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A Memetic Algorithm Based on an NSGA-II
Scheme for Phylogenetic Tree Inference

Manuel Villalobos-Cid , Márcio Dorn , Rodrigo Ligabue-Braun, and Mario Inostroza-Ponta

Abstract—Phylogenetic inference allows building a hypothesis
about the evolutionary relationships between a group of species,
which is usually represented as a tree. The phylogenetic infer-
ence problem can be seen as an optimization problem, searching
for the most qualified tree among all the possible topologies
according to a selected criterion. These criteria can be based
on different principles. Due to the combinatorial number of pos-
sible topologies, diverse heuristics and meta-heuristics have been
proposed to find approximated solutions according to one cri-
terion. However, these methods may result in several phylogeny
trees which could be in conflict with one another. In order to deal
with this problem, models based on multiobjective optimization
with different configurations have been used. In this paper, we
propose an ad-hoc multiobjective memetic algorithm (MO-MA)
to infer phylogeny using two objectives: 1) maximum parsimony
and 2) likelihood. Several population operators and local search
strategies are proposed and evaluated in order to measure their
contribution to the algorithm. Additionally, we perform a com-
parison among different configurations and tree rearrangement
strategies. The results show that the proposed MO-MA is able
to identify a Pareto set of solutions that include new trees which
were nondominated by solutions from the current state of the
art single-objective optimization tools. Furthermore, the MO-MA
improves the results presented in the literature for multiobjective
approaches in all of the studied data sets. These results make our
proposal a good alternative for phylogenetic inference.

Index Terms—Memetic algorithm, multiobjective optimization,
phylogenetic inference.
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I. INTRODUCTION

ONE OF the major challenges of bioinformatics is the
design of efficient and robust algorithms to deal with

problems that arise in this field [1]. In particular, the phyloge-
netic inference problem allows the inference of a hypothesis
about the evolutionary history between a group of organisms
(usually called taxa or tips), using structural and functional
information of molecules and how they change over time [2].
Phylogenetic analysis has contributed in several scientific
fields such as bio-geography, medicine, chemistry, forensics,
systematic biology, epidemiology, and paleontology [3]. For
example, the publication of the tree of life proposed by
Hinchliff et al. [4] shows the evolutionary relationships among
2.3 million organisms. This paper also shows the large vol-
ume of data that is available for phylogenetic inference,
including multiple data sets, biological sources, and different
species.

One way to represent the evolutionary relationships is using
phylogenetic trees, so the problem of phylogenetic inference
can be treated as an optimization problem. Then, it is required
to find the most qualified inferred tree among all the possi-
ble topologies according to a selected criterion, which can be
based on different principles such as minimum evolution, least
squares, maximum parsimony, and likelihood. All of them
can result in different phylogenetic trees. The search for the
optimal tree using approaches based on exhaustive algorithms
is infeasible, due to the combinatorial number of possible
topologies. This problem has been classified in computational
theory as an NP-hard problem [5].

The first approaches for this problem considered only one
optimization criterion and they were based on evolutionary and
bio-inspired algorithms [6], [7]. They allowed to find approx-
imate solutions to problem instances with large-scale volume
data (see [7] and references therein). Nevertheless, some prob-
lems remained unsolved such as the bias associated with the
optimal criterion applied [8], type of data, and evolutionary
model selected [9]. Probabilistic algorithms provided a solu-
tion to these difficulties generating a consensus (CS) tree.
However, they require prior knowledge of the weight of each
biological source and objectives without conflict with each
other. The main shortcoming of this methodology would be to
discard solutions with biological meaning [5].

Handl et al. [10] highlighted the advantages of applying
multiobjective optimization in bioinformatics and computa-
tional biology problems. They identified its benefits compared
to the use of single objective methods: minimization of the
probability of stagnation in local minima and areas without
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gradients, reduction of noise effect from the data, and incorpo-
ration of multiple sources which are in conflict with each other.

The most recent methods for phylogenetic infer-
ence using trees are based on multiobjective
optimization [1], [5], [7], [9], [11]–[17]. These population-
based evolutionary strategies consider a wide range of
meta-heuristics, different methods to build initial populations,
and diverse genetic operators for crossover and mutation.
However, only a few of them [14], [15], [18] describe details
about the performance of rearrangement strategies over
genetic operations and how the algorithms are parameterized.

In this paper, we propose a memetic algorithm based on
a nondominated sorting genetic algorithm II (NSGA-II) to
infer phylogeny [19] using two objectives: 1) maximum parsi-
mony and 2) likelihood. Different configurations and operators
described in the literature are compared and evaluated: four
distance methods to build the initial topology of trees, multiple
rearrangement strategies, and two local search algorithms.
Data sets from the related literature are used to compare our
proposal with classical single and multiobjective proposals.
Finally, a biological evaluation using an amino acids data set
is performed. The main contributions of this paper with regard
to previous publications are as follows.

