
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 1, FEBRUARY 2019 89

Evolving Unsupervised Deep Neural Networks for
Learning Meaningful Representations

Yanan Sun , Member, IEEE, Gary G. Yen , Fellow, IEEE, and Zhang Yi, Fellow, IEEE

Abstract—Deep learning (DL) aims at learning the mean-
ingful representations. A meaningful representation gives rise
to significant performance improvement of associated machine
learning (ML) tasks by replacing the raw data as the input.
However, optimal architecture design and model parameter
estimation in DL algorithms are widely considered to be
intractable. Evolutionary algorithms are much preferable for
complex and nonconvex problems due to its inherent characteris-
tics of gradient-free and insensitivity to the local optimal. In this
paper, we propose a computationally economical algorithm for
evolving unsupervised deep neural networks to efficiently learn
meaningful representations, which is very suitable in the cur-
rent big data era where sufficient labeled data for training is
often expensive to acquire. In the proposed algorithm, finding
an appropriate architecture and the initialized parameter values
for an ML task at hand is modeled by one computational effi-
cient gene encoding approach, which is employed to effectively
model the task with a large number of parameters. In addition, a
local search strategy is incorporated to facilitate the exploitation
search for further improving the performance. Furthermore, a
small proportion labeled data is utilized during evolution search
to guarantee the learned representations to be meaningful. The
performance of the proposed algorithm has been thoroughly
investigated over classification tasks. Specifically, error classifi-
cation rate on MNIST with 1.15% is reached by the proposed
algorithm consistently, which is considered a very promising
result against state-of-the-art unsupervised DL algorithms.

Index Terms—Deep learning (DL), evolutionary algorithm
(EA), evolving neural networks, neural networks, representation
learning.

Manuscript received September 18, 2017; revised December 19, 2017;
accepted February 20, 2018. Date of publication February 22, 2018; date
of current version January 28, 2019. This work was supported in part by the
China Scholarship Council under Grant 201506240048, in part by the Miaozi
Project in Science and Technology Innovation Program of Sichuan Province
under Grant 16-YCG061, China, in part by the National Natural Science
Foundation of China for Distinguished Young Scholar under Grant 61622504,
and in part by the National Natural Science Foundation of China under Grant
61432012 and Grant U1435213. (Corresponding author: Gary G. Yen.)

Y. Sun is with the College of Computer Science, Sichuan University,
Chengdu 610065, China, and also with the School of Engineering and
Computer Science, Victoria University of Wellington, Wellington 6140,
New Zealand (e-mail: yanan.sun@ecs.vuw.ac.nz).

G. G. Yen is with the School of Electrical and Computer Engineering,
Oklahoma State University, Stillwater, OK 74075 USA (e-mail:
gyen@okstate.edu).

Z. Yi is with the College of Computer Science, Sichuan University, Chengdu
610065, China (e-mail: zhangyi@scu.edu.cn).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org provided by the author.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2018.2808689

I. INTRODUCTION

DEEP learning (DL) algorithm, which is materialized by
deep neural networks (DNNs) for learning meaningful

representations [1], is a very hot research area during recent
years [2]–[4]. Meaningful representation refers to the outcome
of the raw input data that goes through multiple nonlinear
transformations in the DNNs, and the outcome could remark-
ably enhance the performance of the subsequent machine
learning (ML) tasks. The hyper-parameter settings and param-
eter values in DNNs are substantially interrelated to the
performance of DL algorithms. Specifically, hyper-parameters
(such as the size of weights, types of nonlinear activation func-
tions, a priori term types, and coefficient values) refer to the
parameters that are needed to be assigned prior to training the
models, and parameter values refer to the element values of
the weights and are determined during the training phase. Due
to the deficiencies of the current optimization techniques for
searching for optimal hyper-parameter settings and parameter
values, the power of DL algorithms cannot be shown fully.
To this end, an effective and efficient approach concerning
the hyper-parameter settings and parameter values has been
proposed in this paper.

A. Meaningful Representations

Typically, arbitrary DNNs can generate/learn deep represen-
tations (DRs). However, DRs are not necessarily meaningful,
i.e., it is not true that all DRs contributed to the promis-
ing performance when they replace the raw data to be fed
to ML algorithms (e.g., classification). In fact, DRs are the
outcomes which have gone through nonlinear transformations
from input data more than once [5], and are inspired by the
mammalian hierarchical visual pathway [6]. Mathematically,
the representations of the input data X ∈ R

m are formulated by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R1 = f1(W1X)

R2 = f2(W2R1)

· · ·
Rn = fn(WnRn−1)

R = Rn

(1)

where f1, . . . , fn denote a set of element-wise nonlinear acti-
vation functions, W1, . . . , Wn refer to a series of connection
weights, and R1, R2, . . . , Rn are the learned representations
(output) at the depth/layer 1, 2, . . . , and n, among which
R = {Ri|2 ≤ i ≤ n} refers to the DRs. In addition, Fig. 1
shows the flowchart of DR learning and its role in ML tasks
in a general case.

1089-778X c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6374-1429
https://orcid.org/0000-0001-8851-5348

90 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 1, FEBRUARY 2019

Fig. 1. Example to illustrate a general flowchart of DR learning and its
relationship to ML tasks.

Obviously, multiple different DRs can be learned by vary-
ing n in (1), while we only pay attention to the ones that
give the highest performance of the associated ML tasks.
Based on literature reviews [7]–[9], these DRs are often called
meaningful representations. Assuming Rj are the meaning-
ful representations, it is obvious that the hyper-parameter
settings (e.g., the number of layers, j, and the chosen activa-
tion function types of f1, . . . , fj) and parameter values (e.g.,
the values of each element in {W1, . . . , Wj}) would highly
reflect the learned Rj to be meaningful or not. To this end,
the back-propagation (BP) algorithm [10] which relies on
the gradient information is the widely employed algorithm
in training parameter values. However, its performance is
highly affected by the initialized setting due to its local search
characteristics that could be easily trapped into local min-
ima [11]. Although multiple implementations based on BP,
such as stochastic gradient descent (SGD), AdaGrad [12],
RMSProp [13], and AdaDelta [14], have been presented to
expectedly reduce the adverse impact of easily trapping into
local minima, extra hyper-parameters (such as the initialization
values of momentums and the balance factors) are introduced
and also needed to be carefully tuned in advance. Furthermore,
multiple algorithms [15], [16] have been proposed for opti-
mizing the hyper-parameters, but they often require domain
knowledge and are problem-dependent. To this end, the grid
search method keeping its dominant position in selecting rea-
sonable hyper-parameters was proposed [17]. However, the
grid search method is an exhaustive approach, and would fre-
quently miss the best hyper-parameter combinations when the
hyper-parameters are continuous numbers.

B. Deep Neural Networks

According to [18] and [19], DL algorithms mainly include
convolutional neural networks (CNNs), deep belief networks
(DBNs), and stacked auto-encoders (AEs). Specifically, CNNs
are supervised algorithms for DL, and their numerous vari-
ants have been developed for various real-world applica-
tions [20]–[25]. Although these CNN algorithms have shown
promising performance in some tasks, sufficient labeled train-
ing data, which is a must for successfully training them, are not
easy to acquire. For example in the ImageNet benchmark [27],
there are 109 pictures that can be easily downloaded from
the Google and Yahoo websites. It was reported that 48 940
workers from 167 countries are employed to label these pho-
tographs. Therefore, the unsupervised NN approaches whose
training processes rely solely on unlabeled data become prefer-
able in this situation. DBNs [28] and stacked AEs [29], [30]
are the mainly unsupervised DL algorithms [18], [19] for
learning meaningful representations. Because of the unknown

in training data targets during their training phase, learned rep-
resentations from them are not necessarily to be meaningful.
Therefore, a priori knowledge is needed to be incorporated
into their training phase. For example, DBNs and stacked
AEs trained with the sparsity constraint a priori with benefits
of sparse coding [31] have been proposed in [32] and [33].
Furthermore, denoising AEs (DAEs) [34] have been proposed
by artificially adding noise priori to input data for improving
the ability to learn meaningful representations. In addition,
Rifai et al. [35] have presented contractive AEs by introduc-
ing the term, which is the derivation of representations with
respect to input data, for reducing the sensitivity a priori of
representations.

C. Evolutionary Algorithms for NNs

EAs are one class of population-based meta-heuristic
optimization paradigms, and are motivated by the metaphors of
biological evolution. During the period of evolution, individu-
als interact with each other and the beneficial traits are passed
down to facilitate population adapting to the environment.
Due to the nature of gradient-free and insensitivity to local
optima, EAs are preferred in various problem domains [36].
Therefore, they have been extensively employed in optimiz-
ing NNs, which refers to the discipline of neuroevolution,
such as for the connection weight optimization [37]–[39],
the architecture setting [40]–[42] (more examples can be
found in [36]). Generally, these algorithms employ direct or
indirect methods to encode the optimized problems for the
evolution. To be specific, each parameter in the connection
weights is encoded by the binary numbers [37] or a real
number [43] in the direct methods, which are effective for
the small-scale problems. However, when they are used to
encode the problems with a large number of parameters in con-
nection weights, such as for processing the high-dimensional
data, these methods become impractical due to the excessive
length of the genotype explicitly representing each parame-
ter no matter if coded in binary or real. To this purpose,
Stanley and Miikkulainen [44] have proposed the indirect-
based neural evolution augmenting topologies (NEAT) method
for encoding connection weights and architectures with vary-
ing lengths of chromosomes. Because NEAT employs one unit
to denote combinational information of one connection in the
evolved NN, it still cannot effectively solve DNNs where a
large number of parameters exist. To this end, an improved
version of NEAT (i.e., HyperNEAT) was proposed in [45] in
which connection weights were evolved by composing dif-
ferent points in a fixed coordinate system with a series of
predefined nonlinear functions. Although the indirect meth-
ods can reduce the length of the genotype representation, they
limit the generalization of the neural networks and the feasible
architecture space [36]. In 2015, Gong et al. [46] proposed a
bi-objective EA by using differential evolution [47] to con-
currently consider the reconstruction error and sparsity of the
AE, and chose the optimal sparsity from the knee area of
the Pareto front. Recently, Liu et al. [48] presented a neu-
ral network connection pruning method by a multiobjective
EA to simultaneously consider the representation ability and
the sparse measurement. Google [49] proposed their work on
evolving CNNs for image classifications with a direct manner

SUN et al.: EUDNNs FOR LEARNING MEANINGFUL REPRESENTATIONS 91

over 250 high performance servers for more than 400 h. In this
regard, the evolutionary approaches would surely be capable
of evolving DNNs, although the computational resource is not
necessarily available to all interested researchers.

