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Abstract—Geometric semantic genetic programming (GP) has
recently attracted much attention. The key innovations are
inducing a unimodal fitness landscape in the semantic space
and providing a theoretical framework for designing geomet-
ric semantic operators. The geometric semantic operators aim
to manipulate the semantics of programs by making a bounded
semantic impact and generating child programs with similar or
better behavior than their parents. These properties are shown
to be highly related to a notable generalization improvement
in GP. However, the potential ineffectiveness and difficulties in
bounding the variations in these geometric operators still lim-
its their positive effect on generalization. This paper attempts
to further explore the geometry and search space of geometric
operators to gain a greater generalization improvement in GP
for symbolic regression. To this end, a new angle-driven selection
operator and two new angle-driven geometric search operators
are proposed. The angle-awareness brings new geometric proper-
ties to these geometric operators, which are expected to provide
a greater leverage for approximating the target semantics in
each operation, and more importantly, be resistant to overfitting.
The experiments show that compared with two state-of-the-art
geometric semantic operators, our angle-driven geometric oper-
ators not only drive the evolutionary process to fit the target
semantics more efficiently but also improve the generalization
performance. A further comparison between the evolved models
shows that the new method generally produces simpler models
with a much smaller size and is more likely to evolve toward the
correct structure of the target models.

Index Terms—Generalization, genetic programming (GP), geo-
metric semantic operator, symbolic regression.
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I. INTRODUCTION

STANDARD genetic programming (GP) [1] generally
allows search operators such as crossover and mutation

to consider syntax but ignore the semantic properties of
swapping/replacing elements. In GP, semantics refers to a
description of what the GP program or subprogram does [2].
The definition of semantics in GP is domain dependent.
This paper focuses mainly on symbolic regression, the task
of which is to find the underlying relationship between the
input variables and output variable(s), and express this rela-
tionship in mathematical or symbolic models. In symbolic
regression, the semantics of a program F is defined as a
vector S [2]. The elements of S are the corresponding out-
puts of the program with respect to a set of input X, i.e.,
S(F) = {F(X1), F(X2), . . . , F(Xn)}.

Unlike traditional GP, semantic GP (SGP) [2], [3], which is
a recently developed variant of GP, utilizes semantic aware-
ness to generate offsprings that are highly correlated with their
parents in behaviors. SGP assumes that taking the detailed
behavioral information of solutions into account can increase
the effectiveness of GP.

As one particular branch of SGP, geometric SGP
(GSGP) [2], [4], [5] further utilizes the semantics of GP indi-
viduals. While SGP uses the semantics as a guideline for the
evolutionary process to evolve toward a program with satis-
factory performance, GSGP aims to manipulate the semantics
directly and has the target of generating a program with (near)
optimal semantics. In GSGP, the semantics of the possible
solutions form a semantic space, where different distance met-
rics can be employed to measure the fitness of GP individuals.
By the properties of the distance metrics, the surfaces of the
semantic space can be in different conic forms. An important
consequence of this property is that the semantic space is uni-
modal, i.e., the minimum error can only be obtained at the
target point, and no plateaus exist. Thus when it is possible
to manipulate the semantic directly, searching on such a space
will become much easier than on the search space of GP in
principle. However, it is not that easy in practise, since the pro-
gram space instead of the semantic space is the space being
searched. Changes (swapping or replacing) in the programs
do not correspond to the desired move in the semantic space.
Geometric semantic operators attempt to make it possible to
search directly in the semantic space.

The geometry of the semantics space is attractive for
enhancing GP. However, searching directly in the semantic
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space is difficult. Therefore, GSGP provides a formal theoret-
ical framework for designing geometric search operators [4].
The framework defines the desired semantic properties of
the offspring generated by the geometric semantic operators.
Specifically, the geometry requirement in the semantic space
is that, the child points generated by the geometric semantic
crossover stand in the segment connecting the two par-
ent points (i.e., the semantics of the child programs is the
intermediate of the parent semantics). And the child program
generated by the geometric semantic mutation stand within the
interval bound defined by the parent (i.e., the semantics of the
child is not too different from the semantics of the parent).

Guided by the theoretical framework (see Section II-A), a
number of implementation algorithms have been proposed for
formalizing the geometric properties and various forms of geo-
metric semantic operators (geometric operators for short) have
been presented. GSGP has shown good generalization ability
in [6] and [7]. Generalization, which reflects the prediction
ability of the learned model, is particularly important in GP
for symbolic regression. The impressive generalization gain
brought by the geometric operators has been indicated by their
geometric properties, which lead to a more constructive repro-
duction (i.e., more likely to generate child programs with better
fitness than their parents) and a small variation in the semantic
space. With these geometric operators, the evolutionary pro-
cess approaches much smoother and maintains higher semantic
locality (i.e., small changes in structures leads to small differ-
ences in semantics). All these aspects contribute to improve
the generalization of GP.

However, these geometric operators have a number of lim-
itations, which may restrict their effect on the generalization
of GP. The potential ineffectiveness of geometric semantic
crossover should be noted. The geometric crossover produces
child programs that outperform both parents only when the
target semantics are between the semantics of the two par-
ents. This is true not only on the training data but also on the
test data. Moreover, the geometric crossover becomes more
ineffective along with the increase of the number of data
instances, since it leads to higher dimensional semantic spaces.
For geometric semantic mutation, it is difficult to determine the
mutation step and how tight the variation should be bounded.
Overly large mutation steps might lead to a decrease in the
training error but an increase in the test error (overfitting),
while small mutation steps decrease the exploration/search
ability of GP, thus might lead to underfitting and poor general-
ization performance. Much research has been devoted to find
an optimal mutation step, such as adaptive geometric muta-
tion [6]. However, the effect of these geometric mutations on
enhancing the generalization of GP is still limited.

The overall goal of this paper is to develop new geometric
operators for addressing the above issues and improving the
generalization ability in GSGP for symbolic regression. The
new geometric operators will be designed to further utilize
the geometric properties of the semantic space and incorpo-
rate angle-awareness. Specifically, this paper has three research
questions/objectives as follows.

1) Whether the proposed geometric operators can improve
the learning performance of GSGP for symbolic regres-
sion over the state-of-the-art GSGP methods.

2) Whether and how the proposed geometric operators
can further improve the generalization ability of GP
for symbolic regression over the state-of-the-art GSGP
methods.

3) Whether and how the proposed geometric operators
influence the size and interpretability of the evolved
programs in GP.

This paper is based on our preliminary investigations [8], [9].
However, both of these two studies rely on the existing GSGP
methods and have their own limitations. This paper signifi-
cantly extends [8], [9] by developing a new selection operator
and a new method to formalize the semantic requirement.
More experiments and deep analyses have been conducted on
the evolved programs in this paper.

II. RELATED WORK

This section introduces concepts related to this paper, and
reviews the state-of-the-art GSGP methods and recent methods
proposed to improve the generalization of GP.

A. Geometric Semantic Genetic Programming

In recent years, GSGP [4] has gained increasing attention
due to its conic fitness landscape. Crucially, this conic land-
scape is unimodal, i.e., the minimum error value is obtained
at the target semantic point only. The definition of theoretical
framework in GSGP, which reflects the geometry property of
the geometric operators, is given as follows [4].