1) A thorough evaluation of an NSGA-II-based strategy for
the phylogenetic inference problem, considering local
search strategies, and different crossover and mutation
operators.

2) A characterization of different crossover, mutation and
two local search strategies applied to the multiobjective
phylogenetic inference problem, and its effect on the
search process.

3) The proposal of a new ad-hoc crossover operator for
the phylogenetic inference problem, which combines the
parameters of the evolutionary model employed in the
likelihood calculation.

4) New solutions for the literature data sets that improve
the quality metrics of state of the art single and
multiobjective strategies. This contribution makes the
proposal a real alternative for the field.

The remainder of this paper is organized as follows.
Section II introduces some concepts about phylogenetic infer-
ence and multiobjective optimization. It includes a review of
the related work (Section II-D). Section III describes details
of the proposal. Section V shows the results. The last section
presents the main conclusions reached in this paper.

II. PHYLOGENETIC INFERENCE

A. Phylogenetic Trees

A phylogenetic tree represents a hypothesis about the evolu-
tionary relations between species (or, in specific cases, among
molecules themselves, e.g., protein evolution). This tree can
be classified as rooted or unrooted. A rooted tree infers the
existence of a common ancestor and indicates the direction of
the evolution. On the contrary, an unrooted tree shows the
evolutionary relationship among organisms without a com-
mon ancestor [20]. The number of possible topologies to
infer rooted (nr) and unrooted (nu) trees for n species can

Fig. 1. Classification of the phylogenetic inference methods.

be computed using the following equation:

nr(n) = (2n− 3)!

(n− 2)!2n−2
(1)

nu(n) = (2n− 5)!

(n− 3)!2n−3
. (2)

Then, the search for the best rooted tree according to
one criterion for only 20 species requires the evaluation of
8.2 × 1021 topologies.

B. Methods for Phylogenetic Inference

The reconstruction of phylogenetic trees can be made using
distance-based and character-based methods (Fig. 1). The for-
mer infer phylogeny using a distance matrix with pairwise
distances between sequences, and the latter use a set of aligned
sequences and evolutionary information of the characters.

Distance-based methods can be classified as clustering and
optimization methods. The first category considers greedy
approaches that itself can build trees such as unweighted pair
group method with arithmetic mean (UPGMA), weighted pair
group method with arithmetic mean (WPGMA), neighbor join-
ing (NJ), and bio NJ (BioNJ) [21]. The second category has
two optimality criteria: 1) minimum evolution [22], [23] and
2) least-square error [24], [25]. Minimum evolution consid-
ers the shortest sum of branch lengths for choosing the best
tree. In contrast, least-square error minimizes the difference
between the observed pairwise distances and the distances over
a phylogenetic tree.

Character-based methods use an optimization approach.
The most widely used methods are maximum parsimony,
maximum likelihood, and Bayesian methods [26]. Maximum
parsimony considers the tree which minimizes the number of
changes required to explain the input data. Maximum likeli-
hood chooses the tree with the highest likelihood in relation
to the observed data according to a specific evolutionary
model [21]. Finally, the Bayesian method is based on the pos-
terior probability, which is obtained from the likelihood and
the prior probability.

Different authors have demonstrated that the maximum
likelihood tree corresponds to the maximum parsimony
tree, but not vice verse, in specific cases which considers
symmetric-state evolutionary models with no common mech-
anism, unbounded substitution probabilities, and cases that do
not include molecular clocks [27]. However, the equivalence
between parsimony and likelihood by considering evolutionary
models with common mechanism and most of the evolutionary
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Fig. 2. Pareto-set of solutions in multiobjective phylogenetic inference.

models have not been proved. In general conditions, the parsi-
mony and likelihood have a conflicting relationship resulting
in different evolutionary hypotheses for a given data set.

C. Multiobjective Phylogenetic Inference

A single optimization problem considers the maximization
(or minimization) of only one objective function. On the
other hand, a multiobjective optimization problem involves
multiple objectives, and they usually have some level of con-
flict [10]. In the phylogenetic inference context, two criteria
could result in different topologies of trees for the same data
set. Also, the relationships between criteria have not been well
established (e.g., parsimony and maximum likelihood). In this
case, the multiobjective phylogenetic inference problem can
be defined as

maximize �z = �f (x) = (f1(x), f2(x)), x ∈ X (3)

where x is a solution tree in the set of all possible solu-
tions X, and z = �f (x) is an objective vector point, where f1
corresponds to the parsimony function and f2 the likelihood
function. It is important to clarify that the maximization of
the parsimony involves lowering its value. The Pareto optimal
solutions are those for which no other solution is better in all
objectives. The points in the objective space corresponding to
the Pareto-optimal are called nondominated, and they form the
Pareto-frontier. In particular for this problem, we are looking
for solutions that go toward the upper left of the objective
space (Fig. 2).

