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Abstract—Feature selection is an important task in data min-
ing and machine learning to reduce the dimensionality of the
data and increase the performance of an algorithm, such as
a classification algorithm. However, feature selection is a chal-
lenging task due mainly to the large search space. A variety of
methods have been applied to solve feature selection problems,
where evolutionary computation (EC) techniques have recently
gained much attention and shown some success. However, there
are no comprehensive guidelines on the strengths and weak-
nesses of alternative approaches. This leads to a disjointed
and fragmented field with ultimately lost opportunities for
improving performance and successful applications. This paper
presents a comprehensive survey of the state-of-the-art work on
EC for feature selection, which identifies the contributions of
these different algorithms. In addition, current issues and chal-
lenges are also discussed to identify promising areas for future
research.

Index Terms—Classification, data mining, evolutionary com-
putation, feature selection, machine learning.

I. INTRODUCTION

IN DATA mining and machine learning, real-world prob-
lems often involve a large number of features. However,

not all features are essential since many of them are redun-
dant or even irrelevant, which may reduce the performance of
an algorithm, e.g., a classification algorithm. Feature selection
aims to solve this problem by selecting only a small subset
of relevant features from the original large set of features. By
removing irrelevant and redundant features, feature selection
can reduce the dimensionality of the data, speed up the learn-
ing process, simplify the learned model, and/or increase the
performance [1], [2]. Feature construction (or feature extrac-
tion) [3]–[5], which can also reduce the dimensionality, is
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closely related to feature selection. The major difference is
that feature selection selects a subset of original features while
feature construction creates novel features from the original
features. This paper focuses mainly on feature selection.

Feature selection is a difficult task due mainly to a large
search space, where the total number of possible solutions
is 2n for a dataset with n features [1], [2]. The task is
becoming more challenging as n is increasing in many areas
with the advances in the data collection techniques and
the increased complexity of those problems. An exhaustive
search for the best feature subset of a given dataset is prac-
tically impossible in most situations. A variety of search
techniques have been applied to feature selection, such as
complete search, greedy search, heuristic search, and random
search [1], [6]–[9]. However, most existing feature selection
methods still suffer from stagnation in local optima and/or
high computational cost [10], [11]. Therefore, an efficient
global search technique is needed to better solve feature
selection problems. Evolutionary computation (EC) techniques
have recently received much attention from the feature selec-
tion community as they are well-known for their global
search ability/potential. However, there are no comprehen-
sive guidelines on the strengths and weaknesses of alternative
approaches along with their most suitable application areas.
This leads to progress in the field being disjointed, shared best
practice becoming fragmented and, ultimately, opportunities
for improving performance and successful applications being
missed. This paper presents a comprehensive survey of the lit-
erature on EC for feature selection with the goal of providing
interested researchers with the state-of-the-art research.

Feature selection has been used to improve the quality of
the feature set in many machine learning tasks, such as classi-
fication, clustering, regression, and time series prediction [1].
This paper focuses mainly on feature selection for classifica-
tion since there is much more work on feature selection for
classification than for other tasks [1]. Recent reviews on fea-
ture selection can be seen in [7], [8], [12], and [13], which
focus mainly on non-EC-based methods. De la Iglesia [14]
presented a summary of works using EC for feature selec-
tion in classification, which is suitable for a non-EC audience
since it focuses on basic EC concepts and genetic algorithms
(GAs) for feature selection. De la Iglesia [14] reviewed only
14 papers published since 2010 and in total 21 papers since
2007. No papers published in the most recent two years were
reviewed [14], but there have been over 500 papers pub-
lished in the last five years. Research on EC for feature
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Fig. 1. Number of papers on GAs and PSO for feature selection (from
Google Scholar, September 2015).

selection started around 1990, but it has become popular since
2007, when the number of features in many areas became
relatively large. Fig. 1 shows the number of papers on the
two most popular EC methods in feature selection, i.e., GAs
and particle swarm optimization (PSO), which shows that
the number of papers, especially on PSO, has significantly
increased since 2007. (Note that the numbers were obtained
from Google Scholar on September 2015. These numbers
might not be complete, but they show the general trend of
the field. The papers used to form this survey were collected
from all the major databases, such as Web of Science, Scopus,
and Google Scholar.) We aim to provide a comprehensive
survey of the state-of-the-art work and a discussion of the
open issues and challenges for future work. We expect this
survey to attract attention from researchers working on differ-
ent EC paradigms to further investigate effective and efficient
approaches to addressing new challenges in feature selection.
This paper is also expected to encourage researchers from the
machine learning community, especially classification, to pay
much attention to the use of EC techniques to address feature
selection problems.

