The various methods discussed in the previous section all
have their particular strengths, but are either suffering from
local extrema, high computation time, low scalability, or being
difficult to extend for multiple or different objectives. Hence,
our intention of solving inverse kinematics generically aims to
serve the different aspects, which can be formulated as follows.

1) Success: An existing solution for a given accuracy under
the defined objectives and constraints can also be found
within a specified amount of time.

2) Accuracy: The solution shall be as precise as required,
typically with an error below 10−3 m/rad.

3) Time: The solution shall be found as fast as possible,
preferably within a very few milliseconds.

4) Continuity: The distance between solutions in joint as
well as Cartesian space shall be as minimal as possible.

5) Adaptivity: Robustness, scalability, and fast convergence
can be maintained for varying kinematic geometries.

6) Flexibility: The algorithmic methodology allows adding
further objectives and constraints, and can be extended
in order to fulfil task-specific requirements.

In order to meet these challenges, biologically inspired
optimization algorithms can provide robustness and scalabil-
ity, while gradient-based methods can offer a fast and accurate
convergence—which combined result in a memetic evolution-
ary optimization strategy. Previous work in [38] proposed a
hybridization of GA and PSO, but was limited to serial inverse
kinematics. Further research in [39] and [40] extended the
algorithm to support multiple concurrent goals for solving full-
body postures, but was specifically designed for traditional
inverse kinematics with pure Cartesian objectives for position
and orientation. The contribution of this paper is a generaliza-
tion to serve a high variety of goals and constraints by enabling
the algorithm to use the same objective function for the evo-
lutionary and the additional gradient-based optimization—and
thus serving the last desired aspect for flexibility.

The scheme of the proposed algorithm is shown in Fig. 4,
which represents an evolutionary framework into which the
gradient-based and swarm optimization are directly integrated.
Since inverse kinematics constitutes a continuous optimization
problem, GA and PSO suggest being combined into a single
method. This hybridization is implemented by the additional



410 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 3, JUNE 2019

Fig. 5. Visualization of the evolutionary phases.

Adoption phase in combination with the Recombination phase,
and which integrates a momentum term for the individuals.
The momentum is gradually updated within each evolu-
tionary phase which modifies the genes. For the Mutation
phase, an adaptive extinction operator was designed which
reduces the required number of parameters, and can be
directly applied to varying problem dimensionalities. The
further Niching phase aims to explore different regions in
the search space simultaneously, along with the Exploitation
phase which explicitly seeks to improve successful individuals.
For this, the limited-memory-BFGS with bound constraints
(L-BFGS-B) algorithm is used. BFGS was originally designed
for unconstrained optimization with an expensive calculation
of the Hessian matrix. The L-BFGS-B has improved compu-
tational performance in approximation of the Quasi-Newton
method [41], and allows incorporating bound constraints [42],
which is required in order not to violate joint limits. Finally,
a Wipe Out criterion is used to heuristically detect whether
all niches are stuck in suboptimal extrema, in which case a
partial reinitialization is performed. The different phases for
the evolutionary algorithm are visualized in Fig. 5, and will
be discussed in more detail throughout the next sections.

A. Joint Variable Encoding

The basic strategy to solving inverse kinematics through
evolution is to encode a joint variable configuration θ as the
genotype x of an individual. This can be denoted as (12), which
uses a real-valued gene representation assigning one gene for
each joint giving rise to a n-dimensional search space

θ =̂ x = (
x1 | x2 | x3 | . . . | xn−1 | xn

)
. (12)

Further, incorporating joint limit is an essential task when
operating on real robots or to achieving realistic postures on
virtual characters. Thus, each gene is constrained (13) to the
lower and upper limits of its particular joint, and which gets
clipped in case of exceeding its bounded search space domain

θimin ≤ xi ≤ θimax ∀i = 1, . . . , n. (13)

More specifically, each evolved individual directly represents
a valid joint variable configuration, which is an advantage
over related methods that often require costly post-processing
in order not to violate joint limits. The resulting kinematic
posture can then be obtained by forward kinematics using (1).