Definition 1 [Geometric Semantic Crossover (Geometric
Crossover)]: Given two parent individuals P1 and P2, a
geometric crossover generates offspring Oj(j ∈ 1, 2) having
semantics �Oj(j ∈ 1, 2) in the segment between the semantics
of their parents, i.e., ‖ �P2 − �P1‖ = ‖ �Oj − �P1‖ + ‖ �P2 − �Oj‖.

Definition 2 [Geometric Semantic Mutation (Geometric
Mutation)]: Given a parent P, r-geometric mutation produces
offspring O within a ball of radius r centered in P, i.e.,
‖�O − �P‖ ≤ r.

The implementation of geometric operators can be grouped
into two categories, i.e., the exact geometric operators [4] and
the approximated geometric operators [2], [10], [11]. These
geometric operators have their own advantages and drawbacks.
The exact geometric operators, which rely on the convex
combination of the genotype of the parent(s) to manipulate the
semantics of the programs directly, guarantees the geometry of
the offspring in the semantic space. An implementation method
of the geometric crossover and mutation was proposed in [4].
This implementation is a convex or linear combination of the
parent(s) and one or two random programs, which results in
obtaining the desired semantics exactly for the new generations.
The exact geometric operators make GP have the ability to
search directly in the semantic space instead of only using
semantics as a guide for the evolutionary search. However,
the exact geometric operators have a critical drawback of
producing offspring with unmanageable size, i.e., the exact
geometric semantic crossover leads to an exponential growth
in the size of offspring, while the geometric mutation causes
a linear growth. The over-grown offsprings are expensive to
execute in both memory and time. This unavoidably leads to a
low interpretability of the evolved models and an unaffordable
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computational cost, which is an obstacle to the application of
GSGP to data having a large number of instances.

An improved implementation of the exact GSGP has been
presented [7], which does not generate the offspring explicitly.
It stores the reference to the information needed to construct
GP individuals, i.e., the initial population and a set of random
trees. At the end of the evolutionary process, the best-of-the-
run individual can be generated from the reference. This imple-
mentation makes GSGP better applicable to real-world prob-
lems. However, the final evolved models are still over-complex
and hard to prune and interpret. In [12] and [13], a new exact
GSGP method named error space alignment GP (ESAGP) was
proposed. ESAGP introduced two concepts, which are error
vectors and error space based on the semantics, with the aim
of searching for two aligned individual, i.e., two individuals
having the smallest angle between their error vectors in the
error space. ESAGP assumes that if it is possible to find two
optimal aligned individuals, then with a proportionality factor,
it is able to generate a child individual with the target seman-
tics. The angle definition of their work is similar to that in this
paper. However, this paper considers various types of angles
and the aims of introducing angle-awareness are different.

The approximated geometric operators work in the geno-
type space and approximates behaviors geometrically in the
corresponding semantic space. The approximating geometric
operators such as locally geometric semantic crossover [10],
approximately geometric semantic crossover (AGX) [14], and
random desired operator (RDO) (mutation) [11] do not lead
to over-grown offsprings, since they generally rely on vari-
ous mechanisms, such as semantic backpropagation (SB) [11]
to approximately satisfy the semantic requirements. These
operators will be briefly reviewed below.

B. Semantic Backpropagation, Approximately Geometric
Crossover, and Random Desired Operators

Designing search operators that work in the genotype space
and behave geometrically in the corresponding semantic space
is not trivial. Therefore, rather than guaranteeing the geometric
behavior, approximating it seems to be more sensible. Based
on this assumption, various approximated geometric opera-
tors have been developed. Krawiec and Pawlak [14] proposed
an AGX. In AGX, the desired semantics of the offspring is
defined to be the midpoint on the segment of the two parents.
SB is proposed to obtain the desired semantics. The ratio-
nale behind SB is that achieving a set of (simple) subtargets
(which form the original target) should be easier and more
efficient than accomplishing the whole target. Specifically, SB
randomly selects a node (i.e., the crossover point in AGX) in
a parent tree, which divides the tree into a suffix and prefix.
The suffix is the subtree that contains the root node, while
the prefix is subtree rooted at the selected node. Accordingly,
the desired semantics for the whole tree is also split into two
parts, which are the semantics of the suffix and the desired
semantics of the prefix, i.e., a subtarget semantics. To gener-
ate a child tree with the desired semantics, SB keeps the suffix
while replacing the prefix with a new subtree with the subtar-
get semantics. The key components in SB are obtaining the
subtarget semantics of the new subtree and finding this new

subtree. To calculate the subtarget semantics, the algorithm
needs to backpropagate through a chain of nodes from the root
to the selected node. A semantic library is formed by collect-
ing subtrees with distinct semantics from the population of
GP trees. This library is maintained every several generations.
Based on certain distance metrics, SB then searches and selects
new subtrees with the (approximate) subtarget semantics from
this semantic library. Later, Pawlak et al. [11] further devel-
oped SB and proposed a geometric mutation operator named
RDO. When operating on programs, RDO aims to explicitly
use the target semantics, which is assumed to be the most
useful information in a training set. The target semantics is
considered as the unique desired semantics of the new gen-
eration. The programs evolved by AGX and RDO are much
smaller than those produced by the exact geometric operators.
However, these programs are still too large to be interpreted
and the unique desire semantics in RDO has a potential draw-
back of leading to a low semantic diversity and a greedy
nature in fitting the target semantics, which limit its potential
in improving the generalization of GP.

C. Generalization of GP for Symbolic Regression

Generalization is the ability with which a learned model
can obtain good prediction results on unseen test data. It is
one of the desired abilities and the key performance crite-
rion for measuring the effectiveness of learning algorithms.
Although generalization has been deeply investigated in many
fields of machine learning [15], [16], it was not the case
in GP for symbolic regression for quite a long time in the
past. Before 2000, symbolic regression was mostly treated
as an ordinary optimization problem, where all the available
data was used for evolving the models and the generalization
performance of the models on unseen data was not considered
at all. Recently, an increasing number of algorithms have been
proposed to improve the generalization capability of GP for
symbolic regression [17]–[20].

Since overfitting is the contrasting phenomena to general-
ization, i.e., poor generalization, the majority of research on
generalization of GP for symbolic regression has been devoted
to reducing/controlling model complexity or avoiding overfit-
ting. Astarabadi and Ebadzadeh [19] proposed a multiobjective
GP algorithm to enhance the generalization ability of GP. The
multiobjective GP employs the first order derivative of the
evolved models as a measure of model complexity. The root
mean square error (RMSE) between the first order derivative
of the evolved models and that of the target model was treated
as one objective, and the training error of the models was the
second objective. The results showed that their method gen-
eralized better than standard GP. Gonçalves and Silva [21]
proposed a GP method using interleaved sampling strategy
training data to achieve a tradeoff between controlling over-
fitting and presenting enough information for the evolutionary
process. The interleaved sampling of the training data was
processed in both deterministic and probabilistic ways, respec-
tively. The experiments have shown that most variants of
the proposed method can improve generalization and reduce
overfitting of GP consistently.