D. Contributions

Based on the above investigations upon prospects of unsu-
pervised DNNs for learning meaningful representations and
the EAs in evolving DNNs, an effective and efficient approach
named evolving unsupervised DNNs (EUDNN) for learning
meaningful representation through EUDNNs, exactly evolving
the building blocks of unsupervised DNNs, has been proposed
in this paper. In summary, the contributions of this paper are
documented as follows.

1) A computationally efficient gene encoding scheme of
evolutionary approaches has been suggested, which
is capable of evolving DNNs with a large number
of parameters for addressing high-dimensional data
with limited computational resources. With this design,
the proposed algorithm can be smoothly implemented
in academic environments with limited computational
resources.

2) A fitness evaluation strategy has been employed to
drive the unsupervised models toward usefulness in
advance, which can drive the learned representations to
be meaningful without any carefully designed a priori
knowledge.

3) DNNs with a large number of parameters involve a
large-scale global optimization problem. As a result,
the sole evolutionary scheme cannot generate the best
results. To this end, the utilization of a local search strat-
egy is proposed to be incorporated into the proposed
algorithm to guarantee the desired performance.

E. Organization

The remaining of this paper is organized as follows. First,
related works and motivations of the proposed EUDNN are
illustrated in Section II. Next, the details and discussion of
the proposed algorithm are presented in Section III. To eval-
uate the performance, a series of experiments are performed
by the proposed algorithm against selected peer competitors
and the results measured by the chosen performance metric
are analyzed in Section IV. Finally, the conclusion and future
work are drawn in Section V.

II. RELATED WORKS AND MOTIVATIONS

We will detail the unsupervised DL models that motive
our work in this paper, highlight their deficiencies in learn-
ing meaningful representations, and rationalize our motivations
in Section II-A. With this same detailed manner, the EAs
which demonstrate the potential for evolving DNNs will be
documented in Section II-B.

A. Unsupervised Deep Learning Models

In this section, the unsupervised DL models are reviewed
first [Section II-A1)]. Then, their building blocks are intro-
duced [Section II-A2)]. Next, the mechanisms guaranteeing

(a)

(b)

Fig. 2. Training process of unsupervised DNNs. (a) Pretraining. (b) Fine-
tuning.

Fig. 3. Example of unsupervised DNN unit model.

the learned representations to be meaningful are formulated
and commented [Section II-A3)]. Finally, the motivations of
the proposed algorithm in reducing the adverse impact of their
deficiencies are elaborated [Section II-A4)].

1) Unsupervised DL models cover DBNs [28] and variants
of stacked AEs (i.e., stacked sparse AEs (SAEs) [32],
[33], stacked DAEs [34], and stacked contract AEs
(CAEs) [35]). Moreover, the building block of DBNs
is a restricted Boltzmann machine (RBM) [50], and that
of stacked AEs is an AE. Furthermore, the parameter
values in DBNs and stacked AEs are optimized by the
greedy layer-wise training method, which is composed
of two phases [51]: a) pretraining and b) fine-tuning.
Conveniently, Fig. 2(a) depicts the pretraining phase,
where a set of three-layer (the input layer, the hidden
layer, and the output layer) NNs with varying numbers of
units are individually trained by minimizing reconstruc-
tion errors. In the fine-tuning phase which is illustrated
by Fig. 2(b), these hidden layers are first sequentially
stacked together with the parameter values trained in
the pretraining phase, then a classification layer (i.e.,
the classifier) is added to the tail to perform the fine-
tuning by optimizing the corresponding loss function
determined by the particular task at hand.

2) Unsupervised DL algorithms are considerably preferred
mainly due to their requirements upon fewer labeled data
especially in the current big data era.1 However, a major
issue of training these models is how to guarantee the
learned representations to be meaningful. Specifically
in the pretraining phase for training one NN unit (see
Fig. 3 as an example), let X ∈ Rn denote the input data,
W ∈ Rn×k denote the connection weight matrix from the

1Even data is abundant in the big data era, most raw data collected is
unlabeled for a classification task, e.g., the ImageNet classification benchmark
that has been discussed in Section I.

92 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 1, FEBRUARY 2019

input layer to the hidden layer, while W ′ ∈ Rk×n denote
the connection weight matrix from the hidden layer to
the output layer. The NN unit is trying to minimize the
reconstruction error L between the input data X and the
output data X′ by2

⎧
⎨

⎩

R = f (WX)

X′ = f (W ′R)

L = l(X, X′).
(2)

In (2), R denotes the learned representations (i.e., the
output of the hidden layer), f denotes the activation
function, and l denotes the function to measure the
differences between X and X′.

3) It is obvious that the learned representations R are not
necessarily meaningful only by minimizing L due to no
information of the associated classification task existing
in this phase and arbitrary R will lead to a minimal L,
while R is meaningful only when they could improve
the performance of the associated classification task. To
this end, literature have presented unsupervised DL algo-
rithms with different a priori knowledge [31], [33]–[35]
which is denoted as �, and then the reconstruction error
is transformed to L = l(X, X′) + λ�, where λ denotes
a balance factor to determine the weight of the associ-
ated a priori term. Although a prior knowledge would
help the learned representations to be meaningful, major
issues remain.

a) The prior knowledge is designed with different
assumptions, which do not necessarily satisfy the
current situations.

b) The prior knowledge is presented specifically
for general tasks, while it is hopeful that the
performance would be improved on particular
tasks.

c) It is difficult to choose the most suitable a priori
term for the current task.

d) The balance factor λ is a hyper-parameter whose
value is not easily to be assigned [35].

4) Considering this problem, the method that has been
developed in our previous work [9] is employed in this
proposed algorithm. To be specific, a small proportion of
labeled data is employed during the fitness evaluation of
EAs, and the learned representations are directly quan-
tified based on the classification task that is employed
in the fine-tuning phase. With the environmental selec-
tion in EAs, individuals that have the positive effect on
the classification task survive into the current genera-
tion and are expected to generate offspring with better
performance in the next generation, which ultimately
leads to the learned representations to be meaningful.
Because the employed labeled data can be injected from
the fine-tuning phase, and the classification task is the
same as that in the fine-tuning phase, this strategy for
learning meaningful representations would not introduce
extra cost.

2Bias terms, which are another kind of connection weights widely existing
in NNs, are incorporated into W and W ′ here for simplicity.

B. Evolutionary Algorithms for Evolving Neural Networks

Although multiple related literature for evolving NNs have
been mentioned in Section I, only the works in [44] and [45]
(i.e., the NEAT and the HyperNEAT) will be concerned here
because our proposed algorithm aims at evolving deep NNs.3

In the following, the details of NEAT, as well as HyperNEAT
and their deficiencies in evolving DNNs are documented in
Sections II-B1) and II-B2), respectively. Combined with the
challenge of EAs in evolving DNNs, i.e., the upper bound
encoding problem, the motivations of the proposed EUDNN
are presented in Section II-B3). In addition, another challenge,
i.e., EAs cannot fully solve the optimization problems with a
large number of parameters, and the corresponding motivations
are given in Section II-B3).

1) The NEAT [44] has been proposed with an indirect
method for adaptively increasing the complexity of the
evolved NNs. Specifically, two types of genes, i.e., the
node genes and the connection genes, exist in the NEAT.
The node genes, which are used to represent all the units
of the evolved NN, are encoded with the type of the
unit (i.e., the input unit, the hidden unit, or the out-
put unit) and one identification number. The connection
genes that are employed to denote the connection infor-
mation between the node genes, and one node gene is
encoded with five elements (the numbers of the input
and output units, the value of the connection, one bit
indicating whether the connection is activated or not,
and one innovation number which records the index of
the connection gene with an increased manner). During
the evolution process, the individuals are first initialized
only with the input and output units of the network,
and the random connections between these units. Then,
individuals are recombined and mutated. To be specific,
there are two types of mutations including the con-
nection mutations and the node mutations. When the
connection mutations occur, one connection gene will be
added to the list of the connection genes to denote that
a pair of node genes is connected. While for the node
mutations, one hidden node is generated, then the corre-
sponding connection gene is created to split one existed
connection into two parts. Although the NEAT is flexi-
ble to evolve NNs, a deterministic number of the output
is required, which is impractical in the DL. Furthermore,
due to each connection and unit in NEAT are explicitly
encoded, it is not suitable for evolving DNNs that often
have a large number connections and units. For remedy-
ing this deficiency regarding the incapacity of evolving
DNNs, the connective compositional pattern producing
networks (CPNN) [45], [52] has been presented and led
to the HyperNEAT.

