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Abstract—Generalization ability, which reflects the prediction
ability of a learned model, is an important property in genetic
programming (GP) for symbolic regression. Structural risk
minimization (SRM) is a framework providing a reliable esti-
mation of the generalization performance of prediction models.
Introducing the framework into GP has the potential to drive
the evolutionary process toward models with good generaliza-
tion performance. However, this is tough due to the difficulty
in obtaining the Vapnik–Chervonenkis (VC) dimension of non-
linear models. To address this difficulty, this paper proposes an
SRM-driven GP approach, which uses an experimental method
(instead of theoretical estimation) to measure the VC dimension
of a mixture of linear and nonlinear regression models for the first
time. The experimental method has been conducted using uniform
and nonuniform settings. The results show that our method has
impressive generalization gains over standard GP and GP with
the 0.632 bootstrap, and that the proposed method using the
nonuniform setting has further improvement than its counter-
part using the uniform setting. Further analyzes reveal that the
proposed method can evolve more compact models, and that the
behavioral difference between these compact models and the tar-
get models is much smaller than their counterparts evolved by
the other GP methods.

Index Terms—Generalization, genetic programming (GP),
structural risk minimization (SRM), symbolic regression,
Vapnik–Chervonenkis (VC) dimension.

I. INTRODUCTION

GENERALIZATION is one of the most important
performance criteria for machine learning techniques [1]

which reflects their prediction performance on unseen
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data. More specifically, the expected generalization error
ErrT = E[L(Y, f (X))|T ] measures the prediction error of the
learned model over a set of unseen/test data for a given train-
ing set T . Here, L(Y, f (X)) refers to the loss function between
the target output Y and the output of the model f (X). A set of
input X and output Y pairs are considered to be drawn from an
underlying distribution P(X, Y) = P(Y|X)P(X), where P(X) is
the distribution of the input X and the conditional distribution
P(Y|X) is based on the input–output relation. The joint dis-
tribution P(X, Y) is needed in order to measure ErrT , which
is typically unknown in real-world learning tasks. Thus, many
learning algorithms rely on the empirical risk minimization
principle [2]. This principle consists of computing the errors
of a set of candidate models over the training set, and then
selects the one that obtains the minimum training error among
the set of models. The empirical/training error is expected to be
a good indicator of the expected test error. However, in many
cases, this indicator does not work well, particularly when
over-complex models have been learned, and/or the number of
training samples is too small to represent the real distribution
of P(X, Y).

Genetic programming (GP) [3] solves regression prob-
lems by evolving models with the best-fitted structures and
coefficients. GP does not require any prior assumption on
the data and has a flexible representation, which make it a
very suitable approach for symbolic regression. However, poor
generalization is still an open issue in GP. The evolutionary
process, which is guided by chasing the lowest empirical error,
might suffer from severe overfitting.

Structural risk minimization (SRM) [4] in learning theory
provides a powerful framework to estimate the generaliza-
tion ability of models. SRM defines an upper bound of the
generalization error, which is a combination of the empir-
ical risk/error and the confidence interval. The confidence
interval, which estimates a difference between the empirical
risk/error and the expected risk/error, is determined by the
size of the training set and the model complexity measured
by Vapnik–Chervonenkis dimension (VC-dimension) [5]. For
a fixed size training set, the confidence interval is deter-
mined purely by the VC-dimension. Previous research has
confirmed that the model complexity directly influences its
generalization ability [6], [7]. A widely accepted agreement
is that, given the same training set, complex models generally
have a larger difference between the training error and the test
error than their simple counterparts [6], [8], [9]. Therefore, the
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learning process under SRM, which tries to select the mod-
els having a good tradeoff between the empirical error and
VC-dimension (i.e., model complexity), can lead to models
with better generalization ability.

Despite its solid theoretical foundation and the ability in
assessing the expected test error, SRM is seldom considered
in GP for symbolic regression. The underlying reason is the
great difficulty in obtaining a tight theoretical estimation of the
VC-dimension of nonlinear models. Vapnik et al. [9] devel-
oped an experimental1 method to measure the VC-dimension
of a learning machine for classification. Our preliminary work
extended it to GP for symbolic regression and developed a
method named GPSRM [10]. Despite the notable generaliza-
tion improvement of GPSRM over standard GP, it still has
some drawbacks. An obvious one is that the experimental
method measuring the VC-dimension of regression models
was conducted under a uniform setting,2 which potentially
limits the accuracy of the estimated generalization error. This
drawback will be explained in detail in Section III.

This paper aims to address the above limitation of GPSRM
and performs a more comprehensive investigation on the gen-
eralization ability of SRM-driven GP on both synthetic and
real-world datasets.

A. Goals

The overall goal of this paper is to develop a new GP
method named GP with optimized3 SRM (GPOPSRM) for
further improving the generalization performance of GP for
symbolic regression. The new method represents a substan-
tial improvement over the previous method GPSRM proposed
in [10]. Specifically, this paper has the following research
objectives.

1) Whether and how the proposed SRM-driven GP
approach influences the training performance of GP.

2) Whether SRM-driven GP can lead to a notably better
generalization capability than GP and GP with other
generalization estimation methods.

3) How SRM-driven GP influences the complexity and
behavior of the evolved models.

4) Whether SRM with a nonuniform setting can outperform
its counterpart with a uniform setting in improving the
training and generalization performance of GP.

II. BACKGROUND

This section introduces GP for symbolic regression and
reviews state-of-the-art methods on improving the general-
ization of GP for symbolic regression. Then we introduce
two key concepts in learning theory, i.e., VC-dimension and
SRM, which are the crucial components of the method to be

1“Experimental” was used in the original paper [9] to emphasize that the
method is not a theoretical estimation.

2The “uniform setting” refers to the setting in the experimental method
to obtain the maximum deviations of the error rates, which are a set of key
values for measuring the VC-dimension. The uniform setting means that the
number of experiments to obtain the maximum deviation of errors is the same
for all datasets regardless the number of instances.

3“Optimized” is used in this paper, since for a set of design points used in
the experiments to measure the VC-Dimension, the process of search for a
better setting is an optimization process. It does not always mean the best one.

proposed in this paper. This is followed by discussing existing
implementation of SRM in different learning algorithms,
including GP.

A. GP for Symbolic Regression

When addressing symbolic regression problems, GP starts
from a population of randomly created regression models.
Then the population is progressively evolved in an iterative
way through evaluation, selection, and breeding generation
by generation. The evolutionary process will continue until
a predefined termination criterion has been met. Without any
predefined model structure, GP is able to evolve the struc-
ture of regression models with a set of good parameter values
simultaneously. This capability makes GP a suitable approach
to symbolic regression. There have been many successful
applications of GP for symbolic regression to date [11], [12].

B. Generalization in GP for Symbolic Regression

Generalization is a key performance criterion for measuring
the goodness of learning algorithms. Although generalization
has been deeply investigated in many other fields [13], [14], it
had not received much attention in GP for symbolic regression
for quite a long time. Before 2000, symbolic regression was
mainly considered to be an optimization problem, which used
all the available data for evolving the models and did not report
the generalization performance of the models on unseen data.
In recent years, an increasing number of approaches to pro-
moting the generalization ability of GP for symbolic regression
have been proposed [15]–[19].