CHEN et al.: IMPROVING GENERALIZATION OF GP FOR SYMBOLIC REGRESSION WITH ANGLE-DRIVEN GEOMETRIC SEMANTIC OPERATORS 491

Introducing semantic-awareness into GP methods has been
shown to have a positive effect on promoting its generalization
[8], [9], [22]. Uy et al. [22], [23] proposed new semantic-aware
crossover operators, which imposed various requirements on
the semantic distance between subtrees rooted on the crossover
points in the two parents. Only subtrees that have similar
(but not equivalent) semantics are allowed to swap. These
semantic-aware crossover operators maintained high locality
thus yielding a better generalization of GP. Gonçalves et al. [6]
compared the generalization ability of GSGP methods
employing sole geometric crossover, geometric mutation, and
bounded geometric mutation [7]. They claimed that geometric
crossover contributed little to improve the generalization abil-
ity, while geometric mutation had a good effect on promoting
the generalization. They also attributed the advance general-
ization ability of GSGP to the bounded geometric mutation,
which produced a small variation to the offspring.

In summary, different from traditional methods that improve
the generalization of GP by evolving structurally simpler pro-
grams, GSGP methods enhance the generalization of GP by
controlling the semantics of the programs during the evolu-
tionary process. In GSGP, the semantic-awareness drives GP
search in a smoother fitness space and the geometry of the
semantic space makes GP search more effectively, both of
which lead to a better generalization gain. However, most
existing GSGP methods still favor the training performance
and their generalization ability is still limited. In addition,
the evolved models are still over-complex and very hard to
interpret, and the structures of the evolved models are still
far from the target models, which also limit the generalization
capability. This paper explores novel ways to make significant
improvements on these points, which is to be described in the
next section.

III. PROPOSED ANGLE-DRIVEN GSGP

The theoretical framework in GSGP was shown to be pos-
itive in enhancing the generalization of GP. However, the
geometric operators defined by the framework still have some
potential limitations, which might restrict their effectiveness
in gaining better generalization ability. This paper attempts to
further explore the geometry of these search operators to make
them more constructive. To this end, we incorporate the angle-
awareness into GSGP and make the angle-awareness a main
force to drive the evolutionary process of GSGP. The proposed
GSGP method is thus named angle-driven GSGP (ADGSGP).
The angle-awareness is expected to make geometric operators
more effective and help the evolutionary process converge to
the target semantics much more accurately and faster.

Our preliminary work [8] has shown that incorporat-
ing angle-awareness into GSGP has an impressive effect
on promoting its learning and generalization performance.
Chen et al. [8] introduced an angle-aware mating scheme
to geometric crossover. Given a set of candidate parents that
have won the tournament selection, the mating scheme drives
geometric crossover operating on pairs of parents, which
have the largest angle-distance between the relative seman-
tics of the parents and the target. The large angle-distance
between these relative semantics helps reduce semantic dupli-
cations in the offspring and increase the effectiveness of

crossover. Mating between individuals having a large angle-
distance increases the exploration ability of GP and makes the
evolutionary process converge to the target semantics much
faster. However, the mating scheme has an underlying limi-
tation. During the evolutionary process, the set of candidate
parents that have won the tournament selection, are more and
more likely to overlap with each other in the semantic space.
Accordingly, it becomes increasingly difficult to find parents
with a large angle-distance. To address this limitation and
further utilize the angle-awareness for selecting better par-
ents, this paper proposes a new angle-driven selection (ADS)
operator (see Section III-B) for geometric crossover. The new
selection operator selects pairs of parents that have large angle-
distances in semantic space from the whole population directly,
instead of from a set of winners of the tournament selection.
Furthermore, we develop two new geometric semantic oper-
ators, i.e., perpendicular crossover (PC) and random segment
mutation (RSM). The rationale behind the proposal of PC and
RSM is to have two geometric operators which are more effec-
tive not only on learning but also on generalization. More
specifically, PC is developed to address the ineffectiveness of
the geometric crossover by further exploring the geometric
properties, while RSM is proposed to solve the difficulty in
determining the mutation step by generating child individuals
that are highly correlated to their parent and approximating
the target semantics in the right direction. The target seman-
tics is assumed to be the most informative aspect in the dataset.
Explicitly utilizing such information can further improve the
performance of the geometric operators. A preliminary inves-
tigation of the effect of the two operators has been shown
in [9]. However, the implementation of the angle-aware geo-
metric operators relies on SB, while this paper will develop a
new implementation algorithm to address the potential draw-
backs of SB. The details of the new geometric operators will
be presented in Sections III-C–III-E.

A. Angle-Distance Measurement

Before presenting the details of the proposed method, a brief
introduction on how to measure the angle-distance between the
semantics of two individuals and between two relative seman-
tics is necessary. As the semantics of individuals in GSGP for
symbolic regression is defined as a vector, the angle-distance
between the semantics of two individuals is defined as the
angle between the two vectors. In an n-dimensional space (e.g.,
the semantic space of a symbolic regression problem with n
training instances), the angle γ between two vectors �V1 and
�V2 is the arc-cosine of the dot product of their normalized
vectors. The definition is given as follows:

γ = arccos

( �V1

‖�V1‖
· �V2

‖�V2‖

)
(1)

where the normalized vector/semantics is
�Vj

‖�Vj‖
=

∑n
i=1 vj,i√∑n

i=1 v2
j,i

, j ∈ {1, 2}

and vj,i is the ith dimensional value of �Vj.
For the angle between the relative vectors (a relative vector

is the vector between one parent’s semantics and the target
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semantics), the only change in the definition is to replace the
normalized vectors with the normalized relative vectors. Given
three vectors �V1, �V2, and �V3, the angle between the two relative
semantics, (�V3 − �V1) and (�V3 − �V2), is defined as

γr = arccos

( (�V3 − �V1
)

‖�V3 − �V1‖
·

(�V3 − �V2
)

‖�V3 − �V2‖

)
(2)

where the normalized relative semantics is(�V3 − �Vk
)

‖�V3 − �Vk‖
=

∑n
i=1

(
v3,i − vk,i

)
√∑n

i=1

(
v3,i − vk,i

)2
, k ∈ {1, 2}.

v3,i and vk,i are the values of �V3 and �Vk in the ith dimension.

B. Angle-Driven Selection

In ADGSGP, a new selection operator named ADS is
proposed to select pairs of parents for geometric crossover. The
pseudo code of ADS is shown in Algorithm 1. ADS selects
the first parent p1 according to the tournament selection. An
iterative procedure is performed to select the second parent p2
according to its angle distance from p1. During this procedure,
each candidate of p2 is selected by tournament selection, then
its angle-distance from p1 is calculated. This procedure will
terminate when reaching the maximum number of iterations nt
or finding a candidate with the angle lager than the predefined
threshold ta. To achieve a tradeoff between finding optimal
parents (e.g., parents with an angle distance near to 180◦) and
the high computational cost, after a preliminary investigation,
the two parameters are set to nt = 10 and ta = 90.

Different from the commonly used selection operators (e.g.,
tournament selection and truncation selection), which select
parents according to their fitness values only, ADS selects a
pair of parents that not only have good fitness values, but
also are far away from each other regarding the angle-distance
of their relative semantics (to the target semantics) in the
semantic space. Introducing angle-awareness into the selec-
tion operator and selecting parents with large angle-distance
bring several benefits to the evolutionary process. First, it helps
decrease the semantic duplicates. Since these far away parents
generally have different semantics, and the interval between
their semantics, i.e., the segment between the two parent points
in the semantic space, is much larger than that of the nearby
parents. The semantics of the two children, which stand in
this larger segment, are more likely to differ from their parents
and from each other. This can potentially maintain/increase the
semantic diversity of the population. Second, the convex hull
of the far-away parents becomes larger, which will increase
the probability of covering the target semantics, and have a
more accurate fitting to the target semantics. The benefits of
a larger angle-distance between parents to the evolutionary
process have been investigated and confirmed in our prelimi-
nary work [8]. Compared with the angle-aware mating scheme
in [8], the advantage of ADS is in increasing the probability
of finding parents with a large angle. ADS selects parents
directly from the population. These parent pairs satisfy the
angle-distance and fitness requirement simultaneously, while
the mating scheme in [8] selects the satisfied parent pairs from
the winners of the tournament selection.