2) The HyperNEAT has been proposed by combining the
NEAT with the CPNN encoding scheme. Particularly,
the CPNN employs one low-dimensional coordinate

3The works in [36]–[42] were proposed two decades ago and cannot be
applied for DNNs, the work in [48] concerned only the weight pruning, and
the work in [49] employed a direct way for evolving and did not have a
general meaning.

SUN et al.: EUDNNs FOR LEARNING MEANINGFUL REPRESENTATIONS 93

system to generate connections for the NEAT by a list
of predefined nonlinear functions. To be specific, any
point in the coordinate system is picked up, and then
fed into a series of compositional functions from the
list to complete the transformation from the genotype
to the phenotype. Because any number of points can be
selected from the low-dimensional coordinate system,
numerous connections would be represented with a low
computational cost. In this regard, the HyperNEAT has
the most potential for evolving a DNN, while the size of
the output still needs to be set in advance, which faces
the same problem to NEAT in practice. Furthermore,
all the values of the connections in the HyperNEAT are
generated by the genetic operators during the evolution,
which cannot guarantee the best performance in evolv-
ing a DNN due to the nature of the large-scale global
problem. In addition, the recurrent connections or the
connections between the same layers are involved in
this algorithm, which is also not suitable for learning
compact meaningful representations.

3) As we have discussed in Section I, the performance of
DL algorithms is highly affected by the hyper-parameter
settings and the parameter values. In the pretraining
phases, one of the key hyper-parameters is the size of
hidden layers. One problem would be naturally raised
when EA approaches are employed to search for the
sizes, that is how we can ensure the upper bound of
the hidden layer sizes given a fixed-length gene encod-
ing strategy. Although the indirect encoding scheme can
alleviate this situation somewhat, it limits the general-
ization of the evolved NNs and the feasible architecture
space [37]. On the other hand, if we employ a larger
number as the upper bound, it is difficult to deter-
mine how large it is reasonable because too large a
number would consume more computational resources,
otherwise deteriorate the model performance. Excitingly,
Yang et al. [53] have mathematically pointed out that
the meaningful representations of the input data lie at
its original space. Supposed that the input data is with
n dimension, the size of the associated hidden layer
should be no more than n. Furthermore, we know that
n orthogonal n-dimensional basis vectors are sufficient
to span a n-dimensional space based on Theorem 1.
Consequently, we only need to compute one basis r1 of
n-dimensional space, and the other (n−1) n-dimensional
basis vectors can be explicitly computed by (3) to find
the null space.4 To this end, we can efficiently model
the problem with n2 parameters by employing a genetic
algorithm (GA) to explicitly encode about n parame-
ters, which is a computational efficient gene encoding
approach.
Theorem 1: A set of orthogonal vectors bi ∈ Rn (i =
1, . . . , n) is sufficient to span the space S ∈ Rn

null space(r1) =
{
x ∈ Rn|r1x = 0

}
. (3)

4Theoretically, multiple solutions could be found in computing the bases
of the null space. In practice, we only accept the orthonormal basis for the
corresponding null space obtained from the singular value decomposition.

4) Here, we would point out another challenge to inspire
our motivation for evolving DNNs by employing GAs.
In our proposed algorithm, the computationally efficient
gene encoding strategy mentioned above is employed
to model unsupervised DNNs where a large number of
parameters exist. Although the length of the encoded
parameters has been reduced appreciably in this regard,
the number of the parameters in the original prob-
lems remains constant no matter what encoding method
is employed. In fact, the effects of one gene in the
employed encoding strategy is equivalent to that of
multiple parameters in the original problems. For exam-
ple, for an NN which has 100 000 parameters, only 1000
genes are employed by the computationally efficient
gene encoding strategy proposed herein. As a result,
one gene represents 100 parameters in average, and if
one gene is changed with the crossover and mutation
operators, it will involve the changes of 100 parame-
ters. Moreover, it is well known that performances of
EAs are guaranteed by their exploration search (given
by mutation operators) and exploitation search (given by
crossover operators) which introduce the global search
and local search abilities, respectively. Because a slight
change of one gene in the proposed algorithm will lead
to the changes of many parameters which affect the
global behavior, it can be viewed as that EAs lack of
the local search from the problem to be solved. In addi-
tion, the data which are processed by DL algorithms is
common with high dimension, which leads to a large
number of decision variables in the encoded chromo-
somes of EAs, although our employed encoding strategy
has saved much space compared to existing approaches.
Extensive experiments have quantified that EAs are dif-
ficult to reach the best performance upon the problems
with high input dimensions. To address this issue, we
incorporate a local search strategy into the proposed
algorithm for assuring the desirable performance.

In summary, the difficulties of deep unsupervised NNs for
learning meaningful representations and EAs for evolving
DNNs have been clarified first, and then addressed by our
motivations in this section. In the next section, the technical
details will be implemented based on these motivations.

III. PROPOSED ALGORITHM

In this section, the details of the proposed EUDNN are
presented. To be specific, the framework which is composed
of two distinct stages is depicted at first (Section III-A).
Next the specifics of each stage are elaborated, respec-
tively (Sections III-B and III-C). Furthermore, the over-fitting
problem preventing mechanism of EUDNN and the signif-
icant differences against its peer competitor are discussed
(Section III-D).

A. Framework of EUDNN

In this section, the framework of the proposed EUDNN is
presented. For convenience of the development, it is assum-
ing that the learned representations are for a classification

94 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 1, FEBRUARY 2019

Fig. 4. Flowchart of the proposed algorithm that is composed of two distinct stages. Especially, the first stage is for finding optimal architectures as well as
desirable initializations of the connection weight parameter values. The second stage is to fine-tune them for a potentially better performance.

Algorithm 1: Framework of the Proposed EUDNN
Input: Training data Dtrain; maximum number p of

layers; classifier C(·); test data Dtest.
Output: Predicted labels of Dtest.

1 i← 0;
2 while i < p do
3 i← i+ 1;
4 Wj, fj(·)← Obtain the optimal connection weight and

the corresponding activation function via evolving;
5 end
6 Fine-tune all the connection weights W1, · · · , Wp;
7 Ytest = C(fp(Wp × · · · f2(W2 × f1(W1 × Dtest))));
8 Return Ytest.

task in which the meaningful representations can improve its
performance in term of a higher correct classification rate
(CCR) (the CCR upon the training data is collected during
the training/optimization phase, and that upon the test data
during the test/experimental phase). Moreover, given a set of
data D in this classification task, a portion of D which is
denoted by Dtrain = {(x1, y1), . . . , (xk, yk)} is considered as
the training data in which xi denotes the input data and yi is
the corresponding label, while the remaining data is regarded
as the test data Dtest for checking whether the learned repre-
sentations are meaningful. Furthermore, the flowchart of the
proposed EUDNN is illustrated in Fig. 4, which clearly shows
the two stages of the design.

1) Finding the optimal architectures in DNNs, the desirable
initialization of connection weight, and the activation
functions (pretraining).

2) Fine-tuning all of the parameter values in connection
weights from the desirable initialization.

To this end, one genetic approach with an efficient strategy
introduced in Section II-B is employed to encode the potential
architectures and the associated large numbers of parameters
in connection weights by a set of individuals, and then the EA
is utilized to evolve and select the individual who has the best
performance based on the fitness measures. For warranting the
learned representations being meaningful, the method intro-
duced in Section II-A is employed, i.e., a small part of data
Df from Dtrain is randomly selected, and the representations of

Df are learned based on the models encoded by the individu-
als, then they are fed with the associated classification task to
select the ones which give the higher CCR for evolution. Based
on the investigations in Section II-B, a fine-tuning approach
additionally, which introduces the exploitation local search, is
utilized in the second stage to archive the best performance
ever found, which complements with the exploration global
search in the first stage. In summary, these two stages col-
lectively ensure the learned representations to be meaningful
through unsupervised DNNs.

In addition, the framework of the proposed EUDNN is
presented in Algorithm 1. Specifically, lines 2–5 describe the
first stage, while line 6 defines the second stage. Finally, the
predicted labels of the test data are calculated and returned
in lines 7 and 8. Next, the details of these two stages are
documented, respectively.

B. Obtaining Optimal Connection Weights and Activation
Functions via Evolving

The process of obtaining all the optimal connection
weights and their corresponding activation functions contains
a series of repeated subprocesses. In this section, we first in
Algorithm 2 propose how to obtain one optimal connection
weight and its activation function. Then, the entire process is
described.

To be specific in Algorithm 2, m individuals that encode
the information of potential optimal connection weights and
their corresponding activation functions are initialized first
(line 1). Then, the evolution takes effect (lines 2–8) until the
stopping conditions, such as exceeding the maximum gener-
ations, are met. During each generation, the fitness of all the
individuals are evaluated first (line 3). Next, new offspring
are generated with the probability ρ, and their parents are
selected from P with the binary tournament selection (line 4).
Then, all the offspring in Q are mutated with the probability
μ (line 5). Furthermore, lines 6 and 7 describe the environ-
mental selection in which the best individual is preserved first
for the elitism, then m − 1 individuals are selected from the
remaining solutions in P ∪ Q with binary tournament selec-
tion. Specifically, two individuals are randomly selected from
(P∪Q)\S first. Then the one with better CCR is chosen, and
the other is put back. With the same process, this operation is
repeated m− 1 times.

SUN et al.: EUDNNs FOR LEARNING MEANINGFUL REPRESENTATIONS 95

Algorithm 2: Obtain the Optimal Connection Weight and
Activation Function

Input: Input data; size of population m; probability of
crossover ρ; probability of mutation μ.

Output: Optimal connection weight W; activation
function f (·).