B. Objective Function

The design of the objective function outlines one of the most
crucial challenges in evolutionary optimization. Especially if
multiple goals shall be solved concurrently, this can become
very difficult as the error terms need to be formulated in a
sensible relation to each other. In addition, the combination
of those should preferably not cause strong fluctuations in
the resulting optimization landscape, but rather define smooth
transitions. With this in mind, the fitness φ of an individual
under the objective function � that shall be minimized (14)
is evaluated using the root-mean-square-error (RMSE) over
all single objectives whose loss terms are calculated by L.
Each of those can further be weighted by w to achieve cus-
tomizability for task-specific needs—such as preferring higher
accuracy in position over orientation while forcing a joint to
keep a particular value

φ = �(x) =

√√√√√
1

k

k∑

j=1

wjL2
j (x). (14)

Note that by using a squared error metric to combine the differ-
ent goals into a single-objective optimization problem, the aim
is to transform the initial linear problem into a quadratic which
introduces smoothness, and eventually leads to a near-convex
solution for the optimization. For reference, a performance
comparison for both fitness measures is shown in Table II.
Information on a proper choice of weights for the objectives
will be discussed in the following section.

C. Design of Objectives

All objectives (15) are formulated in a way such that they
yield zero error for an optimal solution. Clearly, the most rele-
vant objectives for inverse kinematics are given by position and
orientation, together defining a full Cartesian pose. However,
while orientation errors are limited, position errors to the spec-
ified targets can grow arbitrarily large, and which also depend
on the size of the kinematic model. Thus, a normalization is
performed, where d = ||Ypos − X pos|| denotes the Euclidean
distance between the positions of the target Y and the result-
ing transformation X within the kinematic model, L is the
constant length of the kinematic chain, and λ is the variable
distance between the root and X under the evaluated joint vari-
able configuration. Multiplying by π finally yields a position
error between [0, π ], similarly to the orientation error which
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is obtained by the quaternion dot product between X and Y .
Thus, the position objective will adapt accordingly to different
body sizes, and allows the user to keep equal weights for both
position and orientation objectives without requiring to retune
the algorithm for different kinematic geometries. Assigning a
weight of 1 can be considered as default. Next, sometimes the
user desires to have the head or eyes of a character looking at
a particular point while moving the rest of the body, or have
the camera of a robot arm tracking an object while manipu-
lating it. Such tasks can be solved simultaneously by adding
an objective to minimize the angular error between

L =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πd√
(L+d)(λ+d)

Position

2 cos−1(X quat · Yquat) Orientation
cos−1(V · (Ypos − X pos)) Look At{∞ if d − dmin ≤ 0

1
d−dmin

else
Distance

∑n
i=1 |x∗

i − xi| Displacement
|θ∗

i − xi| Joint Value
|xi − h(x)| Joint Function

(15)

the direction to the target position and a specified view-
ing direction V . The weight of this objective can be chosen
equally to those for position and orientation. Further, colli-
sion avoidance is an issue which is often neglected by generic
inverse kinematics solvers. Using the proposed method, self-
collision as well as collision with objects in the environment
can be avoided through defining an objective which forces
the optimization not to fall under a specific distance thresh-
old dmin between two particular points. More specifically, this
technique prevents spherical collisions by returning an infinite
error if the distance d becomes too small, but acts as a soft-
constraint otherwise and is fast to compute. The weight for this
objective should usually be comparatively small. Furthermore,
a displacement objective is designed which aims to prefer solu-
tions with small distances in joint space. This objective seeks
the average variation of x to the current solution x∗ to be
minimal, and thus avoids noisy or jerky movements. A sim-
ilar technique can also be applied to single genes, trying to
maintain a desired value θ∗ for a particular joint. Finally, it is
also possible to consider functional relations xi = h(x) among
joints. For example, this can be helpful to describe realistic
motion, such as for the little finger of the hand affected by
the joint configurations of the other fingers. The weights for
those objectives should be chosen comparatively small, i.e.,
0.001 to 0.01 depending on the user-specific needs and the
total amount of objectives added to the system. In general,
all objective weights can be set depending on the preferences
of the user. This is a particular advantage of this method as
it allows to assign a higher importance for particular parts of
the body when solving inverse kinematics. For example, when
performing manipulation, the position objectives for the finger
tips can be given a higher weight than other optional objec-
tives on the wrist or elbow. This improves the accuracy at the
important body parts, and leaves more flexibility for the rest
of the body in finding a suitable posture. Similarly, the poses
of the feet to get in contact with the ground can be given a
specifically higher importance.