Algorithm 1: ADS

Input : a population of individuals, the target semantics �T , the
number of pairs np to be selected, the maximum
number of trails nt, the threshold angle-distance ta

Output: a list l containing all the selected pairs
for g: = 1 to np do Selection loop

Setting the flag of finding good enough pair f = false, clear
the candidate list cl;
Select the first parent p1 by tournament selection;
for t: = 1 to nt do Selecting the second parent p2 loop

Select a candidate parent individual cp2 by tournament
selection;
Calculate the angle γr between the relative semantics
�T − �p1 and �T − �p2 according to Equation (2);
if γr > ta then

p2 = cp2, f = true;
Stop the loop;

else
Put cp2 into cl;

if f == false then
Select the maximum angle value from al;
Set p2 to be the individual with the largest γr from cl;

Put the selected pair p1 and p2 into l

return l;

C. Perpendicular Crossover

The desired semantics of the offspring in existing geometric
operators is highly correlated to the semantics of their parents.
In exact geometric crossover, the semantics of the children
stands in the segment of their parents, while in AGX, it is
the (approximately) middle point of this segment. Neither of
them has considered improving the effectiveness of the geo-
metric crossover by introducing the geometry of the target
semantics. A better geometric crossover can produce offspring
that are not only highly correlated to the parent semantics
but also effective in approximating the target semantics. To
this end, PC is proposed in this paper. PC imposes a more
precise semantic requirement than exact geometric crossover.
In this way, it aims to drive the search toward convergence to
the target semantics much faster. Given two parent individu-
als, PC generates a child point standing on the line crossing
the two parents, which follows the theoretical framework of
GSGP. Moreover, the relative vector given by this child point
and the target semantics is perpendicular to the vector defined
by the two parents. Suppose the target semantics is �T , and
the semantics of the two parents are �P1 and �P2. As shown
in Fig. 1(a)–(c), the three points define a triangle. α refers
to the angle between the relative semantics of (�P2 − �P1) and
(�T − �P1), while β is its counterpart to �P2. Given �T , �P1, and
�P2, according to (2), it is straightforward to obtain the values
of these two angles.

Obtaining the semantics of the offspring �O is to calcu-
late the position of �O, which is the base of the perpendicular
dropped from �T to the relative semantics (�P1 − �P2). As shown
in Fig. 1(a)–(c), according on the values of α and β, there are
three possible position of �O. In the first case [as shown in
Fig. 1(a)], when α and β are both smaller than 90◦, the off-
spring �O (represented by the green point in the figure) stands
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(a) (b)

(c) (d)

Fig. 1. Offspring generated by (a)–(c) PC and (d) RSM.

in the segment of (�P1 − �P2). In the other two cases where
either α or β is larger than 90◦, the offspring stands along the
segments on the �P1 or �P2 side.

To calculate the position of �O, i.e., a particular point in the
line crossing the two parent points, we adopt the parametric
equation, which is the most versatile equation to define a line
in an n-dimensional space, to express this line. Specifically,
suppose that the line is given by two points �P1 and �P2 in
an n-dimensional space, the particular point �O is defined
by (3)–(5) [corresponding to Fig. 1(a)–(c)] as follows.

1) When �O stands on the segment between �P1 and �P2, i.e.,
α < 90 and β < 90

�O = �P1 + ‖ �P1 − �O‖
‖ �P1 − �P2‖

· ( �P1 − �P2
)
, ‖ �P1 − �O‖

= ‖ �P1 − �T‖ · cos(α). (3)

2) When �O is outside the segment on the �P1 side, i.e.,
α > 90

�O = �P1 − ‖ �P1 − �O‖
‖ �P1 − �P2‖

· ( �P1 − �P2
)
, ‖ �P1 − �O‖

= ‖ �P1 − �T‖ · cos(180 − α). (4)

3) When �O is outside on the �P2 side, i.e., β > 90

�O = �P2 + ‖ �P2 − �O‖
‖ �P1 − �P2‖

· ( �P1 − �P2
)
, ‖ �P2 − �O‖

= ‖ �P2 − �T‖ · cos(180 − β) (5)

where ( �P2 − �P1) gives the direction of the
line, the elements of which are defined as
{(p2,1 − p1,1), (p2,2 − p1,2), . . . , (p2,n − p1,n)}. ‖ �P1 − �O‖ and
‖ �P2 − �O‖ are the relative distance between �P1 ( �P2) and �O.

As the evaluation of a program in GSGP is generally defined
as the distance from the target semantics, when the Euclidean
metric is adopted, the exact geometric crossover produces off-
spring that are not worse than the worse parent, but PC guaran-
tees that the offspring program is better than both of its parents.

Algorithm 2: Obtaining the Desired Semantics in RSM

Input : Target semantics �T , and the semantics of the parent �P.
Output: The desired semantics of the offspring �O.
Calculate the relative semantics between the parent and the
target semantics �P − �T and the norm ‖�P − �T‖;
Obtain a random real number k ∈ (0, 1);
Calculate �O according to �O = �P + k · (�T − �P), which will make
�O stand in the segment of �P and �T;
Return �O;

D. Random Segment Mutation

Inspired by RDO and to have a better control of the seman-
tic variation induced by geometric mutation, we aim to utilize
the target semantics. We propose an angle-driven geometric
mutation operator named RSM. By operating RSM, the desired
semantics of the offspring is standing on the segment connect-
ing the parent and the target point in the semantic space. The
pseudo code of the procedure to obtain the desired semantics
in RSM is shown in Algorithm 2. Given a parent �P, RSM first
needs to find the segment between the target semantics �T and
�P. Then a random point is obtained along this segment, which
is treated as the desired semantics of the offspring �O. Then
the desired semantics is calculated according to (6), which has
the same principle as (3)–(5)

�O = �P + k · (�T − �P)
, k ∈ (0, 1). (6)

This requirement on the semantics of the offspring follows the
theoretical requirement in geometric mutation, meanwhile it
makes the angle between the relative semantics of ( �O − �P) and
(�T − �O) exactly 180◦. In this way, RSM has a more precise
semantic control on the offspring than the exact geometric
mutation, which drives the fitting of the target semantics in
the “right” direction. Compared with RDO, RSM generates
offspring with different desired semantics, which are random
points standing on the intervals between the parents and the
target semantics. This helps increase semantic diversity of
the population and leads to a better exploration ability in
ADGSGP than approximate GSGP (AGSGP).

E. Semantic Context Replacement

Once the desired semantics of the offspring in the two
geometric operators is obtained, a further step is to generate
offspring to fulfil these semantics. In our preliminary work [9],
SB is employed, which aims to achieve the desired semantics
by replacing the prefix subtree with a new one with the sub-
target semantics. In SB, a parent tree is split into two parts,
i.e., a suffix and a prefix, by a randomly selected node in
the tree. Then SB keeps the suffix, which generally contains
the root node of the tree. Meanwhile, SB replaces the pre-
fix expressed by the subtree rooted at the selected node with a
new subtree with the (approximate) subtarget semantics from a
semantic library. While the idea of SB is sensible, it generally
produces over-complex models (but these models are much
smaller/simpler than those in exact GSGP). Obtaining the
subtarget semantics by propagation backward through these
complex trees is still too expensive to afford. Meanwhile, over-
complex models are often prone to overfit the training set
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Fig. 2. SB and SCR.

and could not generalize well on the unseen data. All these
limitations prevent SB from being applied to problems with a
larger semantic space.