D. Related Work

The first work applying optimization methods for phyloge-
netic inference used single-objective approaches. A complete
review of these methods can be found in [7] and references
therein. In this paper we deal with the multiobjective version
of the phylogenetic inference problem.

One of the first strategies used to deal with multiobjective
problems was the NSGA proposed by [28]. A second version
of this algorithm (NSGA-II) was proposed by Deb et al. [19]
which reduces its computational complexity. Also, memetic
algorithms have been successfully applied to solve single
and multiobjective problems in bioinformatics [29], [30] and
other areas [31]–[33]. In addition, different local search
strategies have been successfully integrated in multiobjective
approaches [34]–[37].

In particular for the multiobjective phylogenetic infer-
ence problem, the first proposed work was developed by
Poladian and Jermiin [5]. They applied an evolutionary
multiobjective algorithm to optimize maximum likelihood and
infer different phylogenetic trees using two biological sources
in conflict: 1) mitochondrial and 2) nuclear gene information.
A year later, Jayaswal et al. [12] applied the same method
using conflicting biological sources from simian sequences
to obtain different evolutionary hypotheses. The same year,
Cancino and Delbem [9] proposed a multiobjective evolution-
ary algorithm: PhyloMOEA. It uses maximum parsimony and
likelihood criteria to evaluate the evolutionary hypotheses of
four data sets of nucleotide sequences. They used tree rear-
rangement strategies in the crossover (Lewis’s operator [38])
and mutation operators [nearest neighbor interchange (NNI)].

Bio-inspired approaches have been explored for dealing
with the phylogenetic inference. Coelho et al. [13] designed
an immune-inspired multiobjective strategy to infer phylogeny
using distance-based criteria: minimum evolution and least
squares. Genetic operations were applied directly to distance
matrices without the use of rearrangement methods. Another
bioinspired approach was presented by Santander-Jiménez and
Vega-Rodríguez [7]. They used a multiobjective adaptation
of the artificial bee colony (MO-ABC) to maximize parsi-
mony and likelihood using real data sets with nucleotide
sequences. Their metaheuristic incorporated NNI and it was
compared with NSGA-II using prune-delete-graft (PDG). In
addition, their proposal was contrasted with classical single-
objective optimization methods. In a previous work, they com-
pared different mutation operators for this meta-heuristic [18].
The same author proposed a multiobjective firefly algorithm
(MO-FA) for inferring phylogenetic trees according to maxi-
mum parsimony and maximum likelihood criteria [14]. They
also studied the behavior of several clustering methods for this
approach [15].

Parallel versions of these strategies have also been
explored [39], [40]. Additionally, Santander-Jiménez and
Vega-Rodríguez [17] tackled the reconstruction of phyloge-
netic relationships applying a parallel indicator-based evolu-
tionary algorithm using the hypervolume metric [41]. Recently,
Zambrano-Vega et al. [1] designed MO-phylogenetic, a soft-
ware tool to infer phylogenetic trees by maximizing parsi-
mony, and likelihood. This tool offers different mutation and
crossover operators.

The design of different methods to infer phylogeny requires
the use of diverse rearrangement strategies to search for
optimal tree structures. Three of these operators have been
widely used in the literature as mutation operators in the
evolutionary algorithms [26]: 1) NNI; 2) subtree pruning
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and regrafting (SPR); and 3) tree bisection and reconnection
(TBR). NNI exchanges subtrees from a random internal branch
to obtain a new tree. SPR selects a random subtree from a
tree, removes the selected subtree and regrafts it in a ran-
dom position to generate a new tree [7]. TBR combines both
strategies. Other rearrangement strategies have been applied as
crossover operator in genetic algorithms [42]–[45]. However,
the most recent works use PDG as the crossover operator [46].
It takes a random subtree from one of the parents and inserts
it in the other parent at a randomly selected insertion point,
deleting duplicated species from the second tree [7]. It has
been reported that crossover strategies are biased and more
destructive to one parent than to the other [38], [47].

The application of multiobjective optimization strategies
in the phylogenetic inference context is a current focus
of research [48], mainly concentrated on the development,
optimization, and evaluation of new algorithmic strategies.
Despite these advances, and the clear advantage of using
multiobjective approaches, the most current tools used to infer
phylogenetic trees are based on single objective optimization.

III. MULTIOBJECTIVE MEMETIC ALGORITHM

We adapted the NSGA-II algorithm developed by
Deb et al. [19] by integrating an ad-hoc local search operator
and tree rearrangement strategies to tackle the phylogenetic
inference problem. Algorithm 1 shows the pseudo-code of the
proposal, where D corresponds to a data set with sequences in
PHYLIP format, ps is the population size, cr and mr are the
crossover and mutation rates, respectively, and ls corresponds
to the number of local search iterations to be performed by
the algorithm. The following sections describe details of the
algorithm.