The remainder of this paper is organized as follows.
Section II describes the background of feature selection.
Section III reviews typical EC algorithms for feature
selection. Section IV discusses different measures used in EC
for feature selection. Section V presents the applications of
EC-based feature selection approaches. Section VI discusses
current issues and challenges, and the conclusion is given in
Section VII.

II. BACKGROUND

Feature selection is a process that selects a subset of rele-
vant features from the original large set of features [9]. For
example, feature selection is to find key genes (i.e., biomark-
ers) from a large number of candidate genes in biological and
biomedical problems [15], to discover core indicators (fea-
tures) to describe the dynamic business environment [9], to
select key terms (features, e.g., words or phrases) in text min-
ing [16], and to choose/construct important visual contents
(features, e.g., pixel, color, texture, and shape) in image anal-
ysis [17]. Fig. 2 shows a general feature selection process and
all the five key steps, where “subset evaluation” is achieved by
using an evaluation function to measure the goodness/quality
of the selected features. Detailed discussions about Fig. 2 can
be seen in [1] and a typical iterative evolutionary workflow of
feature selection can be seen in [18].

z

Fig. 2. General feature selection process [1].

Based on the evaluation criteria, feature selection algorithms
are generally classified into two categories: 1) filter approaches
and 2) wrapper approaches [1], [2]. Their main difference is
that wrapper approaches include a classification/learning algo-
rithm in the feature subset evaluation step. The classification
algorithm is used as a “black box” by a wrapper to evalu-
ate the goodness (i.e., the classification performance) of the
selected features. A filter feature selection process is inde-
pendent of any classification algorithm. Filter algorithms are
often computationally less expensive and more general than
wrapper algorithms. However, filters ignore the performance
of the selected features on a classification algorithm, whereas
wrappers evaluate the feature subsets based on the classifica-
tion performance, which usually results in better performance
achieved by wrappers than filters for a particular classification
algorithm [1], [7], [8]. Note that some researchers catego-
rize feature selection methods into three groups: 1) wrapper;
2) embedded; and 3) filter approaches [7], [8]. The methods
integrating feature selection and classifier learning into a sin-
gle process are called embedded approaches. Among current
EC techniques, only genetic programming (GP) and learning
classifier systems (LCSs) are able to perform embedded fea-
ture selection [19], [20]. Thus, to simplify the structure of the
paper, we follow the convention of classifying feature selec-
tion algorithms into wrappers and filters only [1], [2], [21]
with embedded algorithms belonging to the wrapper category.

Feature selection is a difficult problem not only because of
the large search space but also because of feature interaction
problems. Feature interaction (or epistasis [22]) happens fre-
quently in many areas [2]. There can be two-way, three-way,
or complex multiway interactions among features. A feature,
which is weakly relevant to the target concept by itself, could
significantly improve the classification accuracy if it is used
together with some complementary features. In contrast, an
individually relevant feature may become redundant when used
together with other features. The removal or selection of such
features may miss the optimal feature subset(s). Many tradi-
tional measures evaluating features individually cannot work
well and a subset of features needs to be evaluated as a whole.
Therefore, the two key factors in a feature selection approach
are the search techniques, which explore the search space to
find the optimal feature subset(s), and the evaluation crite-
ria, which measure the quality of feature subsets to guide the
search.

Feature selection involves two main objectives, which are to
maximize the classification accuracy and minimize the number
of features. They are often conflicting objectives. Therefore,
feature selection can be treated as a multi-objective problem to
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find a set of trade-off solutions between these two objectives.
The research on this direction has gained much attention only
in recent years, where EC techniques contribute the most
since EC techniques that use a population-based approach are
particularly suitable for multi-objective optimization.