To avoid the potential limitations of SB, this paper proposes
a new approximately semantic operator named semantic con-
text replacement (SCR) to fulfil the semantic requirement. The
procedure of fulfilling the desired semantics in SB and SCR is
shown in Fig. 2. The major difference between SCR and SB
is that SB maintains the suffix/context of the parent individual
and replaces the prefix, while SCR aims to provide a better
suffix/context, which consists of a new root node (selected
from a set of binary operators) and a new subtree with subtar-
get semantics, and preserves the semantics of the prefix to the
children. The motivation of making this change is the impor-
tance of the context of GP individual to its fitness, which
has been confirmed by previous research [24]. Meanwhile,
we expect this small but important change will bring many
benefits during the process of achieving the desired seman-
tics. First, compared with backpropagation in SB to obtain
the desired subtree semantics, SCR is more straightforward
to calculate the desired semantics for the context. As shown
in Fig. 2, SB needs several subsequent steps of backpropaga-
tion (from the parent of the selected node to the root node),
while SCR only needs one step. Once the new root node R is
decided, SCR inverts the execution of the new root node R to
get the subtarget semantics. The rules for the inverted opera-
tors are very simple, i.e., + and −, and ∗ and %p (protected
division) are inverted with each other. Furthermore, replacing
the context with a newly constructed one, which is gener-
ally smaller than the original one, can potentially decrease the
complexity of the offspring programs.

As shown in Algorithm 3, after splitting the tree into the
context/suffix and the prefix, SCR replaces the context/suffix
of a tree by two steps, where the first step is to select the
root node and the second step is to select a subtree with
the subtarget semantics from the semantic library. The selec-
tion is according to the angle-distance between the seman-
tics of candidate trees [according to (1)] and the subtarget

Algorithm 3: SCR
Input : The parent individual P, the maximum depth of the

GP individuals MD, an angle-distance list AL.
Output: A new subtree with the subtarget semantics.
Randomly select a node in the parent tree P to split the tree

into suffix and prefix ;
Replace the suffix/context by selecting a binary operator from

the function set to be the root node R randomly, i.e., select
one operator among {+, −, ∗, %protected};

Calculate the subtarget semantics for the rest part of the context
T according to the inverted execution of R ;

for each ct in the semantic library do
Calculate the angle between ct and T according to

Equation (1), and put it into AL;

Obtain the tree TR with the smallest angle value in AL;
Perform a linear scale to TR, and make it as (a + b · TR), where

a and b are set according to Equation (7)

semantics. SCR selects the tree TR having the smallest relative
angle-distance. In this paper, the dynamic semantic library is
employed, which contains all the semantically unique subtrees
collected from all the individuals in the current generation. It
needs to be maintained and updated at every generation.

We hypothesize that the subtree with the closest angle-
distance to the subtarget semantics is most likely to have the
desired structure but not the fitted coefficients. A simple form
of linear scaling [25] has shown to be effective to find a set
of better coefficients. With a linear scaling on the output of
the selected subtree, it could help find better coefficients to the
selected subtree to fit the subtarget semantics better. Therefore,
after finding TR, a linear scaling [25] is performed to TR, i.e.,
inducing two coefficients a and b to TR to scale it to (a+b·TR),
where a and b are the intercept and slope of the linear scal-
ing, respectively. According to [25], the values of a and b are
defined as follows:

b =
∑n

i=1

[(
ti − t

)(
cti − ct

)]
∑n

i=1

[(
cti − ct

)2
] , a = t − b · ct (7)

where ti is the value of the subtarget semantics in the ith
dimension and t is the mean of all the ti values. cti is the
value of the semantics of TR in the ith dimension and ct is
the mean value of all cti.

IV. EXPERIMENTAL DESIGN

To investigate and confirm the effectiveness of our new
method ADGSGP, a set of experiments have been conducted
to compare ADGSGP with two state-of-the-art GSGP meth-
ods and standard GP. The three benchmark GP methods are
as follows.

1) GSGP refers to the exact GSGP method which uses the
exact geometric crossover and geometric mutation. The
improved implementation of GSGP [7] is used in the
experiments.

2) AGSGP [11] employs two state-of-the-art geometric
operators: 1) AGX and 2) RDO. Both of these two
operators are based on SB.

3) Standard GP, which employs standard crossover and
mutation, is also used as a baseline for comparison.
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TABLE I
SYNTHETIC DATASETS

TABLE II
REAL-WORLD PROBLEMS

All the four GP methods are implemented under the GP
framework provided by Distributed Evolutionary Algorithms
in Python (DEAP) [26].

A. Benchmark Problems

Following the previous research on geometric operators,
we investigate the performance of the GP methods on a set
of synthetic datasets. We test the GP methods on ten syn-
thetic datasets. The target functions and sampling strategies
are shown in Table I. They are taken from [8], [11], and [27].
Furthermore, we are also interested in testing the proposed
method on real-world datasets, which have not been widely
used in research on GSGP. The detailed information of the
datasets are shown in Table II. The training set and the test
set are given in DLBCL, while each of the other three datasets
is randomly split with 70% of the data for training and the rest
30% for test in each GP run. This is a widely accepted way
of splitting a dataset in machine learning [6], [7], [28], [29].
The splitting is different in each independent GP run, but is the
same for the four GP method in one run. For a further compar-
ison, we have also examined the methods using fivefold cross
validation, which shows almost the same patterns. Interested
readers are referred to the online supplementary material for
the detailed analysis.

B. Parameter Settings

The parameter settings for all the four GP methods are sum-
marized in Table III. Most of these parameters are common
settings in GP and GSGP [1], [4]. The crossover and mutation
rates in GP and GSGP are different. Standard GP generally
has a higher crossover probability, since crossover is consid-
ered to be much more important than mutation for the progress
of the evolutionary process. A high mutation rate is desired
in GSGP methods to promote the search in semantic spaces
more efficiently. Exact GSGP does not have a depth limita-
tion. For the other three GP methods, the maximum tree depth

TABLE III
PARAMETER SETTINGS FOR GP RUNS

is 17. RMSE is adopt as the fitness function. Each GP method
has been conducted for 50 independent runs on each problem.
Note that, as pointed out in the previous study [30], in some
cases, the comparison under the same number of generations,
which is the mainstream in the literature of GP, might be not a
fair comparison. The comparison between algorithms adopting
a variable-size of representation should take the computational
effort into consideration.

V. RESULTS AND DISCUSSION

This section compares and discusses the results obtained
by the four GP methods. The comparisons will be presented
in terms of the training performance, the generalization
ability and the size of the evolved programs in the GP
methods. The computational costs will also be shown. The
main comparison is conducted between GSGP methods. A
nonparametric statistical significance test—the Wilcoxon test,
with a significance level of 0.05, is used to compare the
training RMSEs and test RMSEs of the best-of-run models.
Two sets of statistical significance tests have been conducted.
One is between GP and the three GSGP methods. The other
is among the three GSGP methods, i.e., comparing ADGSGP
with the other two GSGP methods.