Since overcomplex models can easily lead to overfitting, i.e.,
poor generalization, many methods try to reduce the complex-
ity of models in order to eliminate or reduce overfitting and
improve generalization on unseen data. Vanneschi et al. [7]
and Silva et al. [20] introduced an equalization genetic oper-
ator to GP to control the distribution of model size, and
can work well for controlling bloat and reducing overfitting.
The equalization operator and its dynamic version are shown
to be effective to increase the generalization ability of GP.
Astarabadi and Ebadzadeh [17] proposed a multiobjective GP
algorithm to enhance the generalization ability of GP. The
multiobjective GP employs the first order derivative of the
evolved models as a measure of model complexity. In addition
to use the training error of the models as one objective, the root
mean square error (RMSE) between the first order derivative
of the models and the corresponding value of the target model
is used as the second objective. The results on four symbolic
regression problems show that their method can generalize
better than standard GP. Vladislavleva et al. [6] introduced a
complexity measure named order of nonlinearity to GP. Their
method approximates the GP solutions by the Chebyshev poly-
nomials [21] to a certain accuracy. The minimum degree of
these Chebyshev polynomials is considered to the complexity
of the GP solution. The measure is utilized in a Pareto GP
algorithm as a competing objective to the training error, thus
to generate much smoother models and lead to better general-
ization gain. One common limitation of the above methods is
to measure the complexity of various approximations (to GP
solutions) but not directly on the solutions themselves.
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Assessing the expected test error of GP individuals properly
during the evolutionary process is an intuitive way to enhance
the generalization performance. One way to achieve this is
bias-variance decomposition, which decomposes the expected
test error into the bias error and the variance error [22]. A
lower variance error indicates that the models are less sensitive
to the training data, thus can potentially generalize well on
unseen data. Typically the variance error is estimated by a
Bootstrap method [23]. Various GP methods have employed
Bootstrap techniques [24]–[26], where the GP population is
trained on a list of bootstrap samples, and individuals with a
lower variance error are selected.

C. Vapnik–Chervonenkis Dimension and Structural Risk
Minimization

Statistical learning theory and probably approximately cor-
rect [4] define a general measure for the complexity of a
learning machine, which is VC-dimension [5]. The original
definition of the VC-dimension is for a set of indicator func-
tions {I(X, α)}, where X are the input vectors and α is a set
of parameters. The VC-dimension h of functions {I(X, α)} is
equal to the maximal number of input vectors X1, X2, . . . , Xh

that can be shattered by {I(X, α)} [27]. In other words, with
proper α, {I(X, α)} always can perfectly separate these vectors
into two classes in all the 2h possible ways. Late, this defini-
tion was extended for a set of real-value functions {R(X, α)},
where A ≤ {R(X, α)} ≤ B. The VC-dimension of {R(X, α)}
is defined as the VC-dimension of its indicator functions
{I(R(X, α) − β)} [4], where β ∈ (A, B).

After the proposal of VC-dimension, various assessments
on the expected generalization risk (i.e., expected test error)
have been developed [28]. SRM is one of these approaches.
SRM estimates the generalization error bound using the empir-
ical error/risk and the confidence interval. While the empirical
error is the error of the models on the training data, the confi-
dence interval is determined by the size of the training set and
the model complexity, i.e., the VC-dimension of the model.
SRM intends to minimize the generalization error of the mod-
els in the way of taking both the empirical error and the
confidence interval into consideration. In [4] and [28], a prac-
tical form of VC generalization bound for regression problems
is proposed. It is defined as

Rexp(h) ≤ Remp(h)

(
1 −

√
p − p ln p + ln n

2n

)−1

+
(1)

where Rexp(h) is the expected test risk, Remp(h)

stands for the empirical risk/error of the model,
(1 − √

p − p ln p + [ ln n/2n])−1+ represents the con-
fidence interval (“+” denotes the positive part of
1 − √

p − p ln p + [ ln n/2n]). In the confidence interval,
p = h/n. h is the VC-dimension of the model, and n is the
size of the training set. Accordingly, when learning from a
fixed number of training samples, a higher VC-dimension h is
more likely to lead to a larger generalization bound Rexp(h).

Let a set of k regression models be evaluated by SRM. These
models form a nested sequence with increasing estimated
generalization errors, Rexp 1 < Rexp 2 < · · · < Rexp k. SRM then

chooses models with a lower Rexp. These models usually have
a good balance between the empirical error and the model
complexity. They are expected to generalize well on unseen
data. A key component and the most difficult part of SRM is
how to accurately estimate of the VC-dimension of the models.

D. Implementation of the SRM Principle in
Learning Algorithms

Two kinds of constructive approaches have been found to
implement SRM directly into learning algorithms. The first
approach is to keep the empirical error fixed and minimize
the confidence interval. The design of support vector machines
(SVMs) [27] follows this rule. SVMs maps the data into a high
dimensional input space through some nonlinear mapping, and
its kernel functions and parameters are selected to minimize
the VC generalization bound. Via regularization operators, the
kernel function in SVMs is associated with a flatness property.
Among a set of functions which approximate the target outputs
within a given precision, the flattest functions are chosen.

The second important approach to implementing SRM is
to keep the confidence interval fixed and try to minimize
the empirical error. This strategy is widely used in neural
networks [29]. For a given number of training examples, the
confidence interval of the networks is determined by the VC-
dimension h of the functions for the neurons. The training
process finds the weights to minimize the empirical error.
Thus, in neural networks, selecting an appropriate structure
for the neurons is an important task, since it will lead to a
good tradeoff between underfitting and overfitting. A lot of
research has been conducted to estimate a more accurate VC
bound for neural networks [30], [31].

E. Implementing SRM in GP

Implementing SRM in GP is a challenging task, and only a
few works can be found in the literature. When implementing
SRM into GP, the decision of a tradeoff between an approx-
imate complexity of the model (i.e., VC-dimension) and the
minimal empirical error should be automatically made during
the evolutionary process, since it is impossible to have a fixed
confidence interval for the evolved models.

Borges et al. [32] and Montaña et al. [33] are the only work
that can be found before our initial work [10]. In their work,
SRM is introduced as a new fitness function to GP for sym-
bolic regression. The VC-dimension of the evolved models is
measured by a simplified estimator, which counts the number
of nonscalar nodes (i.e., nodes that are not operated by the
functions {+,−}) in a GP tree. They have shown the advan-
tage of SRM in enhancing the generalization performance of
GP. However, the relationship between the number of non-
scalar nodes and the VC-dimension of the model needs further
investigation.

Compared with a rough approximation, measuring the VC-
dimension of the evolved models through a well-designed
experimental method is more reliable and forms the major dif-
ference between methods in [32] and [33] and the proposed
methods in this paper.
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III. PROPOSED METHOD—GP WITH OPTIMIZED

STRUCTURAL RISK MINIMIZATION

In GP for symbolic regression, obtaining a small empir-
ical/training error does not guarantee a good generalization
performance in many scenarios, such as when the number of
available training instances is small or when learning from
training data with noise. In these scenarios, an accurate esti-
mation of the expected generalization error of the evolved
models is more reliable. Based on this hypothesis, in [10]
we introduced SRM into GP to propose a GP approach
named GPSRM. GPSRM employs SRM as the fitness func-
tion, and intends to achieve a good tradeoff between the
accurate approximation on the training data and the lower
complexity of these models. As mentioned above, when adopt-
ing SRM in GP, the crucial and most difficult aspect is to
obtain the VC-dimension of the evolved models. Different
from the existing methods [32], [33] that approximate the
VC-dimension by counting the number of specific nodes in
the models, we extended an experimental method to calculate
the VC-dimension of the evolved models. The effectiveness
of GPSRM on promoting the generalization of GP has been
investigated and confirmed in [10]. However, it still has
limitations.

One major limitation of GPSRM is the uniform setting in
the method that measures the VC-dimension of the evolved
models. More specifically, the uniform setting refers to the
same number of experiments conducted on all the datasets to
get the experimental maximum deviations. This setting does
not consider the fact that these datasets are randomly gen-
erated and have different numbers of instances. The uniform
setting and the variability of the random datasets potentially
restrict the accuracy of the measured VC-dimension of the
evolved models. It accordingly limits the effect of SRM on
improving the generalization of GP. To address this problem,
a more precise and reliable setting is needed. In applied statis-
tics, there is an important research topic: experimental design,
which aims to construct the optimal design for experiments. In
the previous work [34], [35], the experimental design is itera-
tively improved by exchanging the design points according to
the optimality criteria. In [36], this idea is introduced into the
process of measuring the VC-dimension of linear models and
shown its effectiveness.