A. Optimality Criteria

Character-based methods use aligned sequences directly
during tree inference. These methods are statistically more
consistent than distance-based methods, due to the inevitable
loss of evolutionary information when a sequence alignment
is converted to pairwise alignment [49]. Consequently, the
majority of the multiobjective optimization approaches infer
phylogeny by maximizing parsimony and likelihood criteria.
In our proposal, the parsimony score is calculated using Fitch’s
algorithm [26], and the likelihood score is obtained using
Nguyen et al.’s [50] stochastic search algorithm. Both criteria
are obtained using the phangorn R package [51].

B. Initial Population

A first tree Ti is built applying a distance method (UPGMA,
WPGMA, NJ, or BioNJ). Its evolutionary model is esti-
mated according to Akaike’s information criterion [26]. Next,
a new tree Tp is created optimizing parsimony, and its
branch length is estimated using the accelerated transformation
method [52]. The evolutionary model of this tree is calculated.
Subsequently, a third tree Tl is built optimizing likelihood
according to the evolutionary model defined for Ti. Finally, an
initial population with ps individuals is built over the initial
trees (Tp and Tl) using a rearrangement method (NNI, SPR,

Algorithm 1 MO-MA
1: Input: D,ps, cr, mr, ls
2: Output: A P population of trees (Pareto frontier).

� Initialise population
3: P ← initialise_population(D,ps)
4: while stop condition is not reached do
5: for each p ∈ P do

� Genetic operations
6: [T1, T2] ← binary_tournament_selection(P)
7: Q[p] ← crossover(Ti, T2, cr)
8: Q[p] ← mutation(Q[p], mr)
9: end for

� Update Pareto-frontier population
10: P ← non_dominated_sorting(P, Q, ps)

� Local search application
11: P ← local_search_strategy(P, ls)
12: end while
13: return (P)

or TBR). After the initial population P is built, a second
population Q is constructed using genetic operators.

C. Crossover Operators

In order to apply the crossover of solutions, two parents T1
and T2 are selected from P using a stochastic binary tourna-
ment. Then, the two parents are merged using rearrangement
strategies. For this purpose, four strategies have implemented:
1) PDG [46]; 2) a modified version of PDG (PDGm); 3) branch
exchange (BE); and 4) a CS tree method. The PDG operator
was designed according to [46]. A small modification of the
PDG algorithm was performed in order to build a second oper-
ator PDGm. The selection of a random subtree from one of
the parents was replaced by the selection of the smallest sub-
tree which has two or more tips (leaves). BE operator prunes
a random branch from one of the parents and inserts it in the
other parent at a randomly selected insertion point, deleting
the duplicated species from the latter. Finally, a greedy opera-
tor (CS) was designed to search a CS tree among the parents.
It applies the NNI operator on the T1 parent until the offspring
reaches a random determined distance r (Robinson–Foulds dis-
tance [53]) from both parents (in Fig. 3, we show a scheme
of the four crossover operators inspired on the work of [54]).
Finally, a uniform crossover operator combines the param-
eters of the evolutionary model employed in the likelihood
calculation for each parent.

D. Mutation Operators

Tree rearrangement heuristics are used as mutation opera-
tors: NNI, SPR, and TBR. The first two were performed using
the phangorn R package, and the third strategy was coded as
a new function.

E. Local Search Strategies

The neighborhood of a population is visited using the same
mutation operators described in Section III-D, as follows:
the mutation operator is applied for each solution p ∈ P
to generate a p′ tree. If p does not dominate p′, the latter
is added to the population P and a nondominated sorting
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(a) (b)

(c) (d)

Fig. 3. Scheme of different crossover operators. (a) PDG. (b) PDGm. (c) BE. (d) CS.

algorithm with crowding distance is applied to discard a
solution. This operation is applied using: 1) a Pareto local
search algorithm [36], [37] and 2) a simulated annealing algo-
rithm [55]. The former runs for a fixed number ls of iterations.

IV. EXPERIMENTAL DESIGN

In order to identify the configuration that maximizes the
performance of the multiobjective memetic algorithm (MO-
MA), we tested and characterized different tree rearrangement
strategies as genetic operators and then they were integrated to
the structure of MO-MA to evaluate multiple global configu-
rations. The best global configuration found was tested against
other literature strategies [7], [9], [11], [13]–[18], [39], [40]
and it was also applied to study an amino acid data set of
biological interest.