A. Existing Work on Feature Selection

This section briefly summarizes EC techniques from three
aspects, which are the search techniques, the evaluation crite-
ria, and the number of objectives.

1) Search Techniques: There are very few feature selection
methods that use an exhaustive search [1], [7], [8]. This is
because even when the number of features is relatively small
(e.g., 50), in many situations, such methods are computation-
ally too expensive to perform. Therefore, different heuristic
search techniques have been applied to feature selection,
such as greedy search algorithms, where typical examples are
sequential forward selection (SFS) [23], sequential backward
selection (SBS) [24]. However, both methods suffer from the
so-called “nesting effect” because a feature that is selected or
removed cannot be removed or selected in later stages. “plus-
l-take-away-r” [25] compromises these two approaches by
applying SFS l times and then SBS r times. This strategy can
avoid the nesting effect in principle, but it is hard to determine
appropriate values for l and r in practice. To avoid this prob-
lem, two methods called sequential backward floating selection
(SBFS) and sequential forward floating selection (SFFS) were
proposed in [26]. Both floating search methods are claimed
to be better than the static sequential methods. Recently,
Mao and Tsang [27] proposed a two-layer cutting plane algo-
rithm to search for the optimal feature subsets. Min et al. [28]
proposed a heuristic search and a backtracking algorithm,
which performs an exhaustive search, to solve feature selec-
tion problems using rough set theory. The results show that
heuristic search techniques achieved similar performance to
the backtracking algorithm but used a much shorter time. In
recent years, EC techniques as effective methods have been
applied to solve feature selection problems. Such methods
include GAs, GP, PSO, and ant colony optimization (ACO).
Details will be described in the next section.

Feature selection problems have a large search space, which
is often very complex due to feature interaction. Feature
interaction leads to individually relevant features becoming
redundant or individually weakly relevant features becoming
highly relevant when combined with other features. Compared
with traditional search methods, EC techniques do not need
domain knowledge and do not make any assumption about
the search space, such as whether it is linearly or nonlinearly
separable, and differentiable. Another significant advantage of
EC techniques is that their population-based mechanism can
produce multiple solutions in a single run. This is particularly
suitable for multi-objective feature selection in order to find
a set of nondominated solutions with the trade-off between
the number of features and the classification performance.
However, EC techniques have a major limitation of requiring
a high computational cost since they usually involve a large
number of evaluations. Another issue with EC techniques is

their stability since the algorithms often select different fea-
tures from different runs, which may require a further selection
process for real-world users. Further research to address these
issues is of great importance, as the increasingly large num-
ber of features increases the computational cost and lowers
the stability of the algorithms in many real-world tasks.

2) Evaluation Criteria: For wrapper feature selection
approaches, the classification performance of the selected fea-
tures is used as the evaluation criterion. Most of the popular
classification algorithms, such as decision tree (DT), sup-
port vector machines (SVMs), Naïve Bayes (NB), K-nearest
neighbor (KNN), artificial neural networks (ANNs), and linear
discriminant analysis (LDA), have been applied to wrap-
pers for feature selection [7], [8], [29]. For filter approaches,
measures from different disciplines have been applied, includ-
ing information theory-based measures, correlation measures,
distance measures, and consistency measures [1].

Single feature ranking based on a certain criterion is a
simple filter approach, where feature selection is achieved
by choosing only the top-ranked features [7]. Relief [30]
is a typical example, where a distance measure is used to
measure the relevance of each feature and all the relevant
features are selected. Single feature ranking methods are
computationally cheap but do not consider feature interac-
tions, which often leads to redundant feature subsets (or local
optima) when applied to complex problems, e.g., microarray
gene data, where genes possess intrinsic linkages [1], [2]. To
overcome such issues, filter measures that can evaluate the
feature subset as a whole have become popular. Recently,
Wang et al. [31] developed a distance measure evaluating the
difference between the selected feature space and all feature
space to find a feature subset, which approximates all features.
Peng et al. [32] proposed the minimum redundancy maxi-
mum relevance method based on mutual information, where
the proposed measures have been introduced to EC for feature
selection due to their powerful search abilities [33], [34].