Motivated by the idea of constructing an optimal design and
the promising results achieved in [36], this paper proposes an
improved method to measure the VC-dimension of evolved
models in GP to increase the accuracy of the estimated gener-
alization errors. The proposed method is named GPOPSRM.
The details of the method are presented as follows. We first
describe the fitness function used in SRM-driven GP. Then
for self-contained purposes, we overview the implementation
of SRM in GP under the uniform setting, which forms the
basis of this paper.

A. Fitness Function in SRM-Driven GP

When introducing SRM into GP, the major change is the
fitness function for measuring the performance of the evolved
models. In SRM-driven GP, the solutions are evaluated by the

estimated generalization error given by SRM. Assuming the
VC generalization error bound is tight, the fitness function is
defined as

Errexp = RMSE(
1 −

√
p − p ln p + ln n

2n

)
+

(2)

where

RMSE =
√∑n

i=1(f (Xi) − Yi)
2

n

RMSE is the error of the evolved model on the training data,
(1 − √

p − p ln p + (ln n/2n))−1+ is the confidence interval
between the empirical/training error and the estimated gener-
alization error. p = h/n, h is the VC-dimension of the model
and n is the number of training instances. When learning from
a given training set, i.e., n is fixed, the confidence interval
of a model is determined solely by h. In other words, for a
given n, a higher h leads to a larger p, which according cause
a larger confidence interval (1 − √

p − p ln p + (ln n/2n))−1+ .
Consequently, given the same/similar values of RMSE, a
higher h will lead to a larger generalization bound Rexp(h).
Moreover, when GP adopts the metric of SRM, the evolved
models, which have slightly smaller empirical errors but are
over complex (large h), are less likely to be selected to generate
new individuals. Those models and their offspring generally
incorporate too much information from the training data, thus
are over-adapted to the training set and difficult to generalize
well on unseen data. By assigning a higher estimated general-
ization error to those models and decreasing the probability of
selecting them for breeding, our new GP method is expected
to eliminate or decrease the trend of overfitting thus open
opportunities to generalize well.

B. GPSRM: Measuring the VC-Dimension Using Uniform
Setting

The evaluation process in GPSRM is shown in Fig. 1. The
fruitfulness of SRM in promoting the generalization of GP
highly depends on how precise of the measured VC-dimension
of evolved models. The theoretical approximation of the VC-
dimension is easy to obtain for linear models. The meaningful
complexity index for linear models is N + 1, where N is
the number of free parameters in the model [27]. However,
this complexity index is not appropriate for nonlinear mod-
els [27]. Thus, Vapnik et al. [9] proposed an experimental
method to measure the VC-dimension of a learning machine
for classification, which is suitable for both linear and nonlin-
ear models. Since the population of GP consists of a mixture
of linear and nonlinear models, it is difficult to measure the
VC-dimension of GP by a theoretical analysis. Before our pre-
liminary work [10], there was no existing work measuring the
VC-dimension of the evolved models in GP experimentally,
which could be more accurate and reliable than any simple
theoretical estimation. Therefore, we decided to extend the
method in [9] to regression models in GP. As mentioned above,
the VC-dimension of a real-value/regression function f (X, α)

is equal to the corresponding value of its indicator functions
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Fig. 1. Evaluation process in GPSRM for each individual f (X, α).

I(f (X, α) − β) [4], where A ≤ {f (X, α)} ≤ B and β ∈ (A, B).
The value of β can be obtained by calculating the correspond-
ing output of the regression model for a randomly selected
training example. By assigning a possible value of f (X, α) to
β, the problem of measuring the VC-dimension of a regres-
sion model f (X, α) is easily changed to the VC-dimension
of the indicator function I(f (X, α) − β). Then from steps 2–4
in Fig. 1, the VC-dimension of the model is measured. The
method to measure VC-dimension is described as follows.

1) Main Idea: Vapnik and Chervonenkis [37] derived a
criterion to decide whether a learning process is consistent.
Being consistent means the maximum deviation between the
empirical error and the expected error does not exceed a small
value ε (the probability of it approaches zero). Specifically,
for the indicator function I(X, α) with a VC-dimension
h, to decide whether the learning process is consistent,
Vapnik and Chervonenkis [37] defines the bound of this
probability as follows:

P
{
sup

[
Rexp − Remp

]
> ε

}
< min

{
1, exp

[(
C1

ln 2n/h + 1

n + h
− C2ε

2
)

n

]}
(3)

where C1 and C2 are two constants, and C1 <= 1 and
C2 > 0.25. This bound is independent of the conditional
distribution P(Y|X). The bound also leads to an inequality as
follows, i.e., for any given constant δ, there exist a number
nl so that when the number of training instances n > nl, the
following inequality holds:

P
{
sup

[
Rexp − Remp

]
> ε

}
< exp

[(
−(C2 − δ)ε2

)
n
]
. (4)

Later researchers improved the value of the constant to C2 = 2.
For a large n, the bound is found to be close to the value

gave by the Kolmogorov–Smirnov law [38], which defines
the distribution law of the maximum derivation between the
training error and the test error of a simple linear function.
The law is formulated as: when learning the target function:
f (x, α) = I(x − α), for sufficiently large number of instances,
the equality

P
{
sup

[
Rexp − Remp

]
> ε

}
= exp

(
−2ε2

)
n − 2

∞∑
k=2

(−1)k exp(−2εkn) (5)

holds. Note that compared with the value of the first term, the
value of the second term is very small. The close of above
bound and the value of the Kolmogorov–Smirnov law indi-
cates that the bound is tight and close enough to the exact
value. Based on this observation, [9] also assumed that there
exit a value for C1 to make the bound to be tight for both
small and large numbers of instances. In this scenario, the
function �(n/h), which defines the expected maximum devi-
ation between the error rates, is independent of the conditional
distribution P(Y|X). The definition of �(n/h) is

�
(n

h

)
= E

{
sup

[
Rexp − Remp

]}
. (6)

Based on the assumption that it is able to derive �(n/h), the
idea of the experimental method to measure the VC-dimension
was proposed in [9]. Suppose that �(n/h), which is deter-
mined by the VC-dimension h and the number of training
instances n, can then be derived successfully. The experimen-
tal estimation of the maximum deviation between the expected
test error and the empirical error is also available. The VC-
dimension h of a model can be measured by finding the value
that can achieve a good fitting between the theoretical val-
ues given by �(n/h) and the maximum derivations obtained
experimentally. Fig. 2 visualizes this process. As it shows,
for a list of ε(ni) (i.e., the orange dots, the values of which
are obtained from the experimental method), try to find the
parameter h of the curve �(n/h) to make it best fit the given
ε(n) values. These ε(n) values are obtained based on a set
of design points, where each design point determines the size
of randomly generated datasets [9]. Note that in practice, it
is impossible to obtain the error on an infinite number of
test instances. Instead, measuring the maximum deviation of
the errors on two independently generated paired datasets is
a reasonable choice. Here, these paired datasets refer to two
datasets having the same number of instances. The inputs in
the two datasets follow the same distribution and the outputs
are generated randomly. The derivation of �(n/h) and the
process of obtaining the experimental values of the maximum
difference between the errors will be presented in detail as
follows. (Because of the page limit, we briefly introduce the
major derivation process of �(n/h) here. Readers who are
interested in the detailed procedure are referred to [9] or our
online supplementary material for more information.)

2) Theoretical Formula of the Maximum Deviation: To
estimate a bound on the expectation of the maximum devi-
ation between errors, we need to formulate this maximum
deviation at first. For a set of indicator functions I(X, α)

with a VC-dimension h, given a set of samples Z2n =
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Fig. 2. h is measured by searching for a better fitting (from h′ to h∗) between
�(n/h) and the experimental maximum deviation.