A. Configuration of the Algorithm

1) Crossover Operator Evaluation: We tested two
crossover operator conditions: 1) the bias associated with the
production of descendants which include characteristics of
both parents (balance condition) and 2) the ability to visit the
search space. To test the first condition, we applied a 1000
crossover operation using the rearrangement methods over the

initial topologies. Then, the distance between descendant and
each couple of parents was measured using the Robinson–
Foulds metric, normalized by the distance between parents.

In order to measure the capacity of each rearrangement
method to visit the search space and obtain new solutions,
we also compute the average normalized distance between
the descendants and both parents. The goal is to know how
similar are the parents and the offspring generated after the
crossover operator. The data sets selected and the statistical
comparison methods applied are the same as those presented
in Section IV-A3.

2) Mutation Operator Evaluation: We also tested the abil-
ity of each mutation operator to visit the search space using the
Robinson–Foulds metric. One thousand mutations were gen-
erated over the initial topologies, and the same methodology
employed in the crossover analysis was applied.

3) Global Configuration: We tested the memetic algorithm
using different configurations: four distance methods to gen-
erate the initial topologies (UPGMA, WPGMA, NJ, and
BioNJ), five crossover alternatives (PDG, PDGm, BE, CS,
and no crossover operator), four mutation strategies (NNI,
SPR, TBR, and no mutation operator), and three local search
strategies (greedy strategy, simulated annealing, and no local
search strategy). The number of possible combinations is 240
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TABLE I
DATA SETS AND CORRESPONDING REFERENCES APPLIED IN TESTS

(4×5×4×3). Each configuration was ran 30 times, resulting
in 7200 executions for each data set. The data sets used are
primates_14, rbcL_55, and HIV1_192.

In order to evaluate the quality of solutions, we computed
the hypervolume metric of the Pareto-frontier. We applied
the Kruskal–Wallis test by ranks to compare the statistically
significant difference in performance between configurations.
The post hoc analysis was performed using the Dunn test
with a significance level of 1%. Furthermore, the cover-
age metric [56] and the percentage representativeness in the
global Pareto-frontier were calculated using the Pareto-set of
solutions corresponding to the median hypervolume achieved
by each configuration (representative solution). This method
has been applied in previous works [7]. The global Pareto-
frontier considers all the nondominated solutions from all the
configurations.

To perform the evaluation and the comparison with other
strategies, we configured MO-MA with parameters previously
recommended by the literature for the population size (ps) and
the genetic parameters (cr and mr) [7], [11]. The parameters
for both local search strategies were experimentally defined
maximizing the hypervolume metric according to the strategy
proposed in [14] and [39] (see details in the supplementary
material, Appendix S1-A).

B. Performance Evaluation

1) Comparison With Single-Objective Optimization
Approaches: In order to show the benefit of dealing with the
multiobjective version of the problem over the single objec-
tive version, we compared MO-MA with other widely used
single-objective optimization tools such as PHYML (Sankoff
parsimony), DNAPARS, RAxML [57], and MEGA [58]
(parsimony and likelihood tree). Each algorithm was executed
30 times for each data set. The difficulties in comparing single
and multiobjective optimization evolutionary algorithms have
been discussed in [59]. We adjusted the comparison according
to the hypervolume contribution of each nondominated solu-
tion, dividing their hypervolume by the cumulative sum of the
hypervolume of all the Pareto-set of solutions. The coverage
and the representativeness in the global Pareto-frontier were
calculated using the method proposed in Section IV-A3,
and the parameterization of each tool is detailed in the
supplementary material (Appendix S1-B).

2) Comparison With Multiobjective Optimization
Approaches: In order to show the performance of the proposal,
MO-MA was compared with other multiobjective methods
proposed in the literature: NSGA-II [7], PhyloMOEA [9],

TABLE II
ROBINSON–FOULDS DISTANCE BETWEEN DESCENDANTS AND EACH

PARENT (P1, P2) OBTAINED USING THE CROSSOVER OPERATORS

(MEDIAN AND STANDARD DEVIATION)

TABLE III
AVERAGE ROBINSON–FOULDS DISTANCE BETWEEN OFFSPRING AND

PARENTS AFTER THE APPLICATION OF DIFFERENT GENETIC OPERATORS

MO-ABC [7], MO-FA [14], MO-Phyl [39], and Mo-
phylogenetics [1]. Furthermore, we implemented an NSGA-II
which includes the crossover operator combining the param-
eters from the evolutionary model (NSGA-II EM). This
algorithm and MO-MA were executed 30 times for each
data set. The median of hypervolume was calculated, and the
representative set of solutions was used to perform the com-
parison with other tools. The representative Pareto-frontiers
obtained by the other proposals were extracted from the plots
published for each method using the WebPlotDigitizer tool
3.11 [60], [61]. To perform a fair comparison, the number of
generations of MO-MA was limited to the time required by
NSGA-II to iterate 100 generations (supplementary material,
Appendix S1-C).