D. Initialization

For an inverse kinematics query, the algorithm is initialized
according to (16), using ϕ −1 randomly generated individuals
where ϕ denotes the population size, and U[a,b] describes a
uniformly distributed random value between a and b. Thus,
all genes are randomly sampled between the particular joint
limits, and one further individual is created from the currently
assigned joint variable configuration θ used as the seed state

x1 = θ x2,...,ϕ
i = U[

θimin ,θimax
] ∀i = 1, . . . , n. (16)

E. Recombination

The recombination phase creates new offspring from two
parents each by using a rank-based selection, which aims to
maintain diversity and to avoid dominating individuals. Then,
each gene is calculated by a weighted average of both parent
genes, where Ic(a, b) is a linear interpolation between a and b
weighted by c. In addition, a small amount of the momentum
term g of both parents is added, which aims to let offspring
immediately dive a little deeper into the direction which likely
caused improvement for their parents. This method represents
the first step of the introduced hybridization of GA and PSO

R :

{
xi = IU[0,1]

(
xP1

i , xP2
i

)
+ gi

gi = U[0,1] gP1
i + U[0,1] gP2

i .
(17)

F. Mutation

For mutation, an operator is required which remains adap-
tive to varying kinematic geometries whose DOF defines the
search space dimensionality. Thus, a higher DOF requires
smaller while a lower DOF needs higher probabilities for
the mutation rate to cause effective changes along with the
mutation strength. A simple technique would be using an
inverse-proportional probability for the number of genes, but
which is not adaptive to the current progress in optimization.
Instead, an extinction operator was designed which uses a
factor ξ (18) to adaptively control mutation rate and strength

ξ =
φ + φmin

(
i−1
ϕ−1 − 1

)

φmax
(18)

M :

⎧
⎪⎨

⎪⎩

p = ξP∅ (n−1)+1
n

x′
i = xi + U[−1,1]

ξP1+ξP2

2

(
θimax − θimin

)

g′
i = gi + (

x′
i − xi

)
.

(19)

This factor measures the relative success of an individual
within the whole population regarding its rank and fitness, and
yields a normalized value between [0, 1]. It is then possible to
define the mutation phase as (19), where p is the mutation rate
between [(1/n), 1], and the change is calculated by a variable
random offset using the average extinction of both parents and
the domain size. This operator performs small variations for
better individuals, but still allows larger changes to be sampled
for worse individuals. We experimented with several versions
for choosing the offset. However, we observed this method to
produce a good tradeoff in fast and robustly finding solutions.
A particular advantage is that this operator can adapt automat-
ically to different population sizes, without the need of being
tuned again for every kinematic setup.
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G. Adoption

The adoption phase is the second step of the GA and PSO
hybridization. In this, each individual is updated (20) accord-
ing to the average of its parents P∅ and a further prototype
individual P∗ which is similarly selected by its rank

A :

{
x′

i = xi + IU[0,1]

(
U[0,1]

(
x
P∅

i − xi

)
, U[0,1]

(
xP∗

i − xi

))

g′
i = gi + (

x′
i − xi

)
.

(20)

In particular, a randomly weighted combination of both direc-
tions is added to the current gene with the aim to adopt
promising characteristics of successful individuals. Hence, this
method directly follows the idea of PSO to update particles.

H. Exploitation

To improve the speed and continuity of convergence, the
exploitation phase uses the L-BFGS-B algorithm to enhance
potential solutions which are given by the elites. As input, the
same objective function � as for the evolution is used, together
with its approximated gradient ∇� of partial derivatives through
iteratively modifying each gene by a small value (21)

∇�i =
(

δ�

δxi

)
. (21)

The update can then be denoted as (22). Thus, elite individuals
do not only survive, but are also exploited through gradient-
based optimization. In more detail, this technique allows the
population to exploit multiple local extrema simultaneously,
which can be controlled by the chosen number of elites

E :

{
x′ = L-BFGS-B(x,�,∇�)

g′ = U[0,1]g + (
x′ − x

)
.

(22)

I. Niching

Niching is a common technique in evolutionary optimization
to let the population discover multiple solutions. Inverse kine-
matics usually involves multiple local extrema, so niching can
significantly improve the robustness of the algorithm. A pre-
selection scheme is used, which removes any parent from the
mating pool  whose offspring scored a better fitness value.
This can be formulated as (23), and encourages the population
to explore different paths simultaneously during optimization
instead of forming particular clusters that work independently
or try to maintain a distance to each other. Note that in case
the mating pool becomes empty, a random offspring is created

N :

{
\xP1 if �(x) < �

(
xP1

)

\xP2 if �(x) < �
(
xP2

)
.