X1, Y1, X2, Y2, . . . , X2n, Y2n where Xi is the input vector and
Yi ∈ (0, 1) is the label, let Pe1(Z2n) denote the error rate on
the first n samples, and Pe2(Z2n) denote the error rate on the
other n samples. The error rate is obtained by

Pei(Z2n, α) = 1

n

⎛
⎝ n∑

j=1

∣∣Yj − I(Xj, α)
∣∣
⎞
⎠. (7)

Then the maximum derivation ε(n) between the errors
obtained by I(X, α) is defined as

ε(n) = sup
[
Pe1

(
Z2n, α

)
− Pe2

(
Z2n, α

)]
(8)

where sup is the supremum (least upper bound) of the set of
derivations.

The expectation of ε(n) is bound as follows:

E{ε(n)} ≤

⎧⎪⎪⎨
⎪⎪⎩

1 if n
h <= 0.5

C1
ln(2n/h)+1

n/h if 0.5 < n
h <= 8

C2

√
ln(2n/h)+1

n/h if n
h > 8

(9)

where C1 and C2 are two constants. 0.5 and 8 are values to
distinguish datasets with large and small n/h values [9].4 There
exist constants C1 and C2 that make the bound tightly holds.
Using a continuous approximation, the right side of the bound
can be defined as

�
(n

h

)
=

⎧⎨
⎩

1 if n
h <= 0.5

a
ln(2 n

h )+1
n
h −k

(√
1 + b( n

h −k)
ln(2 n

h )+1
+ 1

)
otherwise

(10)

where the parameters a and b determine �(n/h) that can cover
the region of large ([n/h] > 8) and small (0.5 < (n/h) <= 8)
values of n/h. The values of a and b are obtained by fitting (10)
to the experimental maximum deviations of linear models on
datasets with various n/h, since the VC-dimension h of these
linear models are known. Accordingly, it found that a = 0.16
and b = 1.2 in [9]. Then according to �(0.5) = 1, it is easy
to get k = 0.14928.

3) Experimental Measure of the Maximum Deviation:
Step 3 in Fig. 1 shows the procedure of obtaining ε(ni) on all
the design points {n1, n2, . . . , nq}. On each design point, ε(ni)

is the average value over a set of ε(ni,j) (j ∈ {1, 2, . . . , mi}).
These values are obtained from mi(= 20) times of independent

4For more details of the bound and the parameters, readers are referred to
the online supplementary material of this paper or [9].

Algorithm 1: Measuring a Set of Maximum Deviations
Obtained by f (X,α)

Input: a regression model f (X,α), p represents the number of distinct
nodes in a GP tree, i.e., the regression function f (X,α), and u is the
number of distinct features in f (X,α)

Output: a set of maximum deviations ε(ni)
Randomly select one training example X1 and set β=f (X1,α).
Set h′ = p
Calculate the set of {n1, n2, ..., nq} according to a set of design points

ni/h′={0.5,0.8,1.0,1.2,2,2.5,3,3.5,5,6.5,8,10,15,20,30}, i ∈ [1, q] (as
recommend in [4], it needs a bunch of different ni to make sure the
range of ni/h′ to cover a wide enough range 0.5 < ni/h′ < 32)

for i := 1 to q do Obtaining the maximum deviations on one design
point loop

for j := 1 to mi do Measuring one maximum deviation loop
Randomly generate two classification datasets D1 and D2.

Each dataset has ni instances and a feature set X containing
u features/variables, and the label Y of each instance is
generated randomly.

Reverse the labels in D1 to form a new dataset D′
1 and merge

D′
1 and D2 to form another new dataset D3.

Training the model {f (X,α)−β} to minimize its MSE on D3
using mini-batch gradient descent, then calculate its error
rates on D1 and D2 according to Equations (7) and (8).

Calculate ε(nij) that is the deviation of the error rates
obtained by {f (X,α)−β} on D1 and D2.

end
ε(ni) = ∑mi

j=1 ε(nij)/mi

end
Return ε(ni)

experimental measure. The average of these values is used,
since it is considered to be able to reduce the influence of
randomness. The blue dashed box in step 3 in Fig. 1 shows
how the maximum deviation of errors is obtained for one time,
i.e., on two randomly generated datasets.

To get the maximum deviation ε(ni,j) on the two datasets,
it needs maximizing the error rate on the first dataset, while
minimizing the error rate on the second dataset at the same
time. It is important to note that the error rate is a mea-
sure for the performance of an indicator/classification function,
which is not suitable for regression models — the focus of this
paper. Therefore, we change the task from calculating the VC-
dimension of f (X, α) to obtain the corresponding value of the
model I(f (X, α) − β), which is a binary classification model.
The pseudo-code of this procedure is shown in Algorithm 1.

As shown in Algorithm 1, for a given regression model
f (X, α) with u distinct input variables, the detailed procedure
of getting the maximum deviation ε(ni) of I(f (X, α) − β) on
two independent datasets is described as follows.

1) Generate two random datasets D1 and D2, each of which
has n instances. The length/dimensionality of the input
vectors is equal to u. The inputs are drawn randomly
within a uniform distribution over the interval [−1, 1].
The labels of the instances are created according to the
conditional probability distributions P(Y|X) = 0.5 for
Y = 0 and P(Y|X) = 0.5 for Y = 1.

2) Merge D′
1 and D2 to form a new dataset D3, which has

2n instances. Here, D′
1 refers to a new dataset where

the instances are generated by reversing the labels in
D1 (D1 and D′

1 have the same input vectors but the
opposite output values, i.e., for an instance with a label
Y = 0 in D1, the corresponding instance in D′

1 has the
label of Y = 1).
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3) Training the model {f (X, α) − β} to minimize its MSE
on dataset D3 (D3 =D′

1 ∪ D2), thus I(f (X, α) − β) can
get a maximum deviation of errors on D1 and D2.

4) Calculate the ε(nij) over the two datasets D1 and D2
according to (7) and (8).

In step 3 of the above procedure, mini-batch gradient
descent [39] is used to train the coefficients in the model to
obtain the minimal MSE on D3. Minimizing the error of the
model on D3 is equivalent to getting the maximum deriva-
tion ε(n) on D1 and D2 (since D3 =D′

1 ∪ D2).5 The deviation
is largely independent of the distribution P(Y|X), thus we use
P(Y|X) = 0.5 to generate random labels. However, P(Y|X) can
be any other values. Repeat steps 1–4 for mi times indepen-
dently (mi = 20 is suggested in [9], which is considered to be
large enough to make the average value represents the central
tendency of ε(ni)). The mean value of the ε(nij), j ∈ [0, mi] is
treated as the maximum derivation on the design point ni.

Then the whole procedure is repeated on q design points.
Different design points refer to different numbers of instances,
i.e., ni from {n1, n2, . . . , nq}. The selection of {n1, n2, . . . , nq}
should cover the range of 0.5 ≤ (ni/h′) ≤ 32 (it is the recom-
mended setting in [9]), where 0.5 is the starting point of the
definition of �(n/h) shown in (10) and 32 is set to make sure
that the range of (ni/h′) is big enough for various ni. h′ is an
initial guess of the VC-dimension of the model. In this paper,
it is set to be the number of distinct nodes in the GP model.
A larger q means more design points, which would lead to a
more accurate fitting between ε(n) and �(n/h) and a tighter
VC bound. However, it also lead to more computational cost.
Thus, to achieve a good balance, the trail experiments in our
preliminary work show that 15 is a reasonable value for q, (i.e.,
for a given h′, setting 15 ni to make ni/h′ = {0.5, 0.8, 1.0, 1.2,

2, 2.5, 3, 3.5, 5, 6.5, 8, 10, 15, 20, 30}). This repeated proce-
dure is under a uniform setting, i.e., the number of exper-
iments repeated on each of the q design points is the
same, i.e., m1 = m2 = · · · = mq = 20, which is recommended
in [9].