1 Initialize the population P with the size m;
2 while stopping criteria are not satisfied do
3 Evaluate the fitness of individuals in P;
4 Q← Generate new offspring with the probability ρ

from two parents selected with binary tournament
selection;

5 Q← Mutate all the individuals in Q with the
probability μ;

6 S← Select the individual with the best fitness from
P ∪ Q;

7 P← S ∪ Select (m− 1) individuals from (P ∪Q) \ S
with binary tournament selection;

8 end
9 Evaluate the fitness of the individuals in P;

10 indbest ← Select the individual with the best fitness from
P;

11 Return W and f (·) represented by indbest.

When the evolution terminates, the best solution is selected
from the current population for transforming the optimal con-
nection weight and the activation function (lines 9 and 10).
Next, the details of the employed gene encoding strategy will
be discussed, although its fundamental principles have been
documented in Section II-B. It has been pointed out in [53]
that the potential connection weight for obtaining the mean-
ingful representations likely lies in a subspace of the original
space. As a consequence, the search for the optimal connec-
tion weight can be constrained in the space of input data.
Specifically, it is assuming that the input data is n-dimensional.
First, a set of basis S = [s1, . . . , sn] which can span a n-
dimensional space is given, e.g., any n linear independent
n-dimensional vectors. Then the vector a1 is linearly com-
bined by the bases in S with the coefficients b = [b1, . . . , bn]
that are randomly specified. Next, the orthogonal comple-
ments {a2, . . . , an} of a1 are computed by (3). It is obvious
that {a1, a2, . . . , an} are capable of spanning the space of
input data. Finally, a part of these bases, which span a sub-
space of the original space, are selected for constructing the
optimal connection weight by a binary encoded string indicat-
ing whether the corresponding basis is available. Furthermore,
the corresponding activation function is also encoded into
the chromosome. Specifically, a list of selected activation
functions with different nonlinear capacities is given, then
their indexes in this list are chosen to indicate which one is
selected. Moreover, Fig. 5 is provided to intuitively illustrate
our intention on efficiently encoding the connection weight
and activation function. When the optimal connection weight
Wi and its corresponding activation function fi are found for
the ith layer with Algorithm 2, then that for the (i + 1)th
layer can be optimized with the same algorithm by setting

Fig. 5. Flowchart describes the process of encoding the potential connection
weight and activation function. First, a set of basis vectors S is given in the
original space with n-dimension. Then, a set of coefficients b is generated
to represent the vector a1 by linear combining the basis vectors. Then, the
orthogonal complements {a2, . . . , an} of a1 are computed. Finally, all the
information of computing a1, indicating whether the basis from {a2, . . . , an}
is selected, and the activation functions are encoded into the chromosomes
that are used to evolve to obtain the optimal connection weight and activation
function.

the input data as fi(Wi × Ri), where Ri denote the representa-
tions at the ith layer. In the employed gene encoding approach,
each coefficient of b is represented with nine bits in which
the leftmost bit denotes the positive or negative of the coef-
ficient. Then, one bit is used to indicate whether the basis aj

(j ∈ [2, . . . , n]) is selected for the connection weight. Finally,
two bits are utilized to represent the activation function. In
addition to the well-adopted sigmoid and hyperbolic tangent
functions, rectifier function [54], which is reported recently to
have a superior performance in some applications, is also con-
sidered as one candidate. As a consequence, one chromosome
needs 10n+1 bits for the n-dimensional input data. If the real
number encoding method is employed here, a multiple of eight
memory space would be taken, which is the major reason that
the proposed EUDNN employs the binary encoding method
being a contribution to the so claimed computational efficient
gene encoding strategy.

Furthermore, the linear support vector machine (SVM) [55]
is employed for evaluating the quality of individuals due to
its promising computational efficiency and its linear nature
for better discriminating power whether the learned repre-
sentations are meaningful or not. Next, we will give the
details of the fitness evaluation by using SVM based on
the design principle described in Section II-A4). For conve-
nience of the development, let Dtrain = {Xtrain, Ytrain} denote
the training set, where Xtrain are the data and Ytrain are
the corresponding labels, and the selected individual for fit-
ness evaluation is denoted by indi. First, a small fraction of
data denoted by Deval = {Xeval, Yeval} is randomly selected
from Dtrain. Second, the corresponding model is transformed
from the encoded individual indi. Third, the representations
(denoted by Feval) of Xeval are calculated based on the formu-
las in (1). Fourth, {Feval, Yeval} are fed to SVM and the CCR
on Xeval is estimated. Finally, the CCR is used as the fitness
of indi.

C. Fine-Tuning Connection Weights

To further improve the performance, an exploitation mecha-
nism implemented by local search strategy is incorporated into

96 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 1, FEBRUARY 2019

Fig. 6. Flowchart of the second stage in the proposed EUDNN. Especially, the predicted label is computed with the connection weights and activation
functions for the input data. Then the loss of the classifier is formulated between the predicted label and the true label. Next, the error is back propagated
and the parameter values of the connection weights are updated.

the second stage to fine-tune parameter values in connection
weights. In this stage, the architecture is fixed with the evolved
activation functions and the initialization values of the connec-
tion weights, and then a local search method is used to tune the
connection weights further. Fig. 6 shows an example of this
process. Specifically, when all the connection weights and acti-
vation functions have been optimized in the first stage, all the
hidden layers are connected to a list based on their orders in
the first stage by adding one input layer at the top of this list.
Then, the connection weights in this list are initialized with the
values confirmed in the first stage. Finally, a classifier is added
to the tail of this list to perform the fine-tuning process. Note
here that the BP algorithm is employed for the fine-tuning.
Actually, any local search algorithm can be used in the second
stage. The reasons for employing BP are largely due to two
aspects.

1) The gradient information in the loss function is always
analytical and the BP that is based on the gradient is
naturally employed in most designs.

2) Multiple libraries of BP have been implemented for
accelerating the computation with the graphics process-
ing units and the computational cost can be reduced
remarkably, especially in the situations of processing
high-dimensional data.

Furthermore, when the rectifier activation function that is not
differentiable at the point 0 is selected, the value 0 is assigned
according to the convention of the community [56].

D. Discussion

In this section, we mainly discuss the over-fitting problem
preventing mechanism utilized by the proposed EUDNN,
and the significant differences of the proposed EUDNN
against the direct evolutionary feature extraction algorithm
(DEFE) [57] that employs a similar gene encoding strategy
to EUDNN.

The over-fitting problem implies the poor generalization
ability of models, i.e., the trained model reaches a better CCR
upon training data at the cost of a worsen CCR upon test
data. Because the goal in training a classification model is for
obtaining a higher CCR upon test data, the over-fitting problem
should be prevented by some mechanisms. Commonly, given
a number of models which are all capable of solving a par-
ticular classification task, the model with a smaller Vapnik

Fig. 7. CCRs of training data and test data as training process continues.

Chervonenkis (VC) dimension5 [7] usually has a better gen-
eralization ability, which does not lead to an over-fitting
problem. Because the number of parameters is positive to the
value of a VC dimension, and DNN architectures are gener-
ally with the numerous number of parameters, the over-fitting
problem easily occurs in these models.

More specifically, Fig. 7 illustrates a typical instance in CCR
on training data (red curve) and CCR of checking on test data
(green curve) as the training process continues. Especially,
CCR on both data are continuously growing until the time
t1, and CCR on the training data continues to increase while
CCR on the test data begins to drop when the training time
is greater than t1, which obviously indicates the presence of
an over-fitting problem. As we have claimed that the best
performance of the proposed EUDNN cannot be guaranteed
during the training in the first stage, and the second stage is
introduced to expectedly help the proposed EUDNN arrive at
the best performance. To this end, it is concluded that the over-
fitting problem will not occur in the first stage of the proposed
EUDNN (because the first stage terminates prior to the time
t1, while the over-fitting problem might occur after the time
t1), but may occur in the second stage. Consequently, some
rules need to be utilized to prevent this problem only in the
second stage. Here, the “early stop” approach is utilized for
this purpose, i.e., a group of data Dvalidate is uniformly selected
from Dtrain as the validate data to replace the checking upon
test data in Fig. 7, when we first observe the CCR of vali-
date data begins to decrease while the CCR of training is still
increasing (i.e., the particular time t1 is found), the fine-tuning
in the second stage is terminated and the optimal model that

5Generally, the VC dimension can be viewed as an indicator measuring
the complexity of multiple models which are capable of solving one par-
ticular task [58]. The smaller the VC dimension, the more simplicity is the
corresponding model, and a more simplicity model is with better general-
ization [59]. Commonly, a large number and magnitude of elements in the
transformation matrixes are positive to the VC dimension.

SUN et al.: EUDNNs FOR LEARNING MEANINGFUL REPRESENTATIONS 97

gives the best performance is obtained. Next, the second con-
cern, i.e., the differences between the proposed EUDNN and
the DEFE, will be discussed.

It has been observed that: 1) DEFE learns only linear repre-
sentations and 2) shallow representations of input data. These
two observations cause that DEFE cannot learn the meaning-
ful representations [28]. Next, the details of these conclusions
are discussed. To be specific, the learned representations R
of DEFE can be formulated as R = WX [57], where W is
the transformation matrix (i.e., the connection weight in DNN
models) and X is the input data. It is evident that there is no
nonlinear transformation upon WX. Consequently, only lin-
ear representations would be learned by DEFE, while in the
proposed EUDNN, a list of nonlinear activation functions with
different nonlinear transformation abilities is incorporated into
the evolution for performing nonlinear representation learning.
Furthermore, although multiple transformations like that in the
proposed EUDNN can be implemented by DEFE to learn DRs,
deep linear transformations are equivalent to a one layer linear
representation.