(23)

J. Wipe Out

Although the evolutionary phases are designed to avoid sub-
optimal extrema, it is still possible that all niches can get stuck
in such. In those cases, performing a reinitialization of the
population is likely to achieve an overall faster convergence
instead of waiting for a successful exploration to occur. The
condition (24) for this is met if the current solution x∗ could
not be replaced by the fittest individual x1, and if no further

fitness improvement could be achieved for any elite individual
xε within the set of elites E

W:φ1 ≥ φ∗ ∧ φε ′ ≥ φε ∀ ε ∈ E . (24)

The reinitialization is then performed as described in (16),
where the current solution x∗ is reintegrated into the new
population with x1 = x∗. This achieves a partial reinitialization
which does not lose information about the best solution that
could be found so far. In particular, this can be considered
as an advantage of multimodal sampling-based methods over
unimodal gradient-based techniques for optimization, where the
latter would need to start from scratch after being reinitalized.

K. Termination

The algorithm finally terminates if either all objectives are
satisfied or a specified time limit was exceeded. Instead of
using a fitness threshold to check for convergence, defining
individual termination conditions for each objective ensures
that a minimum accuracy for each particular goal is achieved
if the evolution was successful. Those are defined as thresh-
olds in Euclidean or angular space, i.e., 10−4 m and 10−3 rad,
or 5–10 ms when using a time limit. Those conditions are par-
ticularly relevant for position, orientation, and direction goals
since the fitness values does not directly relate to the actual
errors. For the collision-avoidance, the defined value for the
distance objective is used. For the remaining objectives, an ter-
mination or failure condition is optional. However, note that
even if the algorithm did not converge, the best approximate
solution that could be found so far can be returned.

L. Pseudocode

The pseudocode of the complete Bio-IK algorithm is shown
by Algorithm 1, which again summarizes how the single
evolutionary phases are integrated and how the population is
evolved.

M. Computational Improvements

Usually, the evaluation of fitness values is the most com-
putationally demanding part in evolutionary optimization. In
context of the proposed algorithm, multiple forward kinemat-
ics queries must be resolved in order to iteratively optimize
the inverse kinematics solution. However, most joint variable
configurations are only slightly modified within each gener-
ation, and repeated recalculation of the full equations would
be inefficient. For this, an optimized forward kinematics tree
data structure [43] was developed which decomposes the non-
static kinematic geometry into a linked list of joints, and
avoids redundant transformations and calculations by storing
and reusing results from previous queries. Furthermore, the
algorithm allows to be parallelized on the CPU to improve
computation of independent operations. For each elite individ-
ual, an additional thread is reserved to perform the L-BFGS-B
exploitation, which is rather costly compared to the other
tasks. The remaining population is evolved on the main thread,
which must be performed sequentially because of the niching
phase which introduces mutual dependency between parents
and offspring. In particular, the elitism exploitation on the
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Algorithm 1: Bio-IK Algorithm
Input : Population Size, Number of Elites, Seed

1 Assign Seed as Solution;
2 Initialize Population;
3 〉〉 Incorporate Solution;
4 〉〉 Create PopulationSize − 1 Random Individuals;
5 〉〉 Evaluate and Sort Individuals by Fitness;
6 〉〉 Calculate Extinction Factors;
7 〉〉 Try Update Solution;
8 while Not Terminated do
9 Assign whole Population to the Mating Pool;

10 for All Elite Individuals do
11 Perform Exploitation using L-BFGS-B;
12 end
13 for All Non-Elite Individuals do
14 if Mating Pool is not empty then
15 Select Parents and Prototype from Mating Pool

and Create new Individual by Recombination,
Mutation and Adoption;

16 Constrain Genes to Dimension Bounds;
17 Evaluate Fitness;
18 Remove worse Parents from Mating Pool;
19 else
20 Create Random Individual;
21 Evaluate Fitness;
22 end
23 Add Individual to Offspring;
24 end
25 Select Elites and Offspring as the new Population;
26 Sort Individuals by Fitness;
27 Calculate Extinction Factors;
28 Try Update Solution;
29 if Wipe Out Criterion Fulfilled then
30 Reinitialise Population;
31 end
32 end
33 Return Solution;

single threads continues iterating until the main thread has
finished evolving individuals so that no computation time
remains unused. Thus, the population size implicitly controls
the number of exploitation steps within each generation.

N. Available Implementations

1) Unity3D (C#): The Unity3D implementation [44] con-
sists of several modular components which can be added to the
transform hierarchy where desired. The software automatically
detects the defined kinematic geometry, provides user-friendly
custom inspectors and parameter visualization for each com-
ponent, and includes an API to control the algorithm although
it can also entirely be used without any programming.