After getting all the maximum deviation [i.e., ε(ni)] val-
ues, the VC-dimension of the model can then be approx-
imated by choosing the h that can create a good fit
between the set of ε(ni) and the function �(n/h) according
to h = arg min

∑q
i=1 [ε(ni) − �(ni/h)]2, i.e., choosing an

approximate h to minimize the error (such as the MSE used
in this paper) between the set of ε(n) and �(n/h).

C. GPOPSRM: Measuring the VC-Dimension Using
Optimised Setting

The uniform setting of the experiments for measuring the
maximum deviation and the variability of random instances
in each pair of independent datasets can potentially lead to
a not reliable enough VC-dimension h, and correspondingly
generate a loose generalization bound in SRM-driven GP.
Therefore, we aim to make further improvement on measuring
the maximum deviation by employing a better setting.

5For a more detail approve of this, readers are referred to the online
supplementally material or [9].

To improve the setting in the procedure of measuring the
VC-dimension, the idea of optimal experiment design from
applied statistics [34], [35] is employed. The process of search-
ing for a better setting starts from a well-designed setting, then
repeats a process of constructing neighbor settings, which have
better performance than current setting, until an “optimal”
setting is achieved (i.e., no any better neighboring setting is
available) or the stop criterion is satisfied.

To develop a better setting to measure the VC-dimension,
the original uniform setting is a good starting point. The target
of this optimization process is to minimize the error between
a set of ε(n) and �(n, h), thus the evaluation criterion for a
setting is set as

MSE =
q∑

i=1

mi∑
j=1

(
ε
(
ni,j

) − �
(
ni, h∗))2

/(mi ∗ q) (11)

where ε(ni,j) is the jth maximum deviation on the design
point ni. mi is the number of maximum deviation values
obtained from the repeated experiments on ni, i ∈ [1, q]. q
is the number of design points (q = 15 in this paper). The
number of instances on each design point is different, typ-
ically n1 < n2 < · · · < nq. A better setting leads to a lower
MSE between ε(n) and �(n, h).

Improving the setting is to adjust mi for each design point
appropriately. To find a better setting, the neighbors of current
setting are obtained and evaluated. A neighboring setting can
be reached by decreasing the number of experiments by one
on the worst design point while adding one more time on the
best design point. The goodness of a design point ni relies
on the contribution of (ε(ni) − �(ni, h)) to the overall MSE
in (11), the smaller the better. The procedure of measuring VC-
dimension using the optimized setting is presented as follows.

1) Under the uniform setting, measure mi ∗ q different ε(ni)

and �(ni) values, where ni ∈ {n1, n2, . . . , nq}, mi = 20
and q = 15 (initialization).

2) Calculate the VC-dimension h∗ by finding the best fit
among all the various ε(nij) and φ(ni/h). Here, each
ε(nij) participates in the fitting instead of using the
average ε(ni) over mi times in the uniform setting,
since the values of m on {n1, n2, . . . , nq} are potentially
different now.

3) Calculate the MSE according to (11).
4) Rank the design points n1, n2, . . . , nq accord-

ing to its contribution CB(ni) to MSE,
CB(ni) = (MSE(removeni) − MSE)/ni (the
contribution is normalized by the number of instances).

5) Construct a neighboring setting by adjusting the number
of experiments on the design points, which is to add
one experiment on the best point, while removing one
experiment from the worst point.

6) Calculate the new MSE∗ between the set of ε(n) and
�(n, h) on the new setting. If MSE∗ is higher than
MSE, then reverse to the former setting and add the
removed experiment to the 2nd (or 3rd, 4th,. . . , until
find the one yields to lower MSE∗).

7) Repeat steps 2–6 until no design point has positive con-
tribution on MSE or the number of experiments on the
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positive points reaches a predefined threshold, which is
to prevent the situation that all the experiments are allo-
cated on a single design point, not a set of design points.

The proposed GPOPSRM algorithm employs the nonuni-
form setting for measuring the VC-dimension of evolved
models in GP. This forms the major difference between
GPOPSRM and our preliminary method GPSRM. In addition,
the advance of the nonuniform setting over the uniform set-
ting is expected to bring benefit to SRM-driven GP, since the
advance will lead to a tighter VC generalization bound, which
is crucial to the success of SRM-driven GP.

Note that it is only necessary to measure the VC-dimension
for a number of top individuals ranked according to their
empirical errors (i.e., RMSE in this paper) in both GPSRM
and GPOPSRM. This is because the difference between the
confidence interval of the top individuals and their worse coun-
terparts ranges within the interval [0, 1], so that it can be
ignored when the empirical risk difference between two sets of
individuals is large. On the other hand, these worst individuals
have a very low probability to win the tournament selection to
be parents of the new individuals in GP. Moreover, measuring
the VC-dimension of evolved models is expensive. Therefore,
we define a parameter γ in GPSRM and GPOPSRM, so that
only the top γ percent of individuals in the candidate pop-
ulation will be measured. For the rest 1 − γ percent of the
population, their VC-dimension is assigned to be a random
big value (i.e., 50 in this paper). The setting is to make the
evolutionary process focus on the comparison of estimated
generalization error between the top γ percent of individuals
and make the method more efficient.

IV. EXPERIMENT DESIGN

To investigate the generalization ability of GPOPSRM, a set
of experiments have been conducted. The experiment design,
in particular, the selection of benchmark problems, the bench-
mark methods for comparison, and the parameter settings for
GP runs, is presented in detail.

A. Benchmark Problems

Due to the lack of benchmarks (datasets) specially designed
for testing the generalization ability of GP for symbolic
regression, in this paper, we examine the methods on eight syn-
thetic symbolic regression problems and two real-world high-
dimensional regression datasets, which are taken from previous
research on GP for symbolic regression [6], [40], [41]. These
benchmark problems have been shown to be prone to
overfitting, therefore generalization estimation during the
training process is desired.

The details of the target functions and the sampling strate-
gies for the training data and the test data of the eight synthetic
regression datasets are shown in Table I. The first four func-
tions are taken from [6]. Despite the low dimensionality, they
are claimed to be difficult regression tasks. The rest four prob-
lems are from [40]. For all these eight problems, a small
number of training points is obtained to simulate the real-
world situation, where GP is prone to overfitting. The number

TABLE I
SAMPLING STRATEGIES FOR THE TRAINING DATA AND THE TEST DATA

TABLE II
REAL-WORLD PROBLEMS

of training data points is 50 for the first four problems and 20
for the other four problems.

We also test the methods on two high-dimensional real-
world regression datasets as shown in Table II. The first dataset
is from the field of pharmacokinetics [42]. The task is to
predict the value of a kind of pharmacokinetics parameter, i.e.,
the median lethal dose (represented as LD50). It has been used
in many recent papers [7], [41], [43] to investigate the gener-
alization of GP. LD50 is split randomly with 70% of instances
for training and the other 30% for test. The second dataset is
the Diffuse Large-B-Cell Lymphoma (DLBCL) dataset [44].
The task is to predict the survival time of patients who have
DLBCL and received chemotherapy. In DLBCL, the training
set and the test set are provided.

B. Benchmark Algorithms for Comparison

To further investigate and confirm the effect of SRM on esti-
mating the generalization performance, comparisons between
GPOPSRM and the following three GP methods have been
approached.