In summary, DEFE cannot be employed for learning mean-
ingful representations due to its linear nature, while the success
of DNNs is mainly caused by the meaningful representations
learned by deep nonlinear transformations, which have been
explicitly implemented by the proposed EUDNN.

IV. EXPERIMENTS

In order to examine the performance of the proposed
EUDNN, experiments based on a set of image classification
benchmarks against selected peer competitors are performed.
During the comparisons, the chosen performance metric con-
siders the CCR on the test data. In the following, the employed
benchmarks are outlined first. Then the chosen peer competi-
tors are reviewed, and the justification for selecting them is
explained further. This is followed by the descriptions of the
performance metric chosen and the specifics of parameter set-
tings employed by these compared algorithms. Finally, the
quantitative as well as the qualitative experimental results are
illustrated and comprehensively analyzed.

A. Benchmark Test Datasets

Benchmarks used by compared algorithms are the hand-
written digits benchmark test dataset MNIST [21], basic
MNIST dataset (MNIST-basic) [60], a rotated version of
MNIST (MNIST-rot) [60], MNIST with random noise back-
ground (MNIST-back-rand) [60], MNIST with random image
background (MNIST-back-image) [60], MNIST-rot with ran-
dom image background (MNIST-rot-back-image) [60], tall and
wide rectangles dataset (Rectangles) [60], rectangles dataset
with random image background (Rectangles-image) [60], con-
vex sets recognition dataset (Convex) [60], and the gray
version of Canadian Institute for Advanced Research object
recognition dataset [61] (Cifar10-bw) over ten classes, i.e.,
airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck.

Briefly, these benchmark test datasets are categorized into
three different classes based on the object types that they
intend to recognize. The first one is about the hand-written

Fig. 8. Group of digit samples (0–9) from the MNIST benchmark test dataset.

TABLE I
CONFIGURATIONS OF THE CHOSEN BENCHMARK DATASETS

digits and covers the MNIST, MNIST-basic, MNIST-rot,
MNIST-back-rand, MNIST-back-image, and MNIST-rot-back-
image benchmarks. Examples from the MNIST benchmark are
depicted in Fig. 8 for reference. The second one is to clas-
sify the geometries and the rectangles, such as the Rectangles,
Rectangles-image, and the Convex benchmarks. The last one is
to identify the natural objects in Cifar10-bw. Different variants
in MNIST and rectangles datasets present the algorithms dis-
similar difficulties from the aspects of perturbations, the small
number of training dataset, and the large testing dataset size.
Furthermore, the dimensions, number of classes, and the sizes
of training set and test set of the chosen benchmark datasets
are shown in Table I.

B. Performance Metric

Technically speaking, it is difficult to directly evaluate
whether the learned representations are meaningful or not
because they are intermediate outcomes. A general practice
for this is to feed these learned representations to a particu-
lar classification task, and then to investigate the CCR by a
classifier. Commonly, a higher CCR implies that the learned
representations are more meaningful. Because the benchmarks
employed in these experiments are multiclass classification
tasks, the softmax regression classifier [62] is employed here to
measure the corresponding CCR according to the convention
adopted in the community.

It is assumed that a set of training data and their corre-
sponding labels with k distinct integer values are denoted as
{x1, . . . , xm}, and {y1, . . . , ym}, respectively, where xi ∈ Rn

and yi ∈ {1, . . . , k}. To be specific, the label of the sam-
ple xi (i ∈ {1, . . . , m}) is predicted by (4) with the softmax
regression

arg max
j

pj(xi) =
exp

(
θT

j xi

)

∑k
l=1 exp

(
θT

l xi
) (4)

where � = [θ1, . . . , θk]T are obtained by minimizing

J(�) = − 1

m

⎡

⎣
m∑

i=1

k∑

j=1

f (yi, j)log
exp

(
θT

j xi

)

∑k
l=1 exp

(
θT

l xi
)

⎤

⎦

in which f (yi, j) = 1 if yi = j, otherwise f (yi, j) = 0.

98 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 1, FEBRUARY 2019

C. Compared Algorithms

Because of the proposed EUDNN aiming at evolving
unsupervised DNNs for learning meaningful representations,
algorithms related to evolving DNNs (NEAT [44] and
HyperNEAT [45]), unsupervised DNNs (DBNs [51], and vari-
ants of stacked AEs [33]) that have been discussed in Section I
should be all employed as peer competitors. However, the
NEAT and the HyperNEAT cannot be used to learn meaning-
ful representations due to the reasons that have been discussed
in Section I and further analyzed in Section II. As a result,
they are excluded from the selected compared algorithms. To
this end, DBNs and variants of stacked AEs are employed for
performing the comparison experiments. Because RBMs [50]
and AEs [10], [29], [30] are the building blocks to train DBNs
and stacked AEs, respectively, these two types of algorithms
are considered as the peer competitors in our experiments
to compare the performance of the learned representations
against that of the proposed algorithm (i.e., we will evolve
RBMs and AEs as the unsupervised DNN models, which
are named EUDNN/RBM and EUDNN/AE, respectively, to
perform the comparisons against considered peer competi-
tors). Specifically, the variants of AEs, i.e., the SAEs [31],
the DAEs [34], and the CAEs [35], have been proposed with
different regularization terms for learning meaningful repre-
sentations in recent years and also have obtained comparable
performance in multiple tasks. As a consequence, they are
also included as the peer competitors in the experiments, in
addition to the DBNs.

D. Parameter Settings

For a fair comparison, multiple parameters in the second
stage of the proposed EUDNN and the competing ones are
the same. As a consequence, we will first give details of these
generic parameter settings in this section. Then, the particu-
lar parameter settings are individually introduced. Because the
best performance of the compared algorithms often strongly
depends on the particular benchmark dataset and the corre-
sponding parameter settings, in order to do a fair comparison,
we first test these parameters from the range widely used in
the community upon the corresponding training data, then the
best performance upon test data of each compared algorithm
is selected for comparisons.

1) Learning Rate and Batch Size: The SGD algorithm
is chosen as the algorithm to train the SAE, the DAE,
the CAE, and the softmax regression, and its learning rates
as well as the batch sizes vary in {0.0001, 0.001, 0.01, 0.1}
and {10, 100, 200}, respectively, according to the community
convention.

2) Number of Runs and Stop Criteria: All the compared
algorithms are independently performed 30 runs. In addition,
a performance monitor is injected into each epoch in training
the softmax regression to record the best CCR over the test
dataset as the best performance of the algorithm that feeds the
HL learned representations to the softmax regression.

3) Unit Number and Depth: The number of the units for
the SAE, the DAE, the CAE, and the RBM in each layer is set
to be from 200 to 3000 using a log function with an interval

0.5 as recommended by Hinton [63], and the maximum depth
is set to be 5 (this depth is excluded from the input layer, i.e.,
the maximum number of hidden layers).

4) Statistical Significance: The results measured by the
selected performance metric need to be statistically com-
pared due to the heuristic natures of the first stage in the
proposed EUDNN. In these experiments, the Mann–Whitney–
Wilcoxon rank-sum test [64] with a 5% significant level
is employed for this purpose according to the community
convention.

In addition, the sparsity of the SAE, the binary corrupted
level of the DAE, and the coefficient of the contractive term in
the CAE are set to be 10%, 30%, 50%, and 70%, respectively.
Because of the nature of the RBM, the CD-k algorithm [65]
is selected as its training algorithm and k is set to be 1
based on the suggestion in [63]. In order to speed up the
proposed algorithm in the first stage, a proportion (i.e., 20%)
of the training dataset is randomly selected in each gener-
ation for the fitness evaluation. In addition, the connection
weights and the biases are, respectively, set to be between
[−4× 6/

√
nnumber, 4× 6/

√
nnumber] with a uniform sampling

and 0, respectively [66], if required, where nnumber denotes the
total number of the units in two adjacent layers based on the
experiences suggested in [66].

Because parameter settings in the second stage of the
proposed EUDNN are the same as that of the peer competitors,
parameter settings of the evolution related parameters in the
first stage are declared next. Conveniently, one chromosome
in this stage can be divided into three parts.

1) Main basis related coefficients (part 1) which are used
to represent the vector a1 in Fig. 5.

2) Projected space related coefficients (part 2) which are
employed to indicate which bases are selected for the
connection weight.

3) The coefficients (part 3) which denote the type of
activation functions.

Because parts 1 and 2 have strong effects on the qual-
ity of the connection weight, it is hopefully that crossover
operation should be promoted in these two parts for improv-
ing the exploitation local search that provides much better
performance based on the exploration global search. As a
consequence, one point crossover operator is employed in
parts 1 and 2. In addition, three widely used nonlinear acti-
vation functions are considered in the proposed algorithm and
one is to be selected for the corresponding connection weight.
Therefore, it is hopefully that the information representing the
activation function is not modified often since it is hard to
determine which one is the best. Consequently, parts 2 and
3 are considered as one part to participate in the crossover
operation. It is noted here that, when the value in part 3
is invalid, a random one is chosen to reset it. Noting that
the polynomial mutation [67] is used here as the mutation
operator (distribution index is set to be 20). In addition, the
population size is set to be 50. As for the crossover proba-
bility and the mutation probability in the proposed algorithm,
both of them are set to be the same as that of the community
convention (i.e., 0.9 for crossover and 0.1 for mutation). A
proportion of 10% is randomly selected from the training set

SUN et al.: EUDNNs FOR LEARNING MEANINGFUL REPRESENTATIONS 99

TABLE II
CCR OF THE PROPOSED EUDNN (EUDNN/AE AND EUDNN/RBM) UPON MNIST, MNIST-BASIC, MNIST-ROT, MNIST-BACK-RAND,

MNIST-BACK-IMAGE, MNIST-ROT-BACK-IMAGE, RECTANGLES, RECTANGLES-IMAGE, CONVEX, AND CIFAR10-BW BENCHMARKS AGAINST

STACKED DAE, STACKED CAE, SAE, AND THE DBN. BEST MEAN VALUES ARE HIGHLIGHTED IN BOLDFACE. THE SYMBOLS +, −, AND = DENOTE

WHETHER THE PROPOSED ALGORITHM STATISTICALLY ARE BETTER THAN, WORSE THAN, AND EQUAL TO THAT OF THE

CORRESPONDING PEER COMPETITORS, RESPECTIVELY, WITH THE EMPLOYED RANK-SUM TEST

for the fitness evaluation. Codes of the proposed EUDNN can
be made available upon request through the first author.