3) Study of Amino Acids Data Set: We design this test to
evaluate: 1) the ability of our proposal to infer evolutionary
hypotheses using amino acid data sets, since all the current-
state proposals have been tested using nucleotide data sets and
2) to evaluate the biological meaning of the solutions.

Ureases are of special interest, since it is very hard to pro-
pose an evolutionary history of these multifunctional enzymes,
due to their varied structural organization [62]. An accepted
evolutionary hypothesis for these taxa has been previously
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TABLE IV
TOP FIVE BEST AND WORST MEMETIC ALGORITHM CONFIGURATIONS ACCORDING TO THE HYPERVOLUME METRIC (hyp.)—MEDIAN AND STANDARD

DEVIATION. THE COVERAGE METRIC (cov.) REPRESENTS THE PERCENTAGE OF NONDOMINATED SOLUTIONS. THE REPRESENTATIVENESS IN THE

GLOBAL PARETO-FRONTIER (% Par. Front.) CORRESPONDS TO THE RATIO BETWEEN THE NONDOMINATED SOLUTIONS OBTAINED FOR A SPECIFIC

METHOD, AND THE TOTAL NUMBER OF SOLUTIONS IN THE PARETO-FRONTIER. THE NJ-PDG-NNI-G CONFIGURATION HAS A GOOD

PERFORMANCE IN ALL THE STUDIED DATA SETS (GRAY COLOR). (ini: Initialization, cr: Crossover, mut: Mutation, and ls: Local Search)

TABLE V
HYPERVOLUME CONTRIBUTION, COVERAGE METRICS, AND REPRESENTATIVENESS IN THE GLOBAL PARETO-FRONTIER FOR MO-MA AND THE

SINGLE-OBJECTIVE OPTIMIZATION APPROACHES. THE BEST VALUES HAVE BEEN HIGHLIGHTED IN BOLD FOR EACH DATA SET. IF MANY

STRATEGIES HAVE BOLDED VALUES FOR THE SAME DATA SET, THEIR DIFFERENCE IS NOT STATISTICALLY SIGNIFICANT

inferred by using MEGA [63]. The evolutionary hypotheses
were compared by applying the Shimodaira–Hasegawa test [9].
It calculates the statistically significant difference between the
most likelihood trees obtained by MO-MA and the accepted
topology proposed in [63].

V. EXPERIMENTAL RESULTS

The algorithms included in this paper and the statistics
test were implemented using R version 3.2.3 and RStudio
version 0.99.491. The data sets were taken from the related
literature, and Table I shows details of the sequences and their
corresponding sources.1

1Code and data sets are available from the online resource
(http://bioinformatic.diinf.usach.cl/phylogeny/phylogeny.html).

A. Configuration of the Algorithm

1) Crossover Operator Evaluation: The difference of the
Robinson–Foulds distance between descendants and each par-
ent for the crossover operators is shown in Table II. For
crossovers PDG, PDGm, and BE, the difference between
the offspring and their parents is statistically significant,
which means that this operator generates offspring that have
more similarity to one of the parents. Then, these opera-
tors show a bias when generating the offspring (unbalanced
condition). In contrast, the CS operator presents a balanced
condition, since the random variable that controls the simi-
larity of the descendants with parents reduces the bias of the
operator.

In the second experiment, we measure the average dis-
tance between offspring and their parents (see Table III). For
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Fig. 4. Representative Pareto-frontier from MO-MA and other multiobjective optimization approaches. The approximated global Pareto-frontier is shown in
black. Solutions from PhyloMOEA, MO-Phylogenetics, and NSGA-II are not represented because their fitness values affect the visualization of the plots.

crossovers PDG, PDGm, and BE, the results obtained are not
statistically significant, which means that they generate off-
spring that are similar to their parents. However, CS has a
greater average distance, and the analysis shows that this dif-
ference is statistically significant. This result indicates that
CS is able to generate solutions that are different from their
parents, allowing to visit farther regions of the solution space.

Details can be seen in the supplementary material
(Appendix S1-D and Appendix S1-E).

2) Mutation Operator Evaluation: Table III shows the
Robinson–Foulds distance after the application of different
mutation operators. Naturally, descendants from NNI operators

have a lower distance in relation to SPR and TBR. By defi-
nition, the distance of NNI descendants always will be equal
to 2. A statistically significant difference between SPR and
TBR was not found. Additional details can be seen in the
supplementary material (Appendix S1-E).

3) Global Configuration: A total of 240 configurations
of the MO-MA on three data sets were tested (rbcL_55,
HIV1_192 and primates_14). Table IV shows the five best and
worst configurations according to the hypervolume metric, the
coverage, and the representativeness in the Pareto-frontier.