1) Standard GP, which is a baseline for comparison.
2) GP with 0.632 Bootstrap (BGP) refers a GP method

which also estimates the generalization error using the
0.632 bootstrap [45]. In [10], the bias/variance error
decomposition (BVGP) [24] was compared. In BVGP,
the generalization error of a GP model is assessed by
two aspects, the bias error and the variance error. Bias
error refers to the error over the training set, while
the variance error is considered as the sensitivity of
a model to the training data. However, the experiment
results show that BVGP generally has worse generaliza-
tion performance than GPSRM [10]. This might due to
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TABLE III
PARAMETERS FOR THE FOUR GP METHODS

the potential overlap of instances in bootstrap datasets
and the original training set, which leads to an inac-
curate estimation of variance error [2]. Therefore, this
paper compares with an improved version of BVGP
employing the 0.632 bootstrap. Under 0.632 bootstrap,
the definition of the estimation of generalization error
as follows:

Rest = 0.368 ∗ Remp + 0.632 ∗ Verr

Verr = 1

n

n∑
i=1

1∣∣C−i
∣∣ ∑

b∈C−i

(
E
(

D∗b
))

(12)

where Rest is the estimated generalization error, Remp is
the empirical error, and Verr is the variance error. n is
the number of training instances. C−i refers to the set of
bootstrap samples which does not contain the training
instance i, and |C−i| is the number of such bootstrap
samples. E(D∗b) is the error on each bootstrap sam-
ple in C−i. For computing Verr, we should choose the
total number of bootstrap samples B to be large enough
to ensure |C−i| is larger than zero (i.e., to make sure
some bootstrap set contain samples that are not used
for training). In this paper, we set B = 200, which is a
recommended setting in [2].

3) GPSRM. It is proposed in our recent work [10], which
is the preliminary investigation on the generalization of
SRM-driven GP for symbolic regression.

These four GP methods use different indicators for the
generalization performance. Standard GP relies on the empir-
ical risk/error, while BGP uses the variance error estimated
by the 0.632 Bootstrap. The GPSRM and GPOPSRM use
the confidence interval. The comparison focuses mainly on
the effect of these indicators on the generalization of GP.
All the examined GP methods are implemented under the ECJ
GP framework [46].

C. Parameter Settings

The parameter settings for the four GP methods (GP, BGP,
GPSRM, and GPOPSRM) can be found in Table III, which are
common settings in GP [3]. Note that the tournament selec-
tion for GPSRM and GPOPSRM is also a standard one. To
select a parent, the tournament selection operator randomly

TABLE IV
RESULTS OF STATISTICAL SIGNIFICANCE TESTS

samples 7 candidate individuals from the population and the
one with the smallest estimated generalization error is selected
as a parent for genetic operators. Following the settings in [6]
and [40], the function set is different for different benchmark
problems. For the same benchmark problem, all the four meth-
ods have the same function set. According to our preliminary
work [10], the parameter γ is set to 20%, which is sufficiently
large for not missing individuals that have potentially good
generalization ability while can reduce the computational cost.

In each method, 100 independent runs have been conducted
on each problem. Therefore, 4000 (i.e., 4*10*100) experi-
ments have been run for the four methods on ten datasets,
and 8000 (i.e., 4000*2) training and test results are used here
to discuss the training and generalization performance of the
four methods.

V. RESULTS AND DISCUSSIONS

The section presents and discusses the results on the ten
datasets. The distributions of RMSEs of the 100 best-of-run
individuals on both the training sets and the test sets are
presented. To examine the generalization performance in more
detail, the evolutionary plots drawing the median test RMSE
of the 100 best individuals on every generation are provided.
Further analyzes on model size and model behavior are also
presented.

The Wilcoxon test, which is a nonparametric statistical sig-
nificance test, is conducted to compare the 100 best training
RMSEs and the corresponding test RMSEs. The Wilcoxon test
is performed on the comparisons between GPOPSRM and the
other three methods (GP, BGP, and GPSRM) in pairs, and also
between GP and BGP and GPSRM (i.e., GP versus BGP and
GP versus GPSRM). The significance level is 0.05.

A. Overall Results

The distributions of the RMSEs of the 100 best-of-run mod-
els on the training sets and the test sets are shown in the
box plots in Figs. 3 and 4, respectively. The overall pat-
tern is that the SRM-driven GP methods generally has a
worse learning performance (showed in Fig. 3) but much bet-
ter generalization performance (demonstrated in Fig. 4) than
standard GP and BGP on the examined datasets. Table IV
presents the results of the statistical significance tests. While
“−” stands for GPOPSRM (GP) performs significantly better
than the compared method, “+” indicates GPOPSRM (GP) is
significantly worse, and “=” means no significant difference.
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Fig. 3. Distribution of RMSE of the 100 best-of-runs individuals on the training sets.

Fig. 4. Distribution of the corresponding test RMSE of the 100 best-of-runs individuals.

1) Learning Performance on the Training Sets: As shown
in Fig. 3, on most of the ten training sets, the two SRM-driven
GP methods both have a worse training performance than stan-
dard GP. On seven of the ten training sets, GPOPSRM has
much higher training RMSEs than GP (except on f1, f3, and
f6). The training advantage of standard GP over GPOPSRM
on these seven datasets is significant. On the other three
datasets, f1, f3, and f6, while GPOPSRM has a better training
performance (in median) than GP, the difference between the
training RMSEs in the two methods is not significant. When
compared with BGP, GPOPSRM has significantly higher
RMSEs on six training sets, which are f2, f4, f5, f6, f7, and
LD50. On f1, it has a smaller training error than BGP, which
is significant. The training RMSEs of BGP and GPOPSRM on
the other three training sets have a similar distribution, and no
significant difference can be found. Compared with GPSRM,
GPOPSRM has smaller training errors on most of the datasets.
On four training sets (f1, f2, f3, and f6), GPOPSRM has sig-
nificantly smaller training errors than GPSRM. On the other
six datasets, GPOPSRM has a smaller training RMSE than
GPSRM, but the gaps are not significant.

It is not very surprising that standard GP outperforms the
two SRM-driven GP methods on most of the training sets.
This is due to the underlying objective in the two SRM-driven
GP methods, which is to restrict the model complexity. This
restricted objective has a tendency to conflict with the lower
training errors, particularly when over-complex models with
smaller training errors and smoother models with larger train-
ing errors are competing in the GP population. This is also the
reason that GPOPSRM has a worse learning performance than
BGP. The variance error in BGP is not related to the model
complexity directly. Therefore, the conflict between the vari-
ance error and the empirical/training error is not as severe as
it counterpart in SRM. This is confirmed by the fact that on
three of these training sets (f2, f6, and f7), BGP can have better
training performance than GP.

2) Generalization Performance: Compared with the train-
ing performance, we are more interested in the generalization
performance, which is a more important criterion for the suc-
cess of the learned model. The overall pattern is very clear in
Fig. 4. Both GPSRM and GPOPSRM have significantly bet-
ter generalization performance, i.e., a much smaller RMSE,
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Fig. 5. Evolution plots of the test median RMSE and the 95% confidence interval.

than GP and BGP on almost all the ten test sets. This is very
different from the pattern in the training sets. As shown in
Fig. 4, on most of the test sets, GPOPSRM has much lower
median values than GP, which indicates that GPOPSRM has
much better generalization performance than GP. In addition,
the smaller whiskers in the boxes of GPOPSRM represent a
much smaller standard deviation than that of GP, which indi-
cates that GPOPSRM outperforms GP on all the test sets in
a stable way. The Wilcoxon test results confirm that, the new
method can enhance the generalization of GP significantly on
all the ten datasets.

Compared with BGP, GPOPSRM has much smaller test
errors on five of the eight synthetic datasets (f1, f3, f4, f5, and
f8). On the other three synthetic datasets, no significant gen-
eralization difference between the two methods can be found.
GPOPSRM outperforms BGP on the majority of the test sets,
which indicates the advantage of SRM over bootstrap on esti-
mating the generalization ability of GP solutions, particularly
when the number of training instances is small. In this case,
the bootstrap sets and the training set are more likely to have
instances in common, thus bootstrap is difficult to provide a
good estimation of the generalization performance. Compared
with BGP on the two real-world datasets with a larger number
of training instances, GPOPSRM has significantly better gen-
eralization gain on DLBCL, and slightly larger test RMSEs on
LD50, but not significant. These two datasets have a similar
number of training instances (which is 163 in LD50 and 160 in
DLBCL), but the number of features in DLBCL is much larger
than LD50 (i.e., 7399 versus 626). The available information
in DLBCL is much less than LD50. This makes BGP, which
relies on extracting information from the training set during
the evolutionary process, lose the advantage on DLBCL, while
it can perform well on LD50.