E. Experimental Results

Based on the motivation of our design, the proposed
EUDNN: 1) employs EA and local search strategy to ensure
the learned representations through DNNs to be meaningful;
2) employs evolutionary approach in the first stage to help the
DNNs find the optimal architectures and the good initialized
weights, which give a better starting position for the second
stage; and 3) employs the local search strategy in the sec-
ond stage to improve the intended performance much further.
Consequently, a series of experiments are carefully crafted to
evaluate the performance of the proposed design.

1) Performance of the Proposed Algorithm: In order
to quantify whether the representations learned by the
proposed EUDNN are meaningful, a series of experiments are
well-designed and comparisons are performed. Specifically,
EUDNN/AE and EUDNN/RBM are two implementations of
the proposed algorithm over the unsupervised neural network
models (i.e., AEs and RBMs, respectively). Then they are used
to learn the representations together with the selected peer
competitors employing the configurations introduced above.
Next, the softmax regression metric is employed to measure
whether the learned representations improve the associated
classification tasks through CCR, which in turn indicates the
learned representations being meaningful or not.

Particularly, the mean values and standard derivations of
CCR resulted by these compared algorithms over 30 indepen-
dent runs are listed in Table II in which the best results over
the same benchmark are highlighted in boldface. In addition,
the symbols “+,” “−,” and “=” denote whether the CCR of
the proposed algorithm upon the corresponding benchmarks
are statistically better than, worse than, and equal to that of the
associated peer competitors, respectively, with the employed
rank-sum test.6 Furthermore, the summarizations, how many
times over the considered benchmarks the proposed EUDNN

6To do this statistically test, we first select the better CCR generated by
EUDNN/AE and EUDNN/RBM with the same benchmark, then the selected
results are used to do the rank-sum test.

are better than, worse than, and equal to the corresponding
peer competitor, are listed in the last row of Table II.

In Table III, the first column shows the names of the chosen
benchmark datasets, the second column provides the corre-
sponding best CCRs obtained, while the third column presents
the numbers of neurons of the deep models (excluding the
classifier layer) with which the best CCRs are reached on
the corresponding benchmark dataset. As we have claimed
in Section IV-D that the maximum number of building blocks
investigated in this paper is set to be five. Therefore, the num-
ber of layers, which include the input layer and hidden layers,
shown in Table III for each benchmark dataset does not exceed
six. For the first row in Table III as an example, it indicates that
the best CCR of 98.85% on the MNIST benchmark dataset is
achieved with only four building blocks where the input layer
is with 784 neurons, and hidden layers are with 400, 202, 106,
and 88 neurons, respectively.

It is clearly shown in Table II7 that the proposed
EUDNN/AE obtains the best mean values upon the
MNIST-rot, the MNIST-rot-back-image, the Convex, and the
Cifar10-bw benchmarks, and the best rank-sum results upon
the MNIST-rot, the Convex, and the Cifar10-bw bench-
marks. Moreover, the proposed EUDNN/RBM wins both
best mean values and rank-sum results upon the MNIST
and the MNIST-back-image benchmarks. Although the best
result of the proposed EUDNN (obtained by the EUDNN/AE)
over the MNIST-basic benchmark is a little worse than
that of the SAE, which is the winner of the best mean
value and rank-sum results, EUDNN/AE outperforms all the
other peer competitors. Furthermore, the SAE obtains the
best mean values upon the MNIST-basic and the MNIST-
back-rand benchmarks, but the best result of the proposed
algorithm (obtained by the EUDNN/AE) is statistically equal
to that of the SAE upon the MNIST-back-rand benchmark,
and also outperforms other competing algorithms. Upon the
Rectangles-image benchmarks, the best result of the proposed
algorithm (obtained by the EUDNN/RBM) is worse than that
of the CAE and the SAE, while the EUDNN/RBM and CAE

7In this paper, the statistical results biases the results generated by the
statistical significance toolkit, i.e., the Mann–Whitney–Wilcoxon rank-sum
test [67] with a 5% significant level.

100 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 1, FEBRUARY 2019

have the same results statistically. In addition, the best results
of the proposed algorithm upon the MNIST-rot-back-image
(obtained by the EUDNN/AE) and the Rectangles (obtained
by the EUDNN/RBM) benchmarks are all statistically equiv-
alent to that of the DBN, while the best mean values upon
these two benchmarks are obtained by the EUDNN/AE and
the EUDNN/RBM, respectively. Note here that the MNIST
is a widely used classification benchmark for quantifying
the performance of DL models, and the best results are
frequently obtained by supervised models, which require suf-
ficient labeled training data during their training phases. To
our best knowledge, the CCR with 98.85% obtained by the
proposed algorithm (EUDNN/RBM), which is an unsuper-
vised approach is a very promising result among unsupervised
DL models. In summary, the proposed algorithm totally wins
34 times over the 40 comparisons against the selected peer
competitors, which reveals the superior performance of the
proposed algorithm in learning meaningful representations
with unsupervised neural network models.

2) Performance Analysis Regarding the First Stage: Since
we have claimed that the first stage of the proposed algorithm
helps the unsupervised NN-based models learn optimal archi-
tectures and better-initialized parameter values, component-
wise experiments over the optimal architectures and the
initialized parameter values should be performed to investi-
gate their respective effects to justify our designs. However,
the initialized parameter values are dependent on the archi-
tectures. This leads to the specific experiment by varying
only the architecture configurations on investigating how the
learned architectures solely affect the performance is difficult
to design. Hence, the performance regarding the initialized
parameter values is mainly investigated here.

To this end, we first record the architecture configura-
tions (see Table III) with which the proposed algorithm
presents the promising performance in best mean values of
EUDNN/AE and EUDNN/RBM upon each benchmark from
Table II. Then experiments are reperformed by peer com-
petitors with the recorded architecture configurations and
randomly initialized parameter values. Finally, the learned
representations are fed to the considered performance met-
ric to measure whether these representations are meaningful.
Specifically, experimental results are depicted in Fig. 9 in
which the vertical axis denote the CCR while A–J in the hor-
izontal axis represent the benchmarks MNIST, MNIST-basic,
MNIST-rot, MNIST-back-rand, MNIST-back-image, MNIST-
rot-back-image, Rectangles, Rectangles-image, Convex, and
Cifar10-bw, respectively.

It is shown in Fig. 9 that most of the peer competitors
employing the chosen architecture configurations listed in
Table III obtain worse CCR upon the considered benchmarks
compared to the proposed algorithm. Specifically, the proposed
algorithm shows these best CCR upon MNIST, MNIST-
rot, MNIST-back-image, MNIST-rot-back-image, Convex, and
Cifar10-bw benchmarks, which is consistent with the find-
ings listed in Table II. In addition, the proposed algorithm
wins the best CCR upon MNIST-basic and MNIST-back-
rand benchmarks as well, with these architecture configura-
tions. In addition to the proposed algorithm in which the

TABLE III
BEST CCR OF THE PROPOSED ALGORITHM UPON MNIST,

MNIST-BASIC, MNIST-ROT, MNIST-BACK-RAND,
MNIST-BACK-IMAGE, MNIST-ROT-BACK-IMAGE, RECTANGLES,

RECTANGLES-IMAGE, CONVEX, CIFAR10-BW BENCHMARKS, AND THE

CORRESPONDING ARCHITECTURE CONFIGURATIONS

Fig. 9. Performance of the proposed algorithm against DAE, CAE, SAE,
and DBN with the configurations on which the proposed algorithm obtains the
best CCRs over benchmarks measured by softmax regression. Especially, A–J
denote the benchmarks MNIST, MNIST-basic, MNIST-rot, MNIST-back-rand,
MNIST-back-image, MNIST-rot-back-image, Rectangles, Rectangles-image,
Convex, and Cifar10-bw, respectively.

Fig. 10. CCR comparisons of the proposed algorithm without (denoted
by blue bars) and with (denoted by red bars) the second stage upon
the MNIST, MNIST-basic, MNIST-rot, MNIST-back-rand, MNIST-back-
image, MNIST-rot-back-image, Rectangles, Rectangles-image, Convex, and
Cifar10-bw benchmarks, which are denoted by A–J, respectively.

initialized parameter values are set by the proposed evolution-
ary approach, all the results illustrated in Fig. 9 are obtained
by the compared algorithms with the same architecture con-
figurations and commonly used parameter initializing methods
for the second stage. As we all know that the performance of
local search strategies is strongly rely on their starting position,
therefore, it is reasonable to conclude that the evolutionary
scheme employed by the first stage of the proposed algo-
rithm has substantially helped the learned representations to
be meaningful.

SUN et al.: EUDNNs FOR LEARNING MEANINGFUL REPRESENTATIONS 101

(a) (b) (c)

Fig. 11. Visualizations of the proposed algorithm over MNIST dataset with depths (a) 1, (b) 2, and (c) 3 by activation maximization method.