2) ROS (C++): The ROS implementation [45] is written as
a native IK plugin for MoveIt!, and can be directly exchanged
for any other existing IK plugin. In contrast to KDL and
TRAC-IK, our BioIK plugin can solve multiple goals at once.

IV. EXPERIMENTS AND RESULTS

The experiments were conducted using an ASUS ROG
G-751 notebook with 2.6-GHz processor cores, and the avail-
able implementation of the algorithm in Unity3D [44] was
used. All statistical results were evaluated over 10.000 inverse

Fig. 6. Parameter efficiency on a 15 DOF serial manipulator.

Fig. 7. Suitable parameter selections for increasing DOF.

kinematics independent queries from random initial seeds,
leading to unsignificantly small deviations between the results.
This section first discusses the parameter selections, then
demonstrates the performance on serial and anthropomorphic
geometries, and finally shows the algorithm used for different
application scenarios in robotics and character animation.

A. Parameters

The only required parameters for the algorithm are given by
the population size and the number of elites. Fig. 6 shows the
normalized distribution of efficiency which is measured by the
achieved fitness divided by a fixed optimization time of 10 ms.

Investigating these distributions for varying DOF on serial
manipulators, Fig. 7 suggests that choosing at least two elite
individuals should be preferred. The results further show that
increasing the population size has larger impact for smaller
DOF, and seems to converge for increasing DOF. In general,
it was observed that parameter selections between 50 and 150
individuals with 2–5 elites performed well in the experiments.

B. Serial Manipulators

Initial experiments in order to measure the performance
of the algorithm were made on some common robotic arm
serial manipulators shown in Fig. 8. The robot models were
imported using a unified robot description format parser
for Unity3D. Those were chosen by different geometric
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TABLE I
PERFORMANCE OF THE ALGORITHM COMPARED TO RELATED GRADIENT-BASED AND EVOLUTIONARY APPROACHES FOR SOLVING INVERSE

KINEMATICS ON SERIAL MANIPULATORS. THE RESULTS SHOW THE AVERAGE COMPUTATION TIMES AND SUCCESS RATES OVER 10.000 QUERIES

Fig. 8. Robotic arms used for serial inverse kinematics.

complexity regarding solution manifolds and joint limits,
which often cause traditional algorithms get stuck in subopti-
mal extrema.

The teal spheres show the targets to be optimized, which
were generated from random valid joint configurations using
the FK equations (1). The algorithm was then used to find a
solution which minimizes the translational and rotational error
to an accuracy of 10−4 m and 10−3 rad. Fig. 9 visualizes
the averaged reached success rate over the number of evolved
generations. The graph shows that all 10.000 goal configura-
tions for all tested robots could be successfully evolved after
approximately 102 generations. However, most solutions can
typically be expected to be found in much fewer generations.

Next, Table I gives an overview of the actual computation
time which is required to find a solution, and also compares
the algorithm to existing methods for inverse kinematics with
respect to time and success. For the popular Jacobian and
L-BFGS-B methods, the optimization was terminated if the
algorithm began violating joint limits, in which case no valid
solution would be found. For the evolutionary SGA and DE

Fig. 9. Success rate with respect to the number of generations over 10.000
reachable targets for the robot models in Fig. 8.

Fig. 10. Performance on hyper-redundant manipulators.

methods, a time limit of 1 s was specified by which a solution
had to be found. While the gradient-based approaches con-
verge much faster than the evolutionary methods, the overall
reliability of the former to find a solution significantly varies
for the different robot geometries, but which is more stable for
the latter although being too slow. Finally, Bio-IK has simi-
lar computation time like gradient-based methods requiring
approximately 1 ms, but outperforms them with success rates
of over 99% using a specified time limit of 10 ms.
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TABLE II
PERFORMANCE OF THE ALGORITHM IN SOLVING FULL-BODY POSTURES WITH MULTIPLE CARTESIAN OBJECTIVES ON THE NASA VALKYRIE ROBOT.

THE RESULTS SHOW THE AVERAGE COMPUTATION TIMES AND SUCCESS RATES FOR THE CHOSEN PARAMETER SELECTIONS OVER 10.000 QUERIES

Fig. 11. Geometry of the 35/61 DOF NASA Valkyrie humanoid robot
(without/with the 13 DOF hands).

Fig. 10 shows the average required time for 100% success
rates on hyper-redundant manipulators with up to 120 DOF,
for which a slightly sublinear relation between time and DOF
can be observed. Solving such structures is often difficult for
Jacobian methods due to the typical singularity issues.