Compared with GP and BGP, SRM-driven GP methods gen-
erally achieve a better generalization performance on most of
the test sets, particularly on the first five synthetic datasets.

The target functions of these five datasets contain trigonomet-
ric or exponential functions and have a smaller number of
training instances. So the first five datasets are more difficult
than the other three synthetic datasets. On four of the last five
test sets (except for LD50), the two SRM-driven GP methods
still outperform GP and BGP in a smooth and significant way.

In terms of the comparison between the two SRM-driven GP
methods, GPOPSRM has a better generalization performance
than GPSRM on all datasets. GPOPSRM has significantly
smaller test RMSEs than GPSRM on f1, f2, f8, and LD50.
On the other six test sets, GPOPSRM still outperforms
GPSRM, although not at a significantly level. The advantage
of GPOPSRM over GPSRM is due to the nonuniform set-
ting for measuring VC-dimension of evolved models, which
is the major difference between the two methods. The detailed
comparison between the two methods will be presented in the
following section.

B. Evolution of Generalization Performance

Since the capability of generalization is the focus of the
paper, we will examine the generalization performance in more
detail. The evolutionary plots on the test sets in Fig. 5 are
drawn using the median corresponding test RMSE and the
95% confidence interval over the 100 best-of-generation mod-
els. On every generation, the generalization performance of
the best-of-generation model is recorded but never takes any
part in the evolutionary process.

It can be observed that overfitting occurs in GP in most
cases. GP has an increasing generalization error after decreas-
ing over the first few generations on most of the test sets,
except for f6 and f1. On f2, f3, f4, f5, and f7, it suffers from a
serious overfitting, while on the other three datasets, it slightly
overfits over several final generations.

On most of the datasets (i.e., on f2, f3, f4, f5, and f7),
where GP overfits severely and quickly, BGP can not elim-
inate/reduce overfitting effectively either. This is due to the
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Fig. 6. Evolutionary plots on training RMSEs and VC-dimensions.

small number of training instances and/or the smaller ratio
of instances over the number of features in the training sets.
BGP, which relies on the bootstrap of the training instances
to estimate the variance error, fails to generalize beyond the
training sets in this case. In some test sets (i.e., on f1, f3, and
f5), it performs even worse than GP.

Different from GP and BGP, the two SRM-driven GP meth-
ods generalize well on most of the test sets. On f2, f3, f4, and
f5, where GP overfits severely, the two methods can eliminate
overfitting and do not have the overfitting trend. On f7, the two
methods can reduce generalization errors significantly, but still
overfit. On the other test sets, where GP does not overfit or
overfits slightly, the two SRM-driven GP methods generalize
very well. The pattern of generalization errors in the evolution-
ary process confirms the advantage of SRM principle over the
empirical risk minimization principle. In other words, guiding
the evolutionary process by the estimated generalization error
typically leads to a better generalization ability than by the
purely empirical risk. This might be due to the less greedy
nature for chasing a lower training error of SRM-driven GP,
which encourages a better exploration of the search space.

Considering the comparison between GPSRM and
GPOPSRM, on most of the examined benchmarks, GPOPSRM
generalizes better than GPSRM. The improvement on the
generalization performance is brought by the nonuniform
setting in GPOPSRM, which outperforms the uniform setting
in GPSRM in two aspects. First, the optimized setting can
reduce the random variability of the measured VC-dimension
by removing the relatively large MSE as defined in (11).
Second, compared with the uniform setting, the nonuniform
setting generally has more experiments on design points
having a larger number of instances. This will decrease

the difference between the theoretical and the experimental
maximum deviation of errors. Both the two aspects will
lead to a more accuracy VC-dimension of evolved models,
therefore will achieve a better generalization estimation. The
advantage of GPOPSRM confirms the expectation that a
better estimation ability on the VC-dimension of evolved
models can lead to a lower generalization error.

C. Further Analysis

Further analysis on the evolved models has been approached
with respect to their structures and behaviors. We also
have an analysis on the expensive computational cost in
SRM-driven GP.

1) Structural Level: To examine how SRM influences the
model complexity in GP, we draw the evolutionary plots on
the relationship between RMSEs and VC-dimensions in both
GP and the SRM-driven GP.6 These plots are drawn using
the median RMSE of the best-of-generation programs and the
median VC-dimension of these programs. Note that the best
solution is selected according to their fitness value, i.e., the
estimated generalization error in the SRM-driven GP and the
RMSE in standard GP. So it is possible that the best solutions
in these GP methods are total different from each other from
the first generation (e.g., on F1, F2, F3, and F4). For stan-
dard GP, the VC-dimension of the best solution is measured
and recorded, but they never play a role in the evolutionary
process.

As Fig. 6 shows, the over pattern is that the VC-dimension
of the best solution increases along with the generation, while

6More information on the relationship between RMSE and the confidence
intervals can be seen from our online supplementary material.
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TABLE V
EXAMPLE OF BEST-OF-THE-RUN MODELS FOR PROBLEM f6 = x4

1 − x3
1 + x2

2/2 − x2

RMSE keeps decreasing. As expected, on the ten datasets,
standard GP has consistently larger VC values than the SRM-
driven GP on all the datasets. In standard GP, where there is
no any restriction on the model complexity, the VC-dimension
increases very fast. On most generations, it grows linearly. In
some cases, at the final stage of the evolutionary process, the
growth of the VC-dimension does not bring any benefit on the
training performance (This is obvious on F4 and F6). SRM-
driven GP has a different pattern. On most of the datasets,
the VC-dimension increases slowly. The upward trend of the
VC-dimension and the downward trend of the RMSE are con-
sistent, i.e., a larger increase in the VC-dimension brings a
larger decrease to the RMSE. This increase in the model-
complexity in SRM-driven GP is effective in reducing the
training errors.

Another finding is that the different pattern on the mea-
sured VC-dimensions in GPSRM and GPOPSRM. In some
cases, this small difference brings a big difference in RMSE
(e.g., on F1, F2, F3, LD50, and DLBCL). On these datasets,
the difference between the VC-dimension of GPOPSRM and
standard GP is large, but the RMSE difference is small.
This indicates there might exist certain threshold for the
model complexity. Under this threshold, the increase in
the model complexity brings notable benefits for the train
performance. When the complexity above the threshold, it
is difficult to improve the performance by increasing the
model complexity. We will investigate this in the future
work.

2) Behavioral Level: On the behavioral level, we examine
some evolved models in detail and try to find why the

models evolved by GPOPSRM outperform those of the
other three methods. We randomly took two groups of
the best-of-run models from the 100 group candidates on
f6, where the four algorithms all have good generalization
performance. They are displayed in the Evolved Model col-
umn of Table V. To make the behavior of the evolved models
more obvious, we present the mathematically simplified form
of these models. The original evolved models confirms that
SRM-driven GP methods can evolve more compact mod-
els with a simpler structure. The behavior of the evolved
models can be seen from the simplified form of the models.
The similarity between the simplified models and the tar-
get model (f6 = x4

1 − x3
1 + x2

2/2 − x2) indicates why all the
four methods can generalize well on f6. It is clear that the
example models evolved by GP on f6 are more complex than
the target models. The other three methods can reduce the
model complexity to different levels. Compared with BGP and
GPSRM, GPOPSRM can evolve simpler models. Moreover,
these simpler models generally contain the same components
as those in the target function, such as x4

1, x3
1, and x2

1. This
indicates that the behavioral similarity between these models
and the target models is higher than their counterparts in BGP
and GPSRM.