In Table IV, it is seen that the configuration that uses
population operators NJ, PDG, NNI, and the greedy local
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TABLE VI
HYPERVOLUME, COVERAGE METRIC, AND REPRESENTATIVENESS OF THE GENERAL PARETO-FRONTIER FOR MO-MA AND OTHER MULTIOBJECTIVE

OPTIMIZATION APPROACHES. THE BEST VALUES HAVE BEEN HIGHLIGHTED IN BOLD FOR EACH DATA SET. IF MANY STRATEGIES HAVE BOLDED

VALUES FOR THE SAME DATA SET, THEIR DIFFERENCE IS NOT STATISTICALLY SIGNIFICANT

search algorithm (G) shows the highest hypervolume metric
for the three data sets. In the case of the rbcL_55 data set,
this configuration reaches better hypervolume values than all
the other configurations, which are significant in 54% of the
cases compared to the other configurations. On the other two
data sets, although the selected configuration reaches better
hypervolume values, they are statistically significant in 6%
and 1% of the comparisons. This can be accounted for by the
high standard deviation reached on the HIV1_192 data set,
and also the small size of the primates_14 data set can lead
to most of the configurations converging to similar solutions.

According to the coverage metric, the solutions found by the
NJ-PDG-NNI-G configuration are nondominated by the other
configurations, and also they have the largest number of solu-
tions (31%, 25%, and 55%, respectively) in the global Pareto-
frontier. The latter represents the contribution of the selected
configuration to the construction of the global solution.

In the case of the configurations with the lowest hyper-
volume metric, it is not possible to identify a common
configuration considering all data sets. However, WPGMA is
part of the worst configurations. Based on these results, the
NJ-PDG-NNI-G configuration was selected as the base struc-
ture for MO-MA, to perform the comparison with the state of
the art alternatives.

B. Performance Evaluation

1) Single-Objective Optimization Performance Evaluation:
Table V shows the hypervolume contribution of each solution,
coverage metric and representativeness of the global Pareto-
frontier for MO-MA and the single-optimization tools.
Parsimony and likelihood scores were normalized between 0

and 1. To compute the hypervolume metric we used a reference
point of (2, 2). Values in bold represents the highest hyper-
volume contribution that are statistically significant compared
to the other methods.

MO-MA has the highest hypervolume contribution in seven
out of eight data sets (Table VI), and these values are statis-
tically significant compared to the single objective methods.
The coverage metric on the same data sets shows that MO-MA
produced a Pareto-frontier with solutions that are nondomi-
nated by the single objective solutions, except on data sets
RDPII_218 and ZILLA_500, where they have 38% and 50%
of solutions dominated by single objective methods, respec-
tively. Regarding the number of solutions in the global Pareto
Frontier, our MO-MA contributes at least with 64% of the
solutions, with an average of 80%.

A particular case corresponds to the data set mtDNA_186,
for which the best performing tool is RAxML. This tool
reaches the best values in three evaluated metrics. It
is also interesting to see in the supplementary material
(Appendix S1-F), that the proposed MO-MA produced a
Pareto-frontier with only one solution. Both solutions reach
similar levels of parsimony, but the likelihood of the solution
produced by RAxML is better than any other solution.

2) Multiobjective Optimization Performance
Evaluation: The comparison of multiobjective optimization
approaches is shown in Table V. In order to compute the
hypervolume metric, the parsimony and likelihood scores
were normalized between 0 and 1 for each data set. The
reference point was defined as (2, 2).

MO-MA has the highest hypervolume for seven out of eight
data sets (Fig. 4). When we compared MO-MA with NSGA-II
EM, the results were statistically significant in only 50% of



VILLALOBOS-CID et al.: MEMETIC ALGORITHM BASED ON NSGA-II SCHEME FOR PHYLOGENETIC TREE INFERENCE 785

the cases. For the rest of the algorithms, the presented MO-
MA reaches solutions with better values that are statistically
significant on all data sets. The only exception is MO-ABC,
which gets better values on the ZILLA_500 data set.

The coverage metric demonstrates that solutions obtained
by MO-MA are nondominated by solutions from other meth-
ods in all the data sets except ZILLA_500. In this case,
MO-ABC, MO-FA, and MO-Phyl also have nondominated
solutions. Also, MO-MA is the method that most contributes
to the global Pareto-frontier for all data sets. However, when
the ZILLA_500 data set is considered, Mo-Phyl and MO-ABC
also have solutions which conform part of the general Pareto-
frontier. These trees minimize the parsimony score in relation
to MO-MA.

These results show that the solutions found by our algorithm
are new solutions, and also contribute on the average with
more than 90% of the global Pareto-frontier on seven data sets.
The only exception is on data set ZILLA_500, on which algo-
rithms MO_Phyl and MO_ABC have a greater contribution to
the global Pareto frontier.