C. Humanoid Robots and Full-Body Motion

A more challenging problem for inverse kinematics is
given by fully articulated humanoid robots with multiple
kinematic chains, and who have joints which dependently con-
trol multiple end effector poses. Fig. 11 shows the NASA
Valkyrie robot of which both arms are affected by the pelvis
and torso configuration, and which further also affect the
finger poses of the anthropomorphic hands. For such geome-
tries, it is required to find a single solution whose resulting
posture globally satisfies the multiple goals, and where-
fore related methods discussed in Section II are often not
applicable anymore. Table II lists the required computation

Fig. 12. Full-body motion on the NASA Valkyrie robot while lifting and
rotating an object in real-time.

time and resulting success rates for different inverse kinematics
setups and objective combinations. The algorithm maintains a
fast and robust convergence even for solving multiple goals
simultaneously and high DOF. Especially when adding fur-
ther objectives, it was observed that using the RMSE loss
in (14) is able to achieve significant improvements for the
optimization—making the algorithm considerably faster and
applicable for robustly solving complex full-body postures.

Fig. 12 shows some keyframes of a full-body motion for lift-
ing and rotating an object which could be evolved in real-time.
The wrist and finger poses were defined on the surface of the
object and used to generate the motion of the robot. Similarly,
an objective for the viewing direction of the head was defined
at the object center. Further position and orientation objectives
were defined for both feet so stick to the ground. The required
Cartesian configuration of the pelvis as the root of the hierar-
chical geometry was then also evolved by the algorithm using
a translational prismatic joint.
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Fig. 13. Dexterous object manipulation scenario using the PR2 with the Shadow Dexterous Hand attached. The curves visualize the generated motion in
joint space for the arm, wrist (WR), first finger (FF), middle finger (MF), and thumb (TH).

Fig. 14. Solving inverse kinematics for different grasp types of real-human
hand data on the Shadow Dexterous Hand.

D. Anthropomorphic Grasps and Dexterous Manipulation

The algorithm was further investigated on anthropomorphic
robotic hands for solving grasps and dexterous manipulation
scenarios. Such tasks are often difficult since all fingers are
again directly controlled by the preceding joints of the wrist
and the arm of a robot. In addition, manipulation with real
human hands typically involves rolling the fingers slightly on
top of the surface instead of keeping a particular pose for
the individual finger tips. From a computational perspective,
this requires handling particular objectives as soft-constraints,
such as having an appropriately lower weight for the orienta-
tion than for the position objective. For the experiments, the
Shadow Dexterous Hand shown in Fig. 16 was used, which
consists of a 2 DOF wrist, 4 DOF thumb and pinky fingers,
and 3 DOF index, middle, and ring fingers.

Dexterous manipulation requires solving grasps which ide-
ally incorporate the wrist configuration for all fingers—solving
the hand as a whole kinematic system rather than each finger
independently. Fig. 14 demonstrates the proposed algorithm
applied to different exemplary grasping types for the hand.
Those were recorded from data of 444 real-human grasps [46],

Fig. 15. Statistical accuracy for reconstructing 444 real-human grasp
configurations using the Shadow Dexterous Hand.

Fig. 16. Geometry of the 19 DOF Shadow Dexterous Hand.

and the algorithm was then used to find a solution which
resembles the original finger poses of the hand, despite of
varying link lengths and joint limits between the humanoid
and robotic hand. All different tested grasp types could be
successfully evolved within a few milliseconds.

When using a fixed optimization time of 10 ms, Fig. 15
shows the achieved accuracy as the sum of errors in position
and orientation of the single fingers, along with the statis-
tical deviation between the minimum and maximum values
over reconstructing all 444 prepared grasp configurations. It
demonstrates that the memetic evolution can be used to obtain
solutions with a pose accuracy between 10−5 m and 10−4 rad.
In addition, it can be observed that it was possible to obtain a
slightly better accuracy for the thumb and pinky fingers which
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Fig. 17. Real-time collision avoidance using distance objectives on the KuKA LBR iiwa (left) and PR2 robot (right).

have one DOF more than the other fingers—which can be
reasoned by a higher kinematic flexibility and thus a larger
solution manifold in the fitness landscape.