3) Performance Analysis Regarding the Second Stage: In
this experiment, we mainly investigate whether the local search
strategy employed in the second stage promotes the integral
performance of the proposed algorithm compared to only the
evolutionary methods used in the first stage. For this pur-
pose, we first pick up the promising CCR obtained by the
proposed algorithm from Table II in which the results of
the proposed algorithm are collectively achieved by the evo-
lutionary method employed in the first stage and the local
search strategy employed in the second stage. Then we select
the corresponding results performed without the local search
strategy (i.e., the results obtained by the proposed algorithm
during the first stage). Finally, these results are illustrated in
Fig. 10 for quantitative comparisons. Specifically in Fig. 10
the vertical axis denotes the CCR, while A–J in the hori-
zontal axis represent the benchmarks MNIST, MNIST-basic,
MNIST-rot, MNIST-back-rand, MNIST-back-image, MNIST-
rot-back-image, Rectangles, Rectangles-image, Convex, and
Cifar10-bw, respectively, and the bars in blue denote the results
obtained by the proposed algorithm without the second stage,
while the bars in red refer to that with the second stage.

It is clearly shown in Fig. 10 that the performance has
been improved with the second stage of the proposed EUDNN
over all the considered benchmarks compared to the algo-
rithm that only the first stage is employed. Especially, the
CCR have been significantly improved by about 20% upon the
MNIST-rot, MNIST-back-rand, MNIST-back-image, MNIST-
rot-back-image, and Cifar10-bw benchmarks and 12.83% on
the MNIST benchmark. In summary, it is concluded from
these experimental results that the local search strategy uti-
lized in the second stage helps the performance of the proposed
algorithm to be improved much further, which promotes the
learned representations to be meaningful and satisfies our
motivation of this design.

F. Visualizations of Learned Representations

In Section IV-E, a series of quantitative experiments has
been given to highlight the performance of the proposed
algorithm in learning meaningful representations with unsu-
pervised DNN-based models. Here, a qualitative experiment
is provided for comprehensively understanding what the rep-
resentations are learned from the proposed algorithm via visu-
alizations, which is a common approach employed by related
works [7]–[9], [34], [35] to intuitively investigate the learning
representations. For this purpose, the activation maximization

approach [68] is utilized to visualize the learned represen-
tations of the proposed algorithm over MNIST dataset and a
number of 100 randomly selected visualizations of the patches
are illustrated8 in Fig. 11. Furthermore, the SGD is employed
during the optimization of the activation maximization with
10 000 iterations and a fixed learning rate of 0.1. To be spe-
cific, Fig. 11(a) shows the learned representations on depth
1 in which the visualization is commonly describable [68]. It
is clear in Fig. 11(a) that some strokes are learned in most
patches and a part of the representations is similar to that of
the RBM [68], which can be viewed as the effectiveness of the
proposed algorithm, because these similar representations over
MNIST dataset have been reported in multiple kinds of [8] and
[9]. The visualizations of the representations on depths 2 and
3 are depicted in Fig. 11(b) and (c), respectively. However,
these representations are difficult to understand intuitively and
be interpretable due to the high-level hierarchical nature [68].
But it still can be concluded that the proposed algorithm has
learned the meaningful representations by comparing them to
the experiments simulated in [68] that learned representations
herein resemble those of the DAE to some extent. Noting
that multiple learned features shown in Fig. 11(a) seem to
be random. The reason is that not all the neurons in the corre-
sponding hidden layer have learned the meaningful features.
Specifically, the visualization of features is from the 100 neu-
rons randomly selected from the 313 600 (this number can
be calculated from Table III), and it is not necessary that
all the 313 600 neurons have learned the meaningful features.
In summary, these visualizations give a qualitative observa-
tion to highlight that the meaningful representations have been
effectively learned by the proposed algorithm.

V. CONCLUSION

In order to warrant the representations learned by unsu-
pervised DNNs to be meaningful, the existing approaches for
learning them need optimal combinations of hyper-parameters,
appropriate parameter values, and sufficient labeled data as the
training data. These approaches generally employ the exhaus-
tive grid search method to directly optimize hyper-parameters
due to their unavailable gradient information, which give an
unaffordable computational complexity that increases with an

8Because visualizations of representations learned from the depth larger
than one are difficult to interpret, and that from the depth larger than three
have no reference for comparisons, only representations with depths 1–3 are
visualized here.

102 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 1, FEBRUARY 2019

order of magnitude as the number of hyper-parameter grows.
Furthermore, the gradient-based training algorithms in these
existing algorithms are easy to be trapped into the local min-
ima, which cannot guarantee them the best performance. In
addition, in the current era of big data, the volume of labeled
data is limited and obtaining sufficient data with labels is
expensive, if not impossible. To address these concerning
issues, we have proposed an EUDNNs method which heuris-
tically searches for the best hyper-parameter settings and the
global minima to learn the meaningful representations without
sufficient labeled data. To be specific, two stages are composed
in the proposed algorithm. In the first stage, all the information
regarding hyper-parameter and parameter settings are encoded
into the individual chromosome and the best one is selected
when they go through a series of crossover, mutation, and
selection operations. Furthermore, the activation functions that
provide the nonlinear ability to the learning algorithm are also
incorporated into the individual chromosome to go through the
evolutions of obtaining the promising performance. In addi-
tion, the orthogonal complementary techniques are employed
in the proposed algorithm to reduce the computational com-
plexity for effectively learning the DRs. Specifically, only a
limited number of labeled data is needed in the proposed
algorithm to direct the search to learn representations with
meaningfulness. For further improving the performance, the
second stage is introduced with a local search strategy to com-
plement with the ability of the exploitation search for training
the proposed algorithm with the architecture and the activation
function optimized in the first stage. These two stages col-
lectively promote the proposed algorithm effectively learning
the meaningful representations with unsupervised DNN-based
models. To evaluate the meaningfulness of the learned rep-
resentations, a series of experiments are given against peer
competitors over multiple benchmarks related classification
tasks. The results measured by the softmax regression show
the considerable competitiveness of the proposed algorithm in
learning meaningful representations. In near future, we will
place more focus on the efficient encoding methods as well
as the way measuring the quality of the representation during
the evolution of a larger scale and higher dimensional data. In
addition, we would also investigate how to effectively evolve
deep supervised neural networks, such as CNNs.

REFERENCES

[1] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[3] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical
features for scene labeling,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1915–1929, Aug. 2013.

[4] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training of a
convolutional network and a graphical model for human pose estima-
tion,” in Proc. Adv. Neural Inf. Process. Syst., Montreal, QC, Canada,
2014, pp. 1799–1807.

[5] O. Delalleau and Y. Bengio, “Shallow vs. deep sum-product networks,”
in Proc. Adv. Neural Inf. Process. Syst., Granada, Spain, 2011,
pp. 666–674.

[6] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex,” J. Physiol.,
vol. 160, no. 1, pp. 106–154, 1962.

[7] Y. Bengio, “Learning deep architectures for AI,” Found. Trends� Mach.
Learn., vol. 2, no. 1, pp. 1–127, 2009.

[8] Y. Sun, H. Mao, Q. Guo, and Z. Yi, “Learning a good representation
with unsymmetrical auto-encoder,” Neural Comput. Appl., vol. 27, no. 5,
pp. 1361–1367, 2016.

[9] Y. Sun, H. Mao, Y. Sang, and Z. Yi, “Explicit guiding auto-encoders
for learning meaningful representation,” Neural Comput. Appl., vol. 28,
no. 3, pp. 429–436, 2017.

[10] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” Cogn. Model., vol. 5, no. 3, p. 1,
1988.

[11] R. S. Sutton, “Two problems with backpropagation and other steepest-
descent learning procedures for networks,” in Proc. 8th Annu. Conf.
Cogn. Sci. Soc., 1986, pp. 823–831.

[12] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, pp. 2121–2159, Feb. 2011.

[13] G. Hinton, N. Srivastava, and K. Swersky. (2012). Coursera
Class Lecture, Topic: ‘Rmsprop.’ Lecture 6e. [Online]. Available:
https://class.coursera.org/neuralnets-2012-001/lecture

[14] M. D. Zeiler, “ADADELTA: An adaptive learning rate method,” CoRR,
vol. arXiv:1212.5701, 2012.

[15] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
hyper-parameter optimization,” in Proc. Adv. Neural Inf. Process. Syst.,
2011, pp. 2546–2554.

[16] J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in Proc. ICML, vol. 28. Atlanta, GA, USA, 2013,
pp. I-115–I-123.

[17] P. Lerman, “Fitting segmented regression models by grid search,” J. Roy.
Stat. Soc. C Appl. Stat., vol. 29, no. 1, pp. 77–84, 1980.

[18] Y. Bengio and Y. LeCun, “Scaling learning algorithms towards AI,”
Large Scale Kernel Mach., vol. 34, no. 5, pp. 1–41, 2007.

[19] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[20] Y. LeCun et al., “Backpropagation applied to handwritten zip code
recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 1989.

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[22] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Boston, MA, USA, 2015,
pp. 1–9.

[23] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Proc. Eur. Conf. Comput. Vis., 2014, pp. 818–833.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” arXiv preprint arXiv:1512.03385, 2015.

[26] C. W. Tsai, C. F. Lai, H. C. Chao, and A. V. Vasilakos, “Big data
analytics: A survey,” J. Big Data, vol. 2, no. 1, pp. 1–21, 2015.

[27] J. Deng et al., “ImageNet: A large-scale hierarchical image database,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2009,
pp. 248–255.

[28] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[29] H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons
and singular value decomposition,” Biol. Cybern., vol. 59, nos. 4–5,
pp. 291–294, 1988.