A. Overall Results

The distribution of RMSEs obtained by the best-of-run pro-
grams on the training sets and their corresponding test RMSEs
are shown in Fig. 3. Red boxes are for the training sets, while
the green ones are for the test sets. Table IV presents the results
of the two sets of statistical significance tests. “−” stands for
ADGSGP (GP) performs significantly better than the com-
pared method, “+” indicates ADGSGP (GP) is significantly
worse, and “=” means no significant difference.

On three of the first four synthetic datasets (except for
Keijzer14), where the training instances and test instances
are drawn from the same distribution, the three GSGP meth-
ods generally have much lower RMSEs than standard GP
on both training sets and test sets. On Keijzer14 and the
other six synthetic datasets, the exact GSGP method pro-
duces higher training and generalization errors than standard
GP. The training differences are significant on six of these
seven training sets, while the generalization differences are
all significant. On most of the synthetic datasets, AGSGP
and ADGSGP significantly outperform standard GP in terms
of both learning ability and generalization performance. On
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Fig. 3. Distribution of the training errors and the corresponding test errors
of the best-of-run models.

TABLE IV
RESULTS OF STATISTICAL SIGNIFICANCE TESTS

all the synthetic datasets, ADGSGP outperforms exact GSGP
on both learning and generalization performance. ADGSGP
achieves significantly smaller training errors on Pagie1 and
Keijzer14 than AGSGP, and no significant difference on their
training performances was found on the other training sets.
More importantly, ADGSGP has lower test errors than AGSGP
on all the synthetic datasets, where on eight of the ten test sets
(except for Nguyen-7 and R2) the advantage is significant.
Meanwhile, ADGSGP has more robust performance than the
other two GSGP methods in both learning and generalization
performance, which is indicated by the shorter whiskers in
the boxplots. Overall, the newly proposed method ADGSGP
is undoubtedly the winner on the synthetic datasets.

The pattern on the real-world datasets is different to that
on the synthetic datasets. The superiority of GSGP methods

(particularly in AGSGP) over standard GP is not as obvious as
on the synthetic datasets. GSGP performs worse than standard
GP on Concrete regarding both training and test performance.
On BHouse, GSGP also obtains much higher training errors
than standard GP while no significant difference on their test
performances. On Wine and DLBCL, the advantage of GSGP
over standard GP is significant on both training set and test
sets. On the four real-world problems, AGSGP obtains sig-
nificantly better training gain than standard GP. However, it
has a significantly worse generalization performance than GP
on two test sets (BHouse and Wine), while having compara-
ble generalization performance with GP on DLBCL, and only
generalizing better than standard GP on Concrete. Different
from the two counterparts, our proposed method ADGSGP
achieves significantly smaller RMSEs than standard GP on all
the training sets and the test sets of the real-world problems.

Regarding the comparison between the three GSGP meth-
ods on the real-world datasets, the superiority of AGSGP on
the learning performance clearly contrasts with its poor gen-
eralization performance on the real-world problems, which
indicates the occurrence of overfitting. ADGSGP is not always
the winner of the training performance, but it outperforms the
other two GSGP methods on the generalization performance
in all cases. ADGSGP is the only GSGP method that consis-
tently outperforms standard GP in all the examined datasets.
The notably shorter whiskers in the boxplots of ADGSGP
show the robustness of the performance. Statistical signifi-
cance tests confirm that ADGSGP generalizes the best on all
the real-world datasets among all the four GP methods.

To sum up, the overall pattern is that the new proposed
method ADGSGP has comparable training performance to
AGSGP, and much better than standard GP and GSGP. More
importantly, regarding the generalization ability, ADGSGP
is undoubted the winner among the four GP methods. It
performs significantly better than all three other GP methods
on all cases except for Nguyen-7 and R2, where it performs
similar to AGSGP.

B. Learning Performance

To have a closer view on the training performance, the evo-
lutionary training plots are presented in Fig. 4 (due to the page
limit, the evolutionary plots on the last six synthetic datasets
are shown in Fig. 1 in the supplementary material). These
plots are drawn using the median RMSEs obtained by the
best-of-generation programs on every generation.

As seen from these evolutionary training plots, AGSGP
and ADGSGP are generally the most effective methods in
fitting the training data. The progress of the evolution is due
to that the percentage of effective breeding, i.e., the number
of children which have better learning performance than their
parents, has increased. Among all the training sets, ADGSGP
consistently achieves a faster decrease in the training error,
which indicates that it learns much faster than GSGP and
AGSGP. The geometry property of PC drives ADGSGP con-
verging much faster than the other three GP methods in the
early phase of the evolutionary process. Along with the evolu-
tionary process, it becomes more difficult for ADGSGP to get
closer to the target semantics, which is indicated by the very
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Fig. 4. Evolutionary plots on the Training median RMSEs of the best-of-
generation models.

slow decrease in the training errors after the first around 20
generations. This might be due to the difficulty in finding pairs
of parents that are far away regarding their angle-distance,
which limits the effectiveness of the new geometric crossover.
In addition, this is an unavoidable phenomenon caused by
the geometries of PC and RSM. When the whole population
becomes closer to the target semantics, the distance between
the parent(s) and the target semantics becomes smaller. The
smaller relative distance leads to a smaller movement toward
the target semantics. AGSGP suffers from the same difficulty
as ADGSGP in most training sets. However, the case is differ-
ent on the three real-world datasets (i.e., BHouse, Concrete,
and Wine). On these datasets, the number of training instances
is much higher than the rest five training sets. So correspond-
ingly their semantic spaces are much larger in dimension
than the other datasets. Approximating the target semantics
is more difficult in this scenario. RDO in AGSGP, which
aims to produce offspring highly correlated with the target
semantics and approximates the target semantics greedily, is
able to fit the target semantics much better than the other GP
methods in this scenario. On other datasets, this advantage
is not very clear. Exact GSGP generally learns much slower
and produces much higher training errors than AGSGP and
ADGSGP over generations. Particularly, GSGP fits the target
semantics much slower than ADGSGP on almost all the
training sets. On DLBCL, GSGP outperforms AGSGP and
standard GP from the very early several generations, and this
advantage increases over generations.

To summarize, introducing the semantic information into
the evolutionary process does not always bring improvement,
which is indicated by the much slower learning speed of exact
GSGP than that of standard GP on six of the 14 datasets.
Utilizing the semantic information is an important factor
that influences the learning speed and learning performance.
ADGSGP equipped with angle-awareness, which explores the
geometry properties of the search operators in the semantic
space, generally fits the target semantic much faster and more
accurately than GP and exact GSGP.

Fig. 5. Evolutionary plots on the corresponding Test RMSEs of the best-of-
generation models.

C. Generalization Performance

Compared with the training performance, we are more
interested in the generalization ability of the GSGP methods.
Fig. 5 (and Fig. 1 in the supplementary material) shows the
evolutionary plots on the median generalization errors of
the best-of-generation models on the test sets. As shown in
the figures, GSGP continues the advantage over standard GP
only on five of the 14 test sets. While on the other nine
datasets, where GSGP has worse training performance, it also
generalizes worse than standard GP. On BHouse and R1, along
with the increase of the generations, the difference between
the generalization performance of GSGP and standard GP has
decreased. At the end of the evolutionary process, they have
almost the same generalization errors.