3) Study of Amino Acids Data Set: The representative
Pareto-frontier obtained by the MO-MA is shown in the sup-
plementary material (Appendix S1-G). It considers three points
in the objective space and five different trees (A, B, C, D,
and F). Trees with equal fitness values resulted with different
topologies, such as (A, D) and (C, E). The highest Robinson–
Foulds distance was 16 editions. This value corresponds to
the distance between the most parsimonious tree (B), and
one of the trees with the highest likelihood (A). This differ-
ence demonstrates the conflict between trees obtained using
parsimony and likelihood criteria.

The Shimodaira–Hasegawa test (ape package in R) did not
report significant differences between the topology presented
in [63] and the topologies from the most likelihood trees
obtained in the different executions using MO-MA. It demon-
strates that our MO-MA is able to produce solutions that not
only have a good performances in terms of numerical scores,
but they are also biologically sound, finding solutions with
accepted evolutionary hypothesis using amino acid sequences.

VI. CONCLUSION

In this paper we propose a new approach for solving
the phylogenetic inference problem based on multiobjective
optimization and evolutionary techniques. The final proposal
was reached after a thorough evaluation of the different oper-
ators during the design. Overall, the trees obtained with our
MO-MA have higher fitness values in relation to proposals
from the literature for the majority of the data sets taken from
the literature.

Based on the results shown in the previous section, it was
not possible to identify a single best algorithm configuration
with a highest statistically significant level of hypervolume
metric for all data sets. However, the NJ-PDG-NNI-G config-
uration gives a structure with the highest value of hypervolume
metric value, the best coverage score and solutions which
represent the greater part of the global Pareto-frontier.

Also, individual features could be identified. For example,
the NNI mutation operator is part of the structures with the best

performance, and the use of WPGMA as a method to build
initial topologies generates results with a poor multiobjective
metrics for all data sets.

The balance condition for the crossover operator is impor-
tant, since the selection method applied for the crossover
operator influences the offspring features. When a nonstochas-
tic selection method is used with an unbalanced crossover
operator, the descendants in each generation will receive char-
acteristics from only one of the parents, increasing the risk of
stagnation in local minima. On the other hand, in an advanced
generation of the heuristic, this configuration could ensure the
conservation of the general features of the population.

The CS operator is part of the best configuration for the
three studied data sets. Furthermore, when this operator was
studied separately, it was balanced, receiving equally the fea-
tures from both parents, according to the Robinson–Foulds
distance. Furthermore, it has the highest distance between
descendants and parents in relation to other crossover oper-
ators. These results allow inferring that this operator can be
used to quickly cover the search space in the early application
of a meta-heuristic. Besides, when it is necessary to keep the
features of a population and at the same time minimize the
risk of stagnation in local minima, other operators like PDG,
PDGm, and BE could be used.

In the case of tree rearrangement for the mutation stage,
SPR and TBR have a great Robinson–Foulds distance with
NNI. However, no statistically significant difference was found
between the first two operators. The results suggest that the
use of TBR does not have advantages in relation to SPR.
This consideration is important because TBR requires more
movements than SPR to perform an operation [65] resulting
more computationally expensive.

When the MO-MA with the NJ-PDG-NNI-G configuration
was compared with single and multiobjective optimization
approaches proposed in the literature, it shows better
performance than literature methods according to the hyper-
volume metric for most of the data sets. In the other cases,
the MO-MA inferred trees which are not covered by the
other methods and represent a different section of the global
Pareto-frontier. It means that we are able to provide new
solutions to the problem. In four data sets, no statistically
significant difference was reported considering the hypervol-
ume metric when MO-MA and NSGA-II EM were compared.
Considering these results and the comparison with NSGA-II
without the crossover operator applied to the evolutionary
model, it is possible to infer that this crossover operator helps
to maximize considerably the likelihood score, improving the
multiobjective metrics. As expected, the local search operator
performs a refinement of the solutions, turning MO-MA in a
competitive method in relation to the other proposals.

In relation to the study of the amino acids data set, no
statistically significant differences were reported using the
Shimodaira–Hasegawa test. It shows that MO-MA has a
competitive performance based not only on the algorithmic
perspective, but also considering a biological meaning, finding
an accepted evolutionary hypothesis.

Although the results shown in this paper are promising,
there still are important issues to improve in the algorithm,
such as the study of the local search stage considering different
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strategies (operator, timing, stop conditions, neighborhood def-
inition, among others). Also, the different techniques to reduce
the search space using prior knowledge can be explored. This
idea has been applied successfully in other areas such as
structural bioinformatics [66]. Furthermore, different metrics
(spread, coverage, or hypervolume), can be included as objec-
tive functions, improving the quality of the Pareto-frontier
and increasing the speed of the convergence. To generate a
future applicable tool, different decision-making techniques
for phylogeny inference must be explored.
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