Next, the Shadow Dexterous Hand was attached to the right
arm of the PR2 robot shown in Fig. 13, having 17 DOF in total.
In the experiment, a wooden cube was rotated around all three
axes, and the motion of the robot from the arm to the thumb,
index, and middle fingers should be evolved. In addition, a
further goal was defined for the head camera to track the center
of the object. A grasping pose on the surface of the cube
was defined for each finger while using a significantly lower
weight for orientation with 0.1 than for position with 10.0.
Two weighted soft-constraints for the wrist orientation with
0.5 and elbow position with 0.25 were specified to encourage
the optimization to evolve into a reasonable grasping posture.
Note that both intermediate goals for the elbow and wrist do
not necessarily need to be reached exactly, which is controlled
by the weights to offer some amount of flexibility for the arm
configuration while solving the grasp. Thus, not only the wrist
motion of the hand, but also the whole arm configuration is
incorporated. The rightmost figure visualizes the configuration
of the single joints covering two full manipulation cycles of
the object. All joints of the robot arm can be observed to be
adjusted over time, while also accounting for joints running
into their lower or upper limits. In such cases, the evolution
performs slightly higher updates for the joints that can still be
moved, and enables to find a solution despite of some joints
reaching their joint space limits.

E. Collision Avoidance

Collision avoidance with obstacles as well as with the robot
itself is an issue which is often neglected for generic inverse
kinematics solvers. However, it has particular relevance in
order to provide valid solutions in Cartesian space. Those
can then be used for collision-free trajectory generation or for
procedural animation in modern video games. The proposed
algorithm handles collision avoidance by using objectives
which ensure to maintain a minimum distance between speci-
fied points—resulting in spherical colliders. Those can be used
to approximate collision geometries, as shown in Fig. 17 on the
KuKA LBR iiwa robot. As a result, the robot arm smoothly
avoids the black sphere obstacle while reaching for the teal
sphere target. A more complex experiment was conducted
using the PR2 robot moving the gripper to a pose goal

within an open box. Similarly, the arm and box geometries
were approximated through multiple distance objectives. When
placing the target within a solid part of the box, the algo-
rithm still tries to reach the target as close as possible without
resulting in a collision. Finally, when placing the target within
free space inside the box, a solution can be found with safety
distances to the nearest collision points.

F. Motion Reconstruction

Further challenging applications are given by controlling
a robot through teleoperation in human-robot interaction, or
by remotely transferring motion on a game character in vir-
tual reality. Such tasks require a fast and responsive real-time
computation, and also the ability to solve highly articulated
models. In addition, a robust handling of different link lengths
and joint limits between the kinematic structure and the real
human operator must be ensured to achieve plausible postures.
An example of reconstructing human motion on the NASA
Valkyrie robot model in virtual reality is shown in Fig. 18.
Two position and orientation objectives were specified for the
left and right wrist of the robot, along with a further orienta-
tion objective for the head, and were updated by the tracking
information obtained from the HTC Vive controllers and head-
set. Hence, only a few goals were used trying to reconstruct a
full-body motion on a complex humanoid robot while having
the feet fixed on the ground. As can be observed, the algorithm
successfully evolves similar looking postures on the robot as
those of the operator. Smooth motion transitions while stand-
ing and turning or stretching the upper body, waving with
hands or kneeling could be obtained in real-time.

G. Animation Postprocessing

Inverse kinematics is an essential method for generating or
post-processing animations for virtual characters. A common
application in video games is to adjust existing walking or
running motion in real-time such that the feet do not disappear
within the ground, but instead are properly placed on the
surface. Fig. 19 visualizes the algorithm post-processing a
running animation for the Kyle humanoid while traversing an
uneven terrain. Two pose goals were defined at the bottom
center of the feet, and initially controlled by the default
position and orientation of the original animation. Then,
downward projections from the knees to the foot goals were
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Fig. 18. Motion reconstruction on the NASA Valkyrie robot in virtual reality using the HTC Vive controllers and headset.

Fig. 19. Runtime post-processing of existing animations for terrain-adaptive foot placement using the Kyle humanoid.

Fig. 20. Evolutionary algorithm for solving full-body inverse kinematics queries on the 34 DOF Kyle humanoid. Each column represents one joint dimension
with its full optimization history until convergence from left to right. The color in the top row shows the normalized fitness values, interpolated between red
(bad) and green (good). The middle and bottom row highlight the evolved optimization paths, where each color indicates one elite individual and its path
through the search space.

used to correct them in case of intersection with the solid
ground—such that the feet normal becomes orthogonally
aligned to the ground surface. Note that all joints along the 7
DOF legs were used to correct the foot poses instead of only
updating the orientation of the feet. Hence, the algorithm can
be used to generate more realistic animations in real-time. In
addition, animations of multiple characters can be resembled
simultaneously—producing slight variations for each of them
and thus a more natural manifold of concurrent animations.