[30] G. E. Hinton and R. S. Zemel, “Autoencoders, minimum description
length, and Helmholtz free energy,” in Proc. Adv. Neural Inf. Process.
Syst., 1994, p. 3.

[31] B. A. Olshausen and D. J. Field, “Sparse coding with an overcom-
plete basis set: A strategy employed by V1?” Vis. Res., vol. 37, no. 23,
pp. 3311–3325, 1997.

[32] H. Lee, C. Ekanadham, and A. Y. Ng, “Sparse deep belief net model
for visual area V2,” in Proc. Adv. Neural Inf. Process. Syst., 2008,
pp. 873–880.

[33] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 19, 2007, pp. 153–160.

[34] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in
Proc. 25th Int. Conf. Mach. Learn., Helsinki, Finland, 2008,
pp. 1096–1103.

SUN et al.: EUDNNs FOR LEARNING MEANINGFUL REPRESENTATIONS 103

[35] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: Explicit invariance during feature extraction,” in
Proc. 28th Int. Conf. Mach. Learn., Bellevue, WA, USA, 2011,
pp. 833–840.

[36] X. Yao, “Evolving artificial neural networks,” Proc. IEEE, vol. 87, no. 9,
pp. 1423–1447, Sep. 1999.

[37] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and
neural networks: Optimizing connections and connectivity,” Parallel
Comput., vol. 14, no. 3, pp. 347–361, 1990.

[38] L. D. Whitley, “The GENITOR algorithm and selection pressure: Why
rank-based allocation of reproductive trials is best,” in Proc. ICGA,
vol. 89, 1989, pp. 116–123.

[39] D. J. Montana and L. Davis, “Training feedforward neural networks
using genetic algorithms,” in Proc. Int. Joint Conf. Artif. Intell., vol. 89.
Detroit, MI, USA, 1989, pp. 762–767.

[40] S. F. Christian and C. Lebiere, “The cascade-correlation learning archi-
tecture,” in Proc. Adv. Neural Inf. Process. Syst. 2, 1990, pp. 524–532.

[41] M. Frean, “The upstart algorithm: A method for constructing and
training feedforward neural networks,” Neural Comput., vol. 2, no. 2,
pp. 198–209, 1990.

[42] J. Sietsma and R. J. F. Dow, “Creating artificial neural networks that
generalize,” Neural Netw., vol. 4, no. 1, pp. 67–79, 1991.

[43] R. Zi-Wu and S. Ye, “Improvement of real-valued genetic algorithm and
performance study,” Acta Electronica Sinica, vol. 35, no. 2, pp. 269–274,
2007.

[44] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evol. Comput., vol. 10, no. 2, pp. 99–127, 2002.

[45] K. O. Stanley, “Compositional pattern producing networks: A novel
abstraction of development,” Genet. Program. Evol. Mach., vol. 8, no. 2,
pp. 131–162, 2007.

[46] M. Gong, J. Liu, H. Li, Q. Cai, and L. Su, “A multiobjective sparse
feature learning model for deep neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 26, no. 12, pp. 3263–3277, Dec. 2015.

[47] R. Storn and K. Price, “Differential evolution—A simple and effi-
cient heuristic for global optimization over continuous spaces,” J. Glob.
Optim., vol. 11, no. 4, pp. 341–359, 1997.

[48] J. Liu, M. Gong, Q. Miao, X. Wang, and H. Li, “Structure learning
for deep neural networks based on multiobjective optimization,” IEEE
Trans. Neural Netw. Learn. Syst., to be published.

[49] E. Real et al., “Large-scale evolution of image classifiers,” in Proc. 34th
Int. Conf. Mach. Learn., Sydney, NSW, Australia, 2017, pp. 2902–2911.

[50] P. Smolensky, “Information processing in dynamical systems:
Foundations of harmony theory,” Dept. Comput. Sci., Univ. Colorado
at Boulder, Boulder, CO, USA, Rep. CU-CS-321-86, 1986.

[51] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554,
2006.

[52] K. O. Stanley, “Exploiting regularity without development,” in Proc.
AAAI Fall Symp. Develop. Syst., Menlo Park, CA, USA, 2006, p. 37.

[53] J. Yang, A. F. Frangi, J.-Y. Yang, D. Zhang, and Z. Jin, “KPCA plus
LDA: A complete kernel Fisher discriminant framework for feature
extraction and recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 27, no. 2, pp. 230–244, Feb. 2005.

[54] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proc. AISTATS, vol. 15. Fort Lauderdale, FL, USA, 2011,
p. 275.

[55] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

[56] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. ICML, vol. 30, 2013,
p. 3.

[57] Q. Zhao, D. Zhang, and H. Lu, “A direct evolutionary feature extraction
algorithm for classifying high dimensional data,” in Proc. Nat. Conf.
Artif. Intell., vol. 21. Boston, MA, USA, 1999, 2006, pp. 561–566.

[58] V. N. Vapnik, “The nature of statistical learning theory,” IEEE Trans.
Neural Netw., vol. 8, no. 6, p. 1564, Nov. 1997.

[59] V. N. Vapnik, Statistical Learning Theory. Hoboken, NJ, USA: Wiley,
2010.

[60] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio,
“An empirical evaluation of deep architectures on problems with many
factors of variation,” in Proc. 24th Int. Conf. Mach. Learn., 2007,
pp. 473–480.

[61] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Comput. Sci. Dept., Univ. Toronto, Toronto, ON, Canada,
Rep. TR-2009-learning-features, 2009.

[62] J. Engel, “Polytomous logistic regression,” Statistica Neerlandica,
vol. 42, no. 4, pp. 233–252, 1988.

[63] G. Hinton, “A practical guide to training restricted Boltzmann
machines,” Momentum, vol. 9, no. 1, p. 926, 2010.

[64] R. G. D. Steel, D. A. Dickey, and J. H. Torrie, Principles and Procedures
of Statistics a Biometrical Approach. Boston, MA, USA: McGraw-Hill,
1997.

[65] M. A. Carreira-Perpinan and G. E. Hinton, “On contrastive divergence
learning,” in Proc. AISTATS, vol. 10, 2005, pp. 33–40.

[66] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proc. AISTATS, vol. 9, 2010,
pp. 249–256.

[67] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,
vol. 16. Chichester, U.K.: Wiley, 2001.

[68] D. Erhan, Y. Bengio, A. C. Courville, and P. Vincent, “Visualizing
higher-layer features of a deep network,” Dept. IRO, Univ. Montreal,
Montreal, QC, Canada, Rep. 1341, 2009.

Yanan Sun (S’15–M’18) received the Ph.D. degree
in engineering from Sichuan University, Chengdu,
China, in 2017.

From 2015 to 2017, he was a joint Ph.D. stu-
dent financed by the China Scholarship Council with
the School of Electrical and Computer Engineering,
Oklahoma State University, Stillwater, OK, USA. He
is currently a Post-Doctoral Research Fellow with
the School of Engineering and Computer Science,
Victoria University of Wellington, Wellington,
New Zealand. His current research interests include

many-objective optimization and deep learning.

Gary G. Yen (S’87–M’88–SM’97–F’09) received
the Ph.D. degree in electrical and computer engineer-
ing from the University of Notre Dame, Notre Dame,
IN, USA, in 1992.

He is currently a Regents Professor with the
School of Electrical and Computer Engineering,
Oklahoma State University (OSU), Stillwater, OK,
USA. Before joining OSU in 1997, he was with the
Structure Control Division, U.S. Air Force Research
Laboratory, Albuquerque, NM, USA. His current
research interests include intelligent control, com-

putational intelligence, conditional health monitoring, signal processing, and
their industrial/defense applications.

Dr. Yen was a recipient of the Andrew P Sage Best Transactions
Paper Award from the IEEE Systems, Man and Cybernetics Society in
2011, and the Meritorious Service Award from the IEEE Computational
Intelligence Society in 2014. He was an Associate Editor of the IEEE Control
Systems Magazine, the IEEE TRANSACTIONS ON CONTROL SYSTEMS

TECHNOLOGY, Automatica, Mechantronics, the IEEE TRANSACTIONS ON

SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS,
the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—
PART B: CYBERNETICS, and the IEEE TRANSACTIONS ON NEURAL

NETWORKS. He is currently serving as an Associate Editor for the
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION and the IEEE
TRANSACTIONS ON CYBERNETICS. He served as the General Chair for the
2003 IEEE International Symposium on Intelligent Control held in Houston,
TX, USA, and the 2006 IEEE World Congress on Computational Intelligence
held in Vancouver, BC, Canada. He served as the Vice President for the
Technical Activities in 2005 and 2006 and then the President of the IEEE
Computational intelligence Society in 2010 and 2011. He was the Founding
Editor-in-Chief of the IEEE Computational Intelligence Magazine from 2006
to 2009.

Zhang Yi (F’16) received the Ph.D. degree in
mathematics from the Institute of Mathematics,
Chinese Academy of Science, Beijing, China, in
1994.

He is currently a Professor with the Machine
Intelligence Laboratory, College of Computer
Science, Sichuan University, Chengdu, China. He
has co-authored three books entitled Convergence
Analysis of Recurrent Neural Networks (Kluwer
Academic Publishers, 2004), Neural Networks:
Computational Models and Applications (Springer,

2007), and Subspace Learning of Neural Networks (CRC Press, 2010). His
current research interests include neural networks and big data.

Dr. Yi was an Associate Editor of the IEEE TRANSACTIONS ON NEURAL

NETWORKS AND LEARNING SYSTEMS from 2009 to 2012. He has been an
Associate Editor of the IEEE TRANSACTIONS ON CYBERNETICS since 2014.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