Mao and Tsang [27] proposed a novel feature selection
approach by optimizing multivariate performance measures
(which can also be viewed as an embedded method since
the proposed feature selection framework was to optimize
the general loss function and was achieved based on SVMs).
However, the proposed method resulted in a huge search space
for high-dimensional data, which required a powerful heuris-
tic search method to find the optimal solutions. Statistical
approaches, such as T-test, logistic regression, hierarchical
clustering, and cart classification and regression tree (CART),
are relatively simple and can achieve good performance [35].
Sparse approaches have recently become popular, such as
sparse logistic regression for feature selection [36], which has
been used for feature selection tasks with millions of fea-
tures. For example, the sparse logistic regression method [36]
automatically assigns a weight to each feature showing its rele-
vance. Irrelevant features are assigned with low weights close
to zero, which has the effect of filtering out these features.
Sparse learning-based methods tend to learn simple models
due to their bias to features with high weights. These statistical
algorithms usually produce good performance with high effi-
ciency, but they often have assumptions about the probability
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Fig. 3. Overall categories of EC for feature selection.

distribution of the data. Furthermore, the used cutting plan
search method in [36] works well when the search space is uni-
modal, but EC approaches can deal well with both unimodal
and multimodal search space and the population-based search
can find a Pareto front of nondominated (trade-off) solutions.
Min et al. [28] developed a rough set theory-based algorithm
to address feature selection problems under the constraints of
having limited resources (e.g., money and time). However,
many studies show that filter methods do not scale well to
problems with more than tens of thousands of features [13].

3) Number of Objectives: Most of the existing feature
selection methods aim to maximize the classification per-
formance only during the search process or aggregate the
classification performance and the number of features into a
single objective function. To the best of our knowledge, all the
multi-objective feature selection algorithms to date are based
on EC techniques since their population-based mechanism pro-
ducing multiple solutions in a single run is particularly suitable
for multi-objective optimization.

B. Detailed Coverage of This Paper

As shown in Fig. 3, according to three different crite-
ria, which are the EC paradigms, the evaluation, and the
number of objectives, EC-based feature selection approaches
are classified into different categories. These three crite-
ria are the key components in a feature selection method.
EC approaches are mainly used as the search techniques
in feature selection. Almost all the major EC paradigms
have been applied to feature selection and the most pop-
ular ones are discussed in this paper, i.e., GAs [37]–[39]
and GP [19], [40], [41] as typical examples in evolution-
ary algorithms, PSO [10], [29], [42], and ACO [43]–[46] as
typical examples in swarm intelligence, and other algorithms
recently applied to feature selection, including differential
evolution (DE) [47], [48],1 memetic algorithms [49], [50],
LCSs [51], [52], evolutionary strategy (ES) [53], artificial
bee colony (ABC) [54], [55], and artificial immune sys-
tems (AISs) [56], [57]. Based on the evaluation criteria, we
review both filter and wrapper approaches and also include
another group of approaches named “combined.” Combined
means that the evaluation procedure includes both filter and
wrapper measures, which are also called hybrid approaches by
some researchers [9], [14]. The use of combined here instead

1Some researchers classify DE as a swarm intelligence algorithm.

Fig. 4. Different measures in EC-based filter approaches.

of “hybrid” is to avoid confusion with the concept of hybrid
algorithms in the EC field, which hybridize multiple EC search
techniques. According to the number of objectives, EC-based
feature selection approaches are classified into single objec-
tive and multi-objective approaches, where the multi-objective
approaches correspond to methods aiming to find a Pareto
front of trade-off solutions. The approaches that aggregate the
number of features and the classification performance into a
single fitness function are treated as single objective algorithms
in this paper.

Similar to many earlier survey papers on traditional
(non-EC) feature selection [1], [7]–[9], this paper further
reviews different evolutionary filter methods according to
measures that are driven from different disciplines. Fig. 4
shows the main categories of measures used in EC-based filter
approaches. Wrapper approaches are not further categorized
according to their measures because the classification algo-
rithm in wrappers is used as a black box during the feature
selection process such that it can often be easily replaced by
another classification algorithm.