For AGSGP and ADGSGP, on the synthetic test sets, the
overall pattern is very similar to that on the training sets. Both
of them can generalize well on these test sets. Meanwhile,
ADGSGP generalizes the best on ten test sets. It generalizes
significantly better than GSGP on all these test sets, and sig-
nificantly better than AGSGP on eight of the ten synthetic test
sets. However, for AGSGP, the overall pattern on the test sets
of the real-world datasets is very different from that on the
training sets. AGSGP loses the advantage and is difficult to
generalize well on the unseen data of the four real-world prob-
lems. In AGSGP, overfitting happens on all the four problems,
where a severe overfitting occurs on BHouse and Wine, and
a weak overfitting appears on DLBCL and Concrete. Unlike
AGSGP, the proposed ADGSGP method can generalize well
and resist to overfitting on all the test sets. A possible rea-
son is, compared with RDO in AGSGP, RSM in ADGSGP
produces offspring highly correlated with their parent. Along
with the evolutionary process, when both AGX in AGSGP
and PC in ADGSGP have difficulties bringing further progress
to the search process, RSM brings a smaller variation to the
offspring than RDO, so it has the potential to limit the deterio-
ration of the generalization error. In other words, RSM is less
greedy when approximating the target semantics, which drives
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ADGSGP to generalize well and resist to overfitting. This can
be shown by the fact that the stage where AGSGP advances
ADGSGP on the training set is right the time when overfitting
happens in AGSGP. Another possible contribution to the gen-
eralization is from SCR, which is our new method to fulfil the
semantic requirement. Compared with SB in AGSGP, SCR
induces simpler programs that are more likely to generalize
better on the unseen data. This will be confirmed later in the
analysis of the evolved programs in Section VI.

In general, on the majority of the test sets, the three GSGP
methods generalize much better than standard GP, which con-
firms that the geometric properties of the geometric operators,
i.e., the error committed by the child program is bounded
by the worst (or best for ADGSGP) parents, also hold on
the unseen data. This is especially the case for the synthetic
datasets, where the problem is easier than the real-world prob-
lems with a large number of instances to some extent. These
smaller semantic spaces have less or no noise, so the pat-
tern of the target semantics in the training set can represent
the actual pattern of the problem. This also explains why the
overall pattern on the test sets of the synthetic datasets and
DLBCL (where the number of instance is much smaller than
other three real-world datasets) is almost the same as that of
the training sets.

On the other hand, the geometric operators in GSGP can
also bring negative variations to GP individuals, which could
increase the generalization errors of the offspring. When the
majority of the variations produced by these operators are
negative, overfitting occurs. Compared with RDO, the vari-
ations imposed to the parents are bounded and smaller in
RSM, which makes the deterioration (increase) of the gener-
alization error to be slower and consequently lead to a better
generalization in ADGSGP.

D. Comparisons on Program Size and Computational Time

Table V (and Table I in the supplementary material) shows
the mean and minimum program sizes in terms of the number
of nodes in the best-of-run GP individuals. The computational
costs are also presented in the form of the average and min-
imum computation time (in seconds) of one GP run in the
evolutionary training process, where N/A means that we did
not consider the computational cost of exact GSGP, since the
implementation method of GSGP does not generate the GP
trees explicitly.

It is clearly shown that exact GSGP and AGSGP have
notably larger program sizes than standard GP on most of
the datasets. Different from the other three GP methods, exact
GSGP does not have a limitation on the maximum height of
the GP tree. The exact geometric operators lead to a expo-
nential or linear growth on the size of the offspring. So it has
a much larger program size than the other three GP meth-
ods. On the real-world problems, the mean program sizes of
exact GSGP are in millions. In this case, the evolved pro-
grams are impossible to be interpreted by human experts and
lose the advantage of GP over the traditional machine learn-
ing algorithms such as support vector regression [31], which
perform a black-box regression. In AGSGP, the size of the

TABLE V
PROGRAM SIZE AND COMPUTATIONAL TIME

evolved programs is 3–10 times larger than their counterparts
in standard GP. This might be due to the fact that SB is
prone to find more complex trees with the desired (or approx-
imate) semantics to replace the original prefix of the tree. The
complexity difference between the new subtree and the orig-
inal prefix accumulates over generations, which will lead to
a much larger GP individual. As expected, ADGSGP has a
much smaller program size than AGSGP in all the examined
cases. This confirms our hypothesis that replacing the context
of the tree by SCR has a benefit over SB in restricting the
increase of the program size. On the other hand, the average
size of the evolved programs in ADGSGP is 1.3 to around
three times larger than standard GP. On Keijzer14, it even has
a smaller mean program size than standard GP. This indicates
that ADGSGP will not decrease the interpretability of GP pro-
grams too much and the increase of the computation cost is
also acceptable. More importantly, the program simplification
methods [32], [33] might work for ADGSGP (which is not so
easy for oversize programs in AGSGP). This will help address
the open issue of over-grown program size in GSGP methods.
Another pattern in the program size is that, compared with GP
and AGSGP, the size of the programs in ADGSGP is more sta-
ble. This is indicated by a much smaller difference between
the mean and the minimum program size. ADGSGP does not
produce programs with extremely large/small size.

An interesting phenomenon is that these oversize/complex
programs in GSGP methods usually generalize better than their
counterparts in standard GP on unseen data. This conflicts with
the widely accepted theories, such as the minimum descrip-
tion length principle [34] and Occam’s razor [35], which
claim that complex programs are difficult to generalize well.
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TABLE VI
EXAMPLES OF GP INDIVIDUALS ON KEIJZER14:8.0/(2 + x2 + y2)

A possible explanation on this phenomenon is that not only
the size/complexity of the programs matters, but also the way
how they are generated is also important. These theories might
not hold among models that are produced in different man-
ners. Previous research considers these oversize programs as
ensembles of programs [6]. They claimed that there might exist
some overfitted subprograms in the final evolved programs
(the same as in an ensemble). However, their contribution to
an increased generalization error can be reduced/eliminated by
their counterparts in the programs that generalize well.

Considering the comparison of the computational cost
between standard GP, AGSGP, and ADGSGP, AGSGP and
ADGSGP have a much higher computational cost than stan-
dard GP. The maintenance and the search procedure of the
semantic library in AGSGP and ADGSGP takes a large

amount of time. In addition, along with the growth of the
program size, the procedure of calculating the desired seman-
tics in SB in AGSGP and SCR in ADGSGP becomes more
costly, particularly in SB which needs to propagate backward
from the root node to the selected node in the tree. In the worst
case, it needs to backpropagate through almost the whole tree.
In SCR, only one step propagation is needed after the root
node of the context is decided. This explains why the compu-
tational cost in ADGSGP is much smaller than that in AGSGP.
Another important reason is the much smaller program size in
ADGSGP than AGSGP. ADGSGP needs additional expense
for the angle-awareness in selection and breeding process.
However, compared with the much higher cost in searching
for the desired contexts (or the desired subtree in AGSGP),
this additional cost can be neglected.
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E. Analysis of Evolved Models

A further examination of the models evolved by the three
GP methods is conducted (since the models evolved by GSGP
is too large to show and analyze, they are omitted from the
analysis). We randomly sample one run from the 50 GP runs
and examine the evolved models of the three GP methods
in that run, and we repeat this process twice to check two
(random) groups of models on Keijzer14, where the target
function is known, and both AGSGP and ADGSGP achieve
good learning and generalization performance. To make the
analysis clearer, we also present the mathematically simplified
form of these models. The two forms of models are displayed
in the second and the third columns of Table VI, respectively.