H. Evolutionary Landscapes

The resulting underlying optimization of the algorithm is
visualized in Fig. 20. For the experiments, different kine-
matic postures were create using the whole body of the Kyle
humanoid by defining pose goals for the hands and feet. Each
particle represents one joint value from the whole configu-
ration over all dimensions of an individual. In the top row,
the full population is shown with the color indicating the
fitness of an individual. Although the algorithm converges,



STARKE et al.: MEMETIC EVOLUTION FOR GENERIC FULL-BODY INVERSE KINEMATICS IN ROBOTICS AND ANIMATION 419

it can be observed that a manifold of different solutions
is maintained. In the middle row, the procreation of genes
is shown to highlight the individuals which could produce
offspring with better fitness values. The bottom row lastly
shows the evolved joint configurations for the elite individ-
uals, which demonstrates that the algorithm can track and find
multiple solutions simultaneously. This property can be used
to choose from a set of possible configurations in order to
create collision-free trajectories between body postures, which
is a common problem in robotics. In character animation, it
allows the creator to choose from a set of similar postures for
generating animation keyframes.

V. LIMITATIONS AND CHALLENGES

The algorithm was generally found being flexible to apply
for different applications. In particular, further objectives
could be designed and added quite easily as required.
However, some difficulties were observed in finding proper
weightings between those, which is not generally clear how
to chose. In particular, setting higher weights for collision
avoidance or intermediate position or orientation goals along
the kinematic chains can result in not accurately solving
end effector targets anymore. Although this is correct in
terms of optimization, it might not always yield the desired
behavior. Further, due to the probabilistic optimization it is
possible that sudden changes between solutions might occur.
Although this was only observed in very rare cases or around
singularities, and could be avoided using a displacement
objective to penalize large changes, we think this issue
should be mentioned to be considered for real-world robotics
applications. Finally, it was observed that the algorithm
should be given 0.5–1 ms optimization time for animation
post-processing in games whereas ∼16 ms (60 Hz) is the
usual time limit to maintain real-time frame rates. This
suggests that the algorithm is predominantly suited for fine
control of some main characters rather than for controlling
multiple less important characters at the same time, and
for which computationally faster but less powerful methods
are typically sufficient. Nevertheless, there should be very
few cases in which both solving fine control of motion on
multiple characters concurrently is actually required.

VI. CONCLUSION

This paper proposed a novel memetic evolutionary approach
for solving inverse kinematics with multiple concurrent goals
on fully constrained generic geometries. Since GA, PSO, and
the L-BFGS-B algorithm can all operate on the same objective
function, the characteristic strengths of biologically inspired
and gradient-based optimization could be successfully com-
bined into one method—performing both global and local
search while offering maximum flexibility for the design of
custom cost functions. The experiments demonstrated that the
algorithm serves the different performance aspects in computa-
tional efficiency, robustness and scalability which are required
in robotics as well as animation. In particular, similar speed
of convergence as for popular gradient-based methods can be
provided, but while achieving significantly higher success rates

on all tested robot and character models. The algorithm was
further demonstrated to be applicable for different challenging
tasks, including full-body motion and dexterous manipulation
with anthropomorphic hands, motion reconstruction in virtual
reality, as well as for realizing terrain-adaptive foot place-
ment of virtual characters through animation post-processing.
Additionally, while collision avoidance is typically neglected
for related generic inverse kinematics solvers, it was pos-
sible to successfully formulate an objective to efficiently
integrate this functionality. Therefore, we believe evolutionary
optimization to be a suitable methodology for solving complex
inverse kinematics setups. Implementations of the algorithm
are readily available in Unity3D (C#) and ROS (C++), and
can be used for research in robotics, animation, virtual reality,
and game development.

A. Future Work

So far, the algorithm was predominantly applied to solving
pure kinematic postures, but not yet considering the dynamics
of the system. Thus, further research can address the design of
center-of-gravity objectives to integrate balancing while opti-
mizing full-body postures. Although this paper mainly focused
on hierarchical structures, future directions can also include
defining objectives for parallel mechanisms that require solv-
ing separate kinematic chains controlling a single end effector.
Another goal is to create a method or several heuristics to
automatically select appropriate weights for combining such
objectives. The algorithm will also be further investigated
for dexterous manipulation tasks with anthropomorphic hands,
collision-free trajectory generation, close character interaction,
as well as for procedural animation.
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