The reviewed literature is organized as follows. Typical
approaches are reviewed in Section III, where each section
discusses a particular EC technique for feature selection (e.g.,
Section III-A: GAs for feature selection, as shown by the
left branch in Fig. 3). Within each section, the research using
an EC technique is further detailed and discussed according
to the evaluation criterion and the number of objectives. In
addition, Section IV discusses the research on EC-based filter
approaches for feature selection. The applications of EC for
feature selection are described in Section V.

III. EC FOR FEATURE SELECTION

A. GAs for Feature Selection

GAs are most likely the first EC technique widely applied
to feature selection problems. One of the earliest works was
published in 1989 [37]. GAs have a natural representation of
a binary string, where 1 shows the corresponding feature is
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TABLE I
CATEGORIZATION OF GA APPROACHES

selected and 0 means not selected. Table I shows the typical
works on GAs for feature selection. It can be seen that there
are more works on wrappers than filters, and more on single
objective than multi-objective approaches.

For wrapper approaches, different classification algo-
rithms have been used to evaluate the goodness of the
selected features, e.g., SVMs [68], [71]–[73], [75], [79]–
[81], [86], [107]; KNN [39], [74], [76], [77], [80], [81],
[86], [95], [107]; ANNs [61], [69], [78], [81], [83], [85];
DT [60], [80], [107]; NB [80], [107], [109]; multiple linear
regression for classification [59]; extreme learning machines
(ELMs) [110]; and discriminant analysis [66], [67], [82].
SVMs and KNN are the most popular classification algorithms
due to their promising classification performance and simplic-
ity, respectively. For filter approaches, different measures have
been applied to GAs for feature selection, e.g., information
theory [102], [105], [106], consistency measures [98], [105],
rough set theory [103], and fuzzy set theory [99].

Many different new enhancements to GAs have been pro-
posed to improve the performance, which focus mainly on
the search mechanisms, the representation, and the fitness
function. Some early works [59], [62] introduced GAs to fea-
ture selection by investigating the influence of the population
size, mutation, crossover, and reproduction operators, but with
limited experiments.

Recently, Derrac et al. [76] proposed a cooperative co-
evolutionary algorithm for feature selection based on a GA
with three populations, where the first focused on feature
selection, the second focused on instance selection, and the
third focused on both feature selection and instance selec-
tion. The proposed algorithm addressed feature selection and
instance selection in a single process, which reduced the
computational time. Such approaches should be further inves-
tigated in the future given that large datasets (i.e., with
thousands or tens of thousands of features) may include not
only irrelevant features but also noisy instances. Li et al. [75]
also proposed a multiple populations-based GA for feature
selection, where every two neighbor populations shared two
individuals to exchange information for increasing the search
ability. Local search was performed on the best individual
in each population to further increase the performance. The
proposed scheme was tested with different filter and wrapper
measures, and was shown to be effective for feature selection,
but it was tested only on datasets with a maximum number of
60 features.

Chen et al. [71] proposed to address feature selection prob-
lems through GAs for feature clustering, where a GA was

used to optimize the cluster center values of a clustering
method to group features into different clusters. Features in
each cluster were then ranked according to their distance val-
ues to the cluster center. Feature selection was achieved by
choosing the top-ranked features as representatives from each
cluster. The proposed algorithm was shown to be effective
on datasets with thousands of features. Lin et al. [111] pro-
posed a GA-based feature selection algorithm adopting domain
knowledge of financial distress prediction, where features were
classified into different groups, and a GA was used to search
for feature subsets consisting of top candidate features from
each group. This paper may have a similar problem to [71]
in terms of ignoring feature interactions. A GA was used in a
two-stage approach, where a filter measure was used to rank
features, and only the top-ranked ones were used in GA-based
feature selection [72], [85]. In contrast, Zamalloa et al. [67]
used a GA to rank features directly, and feature selection was
achieved by choosing only the top-ranked features. A potential
limitation in [67], [72], and [85] is that the removed lowly-
ranked features might become highly useful when combined
with other features because of feature interaction.