3) Computational Cost for Measuring SRM: The compu-
tation cost in both GPSRM and GPOPSRM is much higher
than standard GP, which is usually more than ten times
higher. Here, we summarize the additional computational
effort needed when introducing SRM into GP under the
uniform setting. Using the nonuniform setting needs more
effort.
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The major cost in SRM-driven GP is spend on measur-
ing the VC-dimension of the solutions experimentally. To
measure the VC-dimension of GP solutions, every generation
needs 102 ∗ (3000 + 600) additional evaluations. Specifically,
on every generation, the VC-Dimension of 102 individuals
(20% of 512 individuals) needs to be measured. Each individ-
ual needs 3000 times training before obtaining the maximum
deviations, and 600 additional evaluations to calculate the
maximum deviations of the errors. The additional training
process uses mini-batch gradient descent. For each time of
training, it needs to calculate the gradient of the solution on
a subset of instances. All of these are time consuming. On
the other hand, as we mentioned above, the model complex-
ity/size in SRM-driven GP is much smaller than standard GP.
This saves some effort on the evaluation.

VI. CONCLUSION

This paper proposed a new GP method by incorporating
SRM into GP to improve the generalization ability of GP for
symbolic regression. SRM has solid theoretical foundation and
is able to provide tight generalization error bound for models.
This paper extents the experimental method to measure the
VC-dimension for regression models and make SRM available
for a mixture of linear and nonlinear regression models in GP
for the first time.

The results show that SRM-driven GP has impressive gen-
eralization gain over standard GP on all the ten examined
datasets. In addition, the better generalization performance in
SRM-driven GP methods than BGP confirms the advantage
of SRM as a framework to estimate generalization error. This
paper also conducts a comparison between GPOPSRM and
GPSRM, which are SRM-driven GP methods using nonuni-
form and uniform setting, respectively. The results confirm
that GPOPSRM outperforms GPSRM in both the training
performance and the generalization ability on most of the
examined problems. Further analyzes of the evolved models
show that GPOPSRM not only evolves more compact models
but also approximate the behavior of the target functions better
than the other methods.

However, the overall computational cost of SRM-driven GP
methods is much higher than standard GP. In future work,
we will try to solve this problem and speed up SRM-driven
GP. We also would like to develop a context-aware mech-
anism to estimate the number of solutions to evaluate for
VC-dimension. The new mechanism is expect to save effort
on the unnecessary measure of VC-dimension while maintain
the effective of SRM in GP. In addition, in this paper, we
touched the difference between model size and complexity,
but have not analyzed the difference by experiments. We will
compare GPOPSRM with some bloat control methods, such
as the parsimony method. This paper focus mainly on the ben-
efit of SRM with the experimentally measured VC-dimension
to standard GP. However, the SRM should be effective for
more domains (e.g., neural networks) with the demand of
measuring the model complexity. Moreover, we also would
like to broaden our study on the generalization of GP, which
involves various types of regression problems, e.g., GP with

multiple world models to partition data in [47], GP for solving
discontinuous regression problems [48] and Island Model for
function construction [49].
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https://cs.gmu.edu/ẽclab/projects/ecj/

[47] J. A. Brown and D. Ashlock, “Using evolvable regressors to parti-
tion data,” Intell. Eng. Syst. Artif. Neural Netw., vol. 20, pp. 187–194,
Jan. 2010.

[48] X. Shengwu, W. Weiwu, and L. Feng, “A new genetic programming
approach in symbolic regression,” in Proc. 15th IEEE Int. Conf. Tools
Artif. Intell. (ICTAI), 2003, pp. 161–165.

[49] D. Whitley, S. Rana, and R. B. Heckendorn, “Island model genetic algo-
rithms and linearly separable problems,” in Proc. AISB Int. Workshop
Evol. Comput., 1997, pp. 109–125.

Qi Chen received the B.E. degree in automation
from the University of South China, Hengyang,
China, in 2005, the M.E. degree in software engi-
neering from the Beijing Institute of Technology,
Beijing, China, in 2007, and the Ph.D. degree in
computer science from the Victoria University of
Wellington, Wellington, New Zealand, in 2018.

In 2014, she joined the Evolutionary Computation
Research Group, Victoria University of Wellington,
where she is currently a Post-Doctoral Research
Fellow with the School of Engineering and

Computer Science. Her current research interests include genetic program-
ming for symbolic regression, machine learning, evolutionary computation,
feature selection, feature construction, transfer learning, domain adaptation,
and statistical learning theory.

Dr. Chen serves as a Reviewer of international conferences, including IEEE
Congress on Evolutionary Computation, and international journals, includ-
ing the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION and the
IEEE TRANSACTIONS ON CYBERNETICS.

Mengjie Zhang (M’04–SM’10) received the B.E.
and M.E. degrees from Artificial Intelligence
Research Center, Agricultural University of Hebei,
Baoding, China, in 1989 and 1992, respectively,
and the Ph.D. degree in computer science from
RMIT University, Melbourne, VIC, Australia, in
2000.

He is currently a Professor of computer sci-
ence, the Head of the Evolutionary Computation
Research Group, and the Associate Dean (Research
and Innovation) with the Faculty of Engineering,

Victoria University of Wellington, Wellington, New Zealand. He has published
over 350 research papers in refereed international journals and conferences.
His current research interests include evolutionary computation, particularly
genetic programming, particle swarm optimization, and learning classifier
systems with application areas of image analysis, multiobjective optimization,
feature selection and reduction, job shop scheduling, and transfer learning.

Prof. Zhang is currently the Chair of the IEEE CIS Intelligent Systems
and Applications Technical Committee, the immediate Past Chair for the
IEEE CIS Emergent Technologies Technical Committee and the Evolutionary
Computation Technical Committee, and a member of the IEEE CIS Award
Committee. He is the Vice-Chair of the IEEE CIS Task Force on Evolutionary
Feature Selection and Construction, and the Task Force on Evolutionary
Computer Vision and Image Processing, and the Founding Chair of the IEEE
Computational Intelligence Chapter in New Zealand. He is also a Committee
Member of the IEEE NZ Central Section. He is a fellow of the Royal
Society of New Zealand and have been a Panel Member of the Marsden
Fund (New Zealand Government Funding). He is a member of ACM.

Bing Xue (M’10) received the B.Sc. degree from
the Henan University of Economics and Law,
Zhengzhou, China, in 2007, the M.Sc. degree in
management from Shenzhen University, Shenzhen,
China, in 2010, and the Ph.D. degree in computer
science from the Victoria University of Wellington,
Wellington, New Zealand, in 2014.

She is currently a Senior Lecturer with the School
of Engineering and Computer Science, Victoria
University of Wellington. She has over 100 papers
published in fully refereed international journals and

conferences and most of them are on evolutionary feature selection and
construction. Her current research interests include evolutionary computa-
tion, feature selection, feature construction, multiobjective optimization, image
analysis, transfer learning, data mining, and machine learning.

Dr. Xue is currently the Chair of the IEEE Task Force on Evolutionary
Feature Selection and Construction, IEEE Computational Intelligence Society
(CIS), the Vice-Chair of the IEEE CIS Data Mining and Big Data Analytics
Technical Committee and the IEEE CIS Task Force on Transfer Learning and
Transfer Optimization. She is also an Associate Editor/member of editorial
board for five international journals and a reviewer of over 50 interna-
tional journals. She is the Finance Chair of IEEE Congress on Evolutionary
Computation in 2019, the Program Co-Chair of the 31st Australasian AI in
2018, ACALCI in 2018, and the 7th International Conference on SoCPaR in
2015. She is also the tutorial chair, the special session chair, or the publicity
chair for many other international conferences.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