It is clear that the evolved models in ADGSGP are much
simpler than those in AGSGP. The difference between the
simplified models, which indicate the behavior of the evolved
models, is even more apparent. In the two examples, the behav-
ior of the models in ADGSGP is not only much smoother than
their counterparts in standard GP and AGSGP, but also much
more similar to the target functions (ADGSGP actually finds
the most important building block x2 + y2 on Keijzer14, and
the only difference from the target function is in the param-
eters of the models). The difference on the simplified models
of AGSGP and ADGSGP also indicates that the reasons why
the two GSGP methods can outperform standard GP might be
different. The advantage of AGSGP over standard GP might
come from the same strength as ensemble learning, while
ADGSGP is able to find the target model, which not only has
better learning performance but also can generalize very well.

VI. FURTHER ANALYSIS

To further investigate the effect of the three angle-driven
operators proposed in this paper, PC with standard selection
operator (i.e., tournament) (denoted as PC-SS), PC with the
proposed ADS (PC), and RSM are tested on the eight selected
datasets individually. They are compared with exact GSGP and
AGSGP. Therefore, in this section, the tested GSGP methods
are: GSGP, AGSGP, PC-SS, PC, and RSM.

As shown in Fig. 6, on the four synthetic datasets, PC-SS,
PC, and RSM all have significantly better training performance
than GSGP. Compared with AGSGP, on Keijzer11, PC-SS
and PC have significantly larger training RMSEs, while RSM
has slightly larger training RMSEs. On the other three syn-
thetic datasets, PC-SS, PC, and RSM all have better train-
ing performance than AGSGP. On Nguyen7, the differences
between them are not significant, while on the other two train-
ing sets, PC-SS, PC, and RSM all have significantly better
training performance than AGSGP.

On three of the four real-world datasets (except for
DLBCL), PC-SS, PC, and RSM all have notable improve-
ment on the training performance than GSGP, but are much
worse than AGSGP. On DLBCL, PC-SS and PC have slightly
larger training errors than GSGP, which are not significant.
RSM has significantly better training performance than GSGP.
On DLBCL, PC-SS, PC, and RSM all have better training
performance than AGSGP. While PC-SS has slightly better
performance, the advantage of PC and RSM over AGSGP is
significant.

Fig. 6. Evolutionary plots on the Training RMSEs of the best-of-generation
models in GSGP, AGSGP, and GSGP with three operators solely.

Fig. 7. Evolutionary plots on the Test RMSEs of the best-of-generation
models in GSGP, AGSGP, and GSGP with three operators solely.

The evolutionary plots on the generalization performance in
Fig. 7 show that the overall pattern on the four synthetic test
sets is very similar to that on the training sets. PC-SS, PC, and
RSM all have better generalization performance than GSGP
and AGSGP. On Keijzer11, AGSGP loses the advantage on
the generalization performance. PC has similar generalization
performance with AGSGP, while RSM has the best generaliza-
tion performance. On the four real-world datasets, the pattern
is very different from that on the training sets. On the four
datasets, where AGSGP suffers from serious overfitting, PC-
SS, PC, and RSM generally generalize well. Among the five
GSGP methods, PC has the best test performance on BHouse
and Wine, while on the other two datasets, RSM is the winner.

In summary, GSGP with any of the three proposed operators
solely can outperform GSGP on most of the examined datasets
on both learning performance and generalization ability. When
compared with AGSGP, they have comparable learning ability
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but much better generalization performance. PC and RSM have
comparable training and generalization performance, which
are much better than PC-SS. The only difference between PC-
SS and PC is in the selection operator. PC which employs the
proposed ADS can improve the performance of GSGP much
better than PC-SS (where standard tournament selection is
used). This is a good evidence for the effectiveness of ADS. In
addition, as can be seen from Figs. 4–7 (using the performance
of GSGP and AGSGP as baseline for comparison), compared
with employing PC or RSM individually, combining them (i.e.,
ADGSGP) has a better effect on promoting both training and
generalization performance of GP.

The performance of GPAGLX, i.e., the method proposed
in our preliminary work [8], has also been examined. Due
to the page limit, the results and the detailed analysis are
present in the supplementary material. A brief summary is
that GPAGLX has comparable training performance but sig-
nificantly worse generalization than ADGSGP on most of the
examined datasets.

VII. CONCLUSION

The goal of further exploring the geometric properties of
geometric operators to obtain a greater generalization gain in
GP for symbolic regression has been achieved. The proposed
angle-driven geometric operators give an impressive general-
ization improvement for GP. With angle-awareness, the error
of the child programs produced by PC is bounded by their
best parents, and RSM provides a small variation to the parent
programs but consistently move toward the target semantics.
These new geometric properties offer a productive leverage
for approximating the target semantics in each operation.

To investigate and confirm the effectiveness of the proposed
ADGSGP method, this paper conducted a comprehensive com-
parison among ADGSGP, exact GSGP and AGSGP. To the
best of our knowledge, this is the first work filling the gap of
the comparison between these two variants of GSGP. Standard
GP was used as a baseline for the comparison. Compared with
GP, the GSGP methods generally evolved models with bet-
ter learning performance and generalization ability. However,
the worse learning and generalization performance (than stan-
dard GP) in exact GSGP on some datasets and the overfitting
trend in AGSGP on the real-world datasets also indicate that
introducing the semantics into the evolutionary process does
not always bring benefits. The way to utilize the semantic
information has a high influence on the performance of GP.
The angle-aware geometric operators eliminate the potential
ineffectiveness in GSGP and increase the chance of effective
breeding, which make ADGSGP advance exact GSGP and
AGSGP dramatically on learning performance with a much
faster learning speed. More importantly, in ADGSGP, RSM is
less greedy (than RDO) in approximating the target semantics
and brings a smaller variation to the parent programs. The
SCR consistently produces much simpler/smaller programs,
which are more likely to contain the right structure than the
two state-of-the-art GSGP methods. All these characteristics
make the solutions more resistant to overfitting and generalize
better on the unseen data.

Another interesting finding is the models in the GSGP meth-
ods usually generalize well but overcomplex, which conflicts
with the common claim that complex programs are difficult
to generalize well. The better generalization gain of these
complex models might come from the same strength as ensem-
bles. Furthermore, the simplified form of the evolved models
in ADGSGP are closer to the target model (e.g., containing
the most important building blocks) and represent the correct
pattern, thus generalize well on unseen data.

To sum up, the comparisons among four GP methods
(including two of state-of-the-art GSGP methods) indicates
that the proposed method has a faster convergence rate, a
good interpret ability, and requires less computational effort.
It is very suitable for real-world applications requiring a
fast responsibility and aiming to have a good insight of the
underlying data generating process.

For future work, we plan to further improve ADGSGP by
reducing the computational cost and making it more efficient.
As mentioned above, the major expense of the method is in
maintaining and searching in the semantic library. Instead of
exhaustive search used in ADGSGP, a heuristic search method
will be explored to improve the efficiency while not decreasing
the effectiveness of the process of searching for the desired
subtrees. Moreover, the selection operator in ADGSGP is
based on an indirect manner. We will consider to measure
the distribution of the population and select the GP individ-
uals according to their angle distributions around the target
semantics in the future.
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