Traditional feature selection methods have also been
adopted in GAs to improve the performance. Jeong et al. [39]
developed a partial SFFS mutation operator in GAs, where
SFFS was performed to improve the feature subset selected by
a chromosome. The proposed algorithm was shown to be effec-
tive for feature selection, but it may have a potential problem
of being computationally expensive due to the extra calculation
of SFFS. Gheyas and Smith [38] developed a hybrid algorithm
named SAGA based on a GA and simulated annealing (SA),
and compared it with different EC algorithms and traditional
methods for feature selection, including a GA, ACO, PSO,
SFS, SFFS, SFBS, and SA. The results showed that SAGA
performed the best in terms of the classification performance.
The combination of the global search ability of GAs and the
local search ability of SA may be the reason for the superior
performance of SAGA.

In terms of representation, Hong and Cho [69] proposed a
binary vector to represent each chromosome (i.e., genotype),
where a predefined small number (pd) of binary bits are con-
verted to an integer number i, indicating that the ith feature is
selected. Therefore, the length of the representation/genotype
was determined by multiplying pd and the desired number
of features. It reduced the dimensionality of the GA search
space on high-dimensional datasets with thousands of fea-
tures, which resulted in better performance than the traditional
representation. Chen et al. [82] also developed a binary rep-
resentation, which included two parts, wherein the first part
was converted to an integer representing the number of fea-
tures to be selected while the second showed which features
were selected. Jeong et al. [39] proposed a new representa-
tion to further reduce the dimensionality, where the length of
the chromosome was equal to the number of desired features.
The values in chromosomes indicated the indexes of features.
When the index of a feature(s) appeared multiple times, a par-
tial SFFS operator was applied to choose alternative features
to avoid duplication. One limitation in [39], [69], and [82]
is that the number of features needs to be predefined, which
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might not be the optimal size. To address this limitation,
Yahya et al. [112] developed a variable length representa-
tion, whereby each chromosome showed the selected features
only and different chromosomes may have different lengths.
New genetic operators were accordingly developed to cope
with the variable length representation. However, the perfor-
mance of the proposed algorithm was not compared with other
GAs-based methods.

Li et al. [77] proposed a bio-encoding scheme in a GA,
where each chromosome included a pair of strings. The
first string was binary-encoded to show the selection of fea-
tures, and the second was encoded as real-numbers that
indicated the weights of features. By combining this with
an Adaboost learning algorithm, the bio-encoding scheme
achieved better performance than the traditional binary encod-
ing. Winkler et al. [81] proposed a new representation that
included both feature selection and parameter optimization of a
certain classification algorithm, e.g., an SVM. The length was
the total number of features and parameters. Souza et al. [83]
developed a three-level representation in a GA and multilayer
perceptron (MLP) for feature selection, which indicated the
selection of features, the pruning of the neurons, and the archi-
tecture of the MLP, respectively. These three examples [77],
[81], [83] suggest that combining the selection of features and
the optimization of a classification algorithm is an effective
way to improve the classification performance since both the
data and the classifier are optimized, which can also be evident
from [66], [71], and [79].

In terms of the fitness function, Da Silva et al. [80] aggre-
gated the classification accuracy and the number of features
into a single fitness function. Yang and Honavar [61] proposed
to combine the maximization of the classification accuracy
and the minimization of the cost of an ANN into a sin-
gle fitness function. Winkler et al. [81] proposed several
fitness functions, which considered the number of features,
the overall classification performance, the class specific accu-
racy, and the classification accuracy using all the original
features. Sousa et al. [109] employed a fitness function
using area under curve of the receiver operating characteris-
tic of an NB classifier. In [107], a filter measure (Pearson
correlation measure) and a wrapper measure (classification
accuracy) were combined to form a single fitness function
in a GA for feature selection to utilize the advantages of
each measure.

GAs for multi-objective feature selection started much
later (around ten years later) than for single objective
feature selection. Most of the multi-objective approaches
are based on nondominated sorting GA II (NSGA-II)
or its variations [92], [94], [96], [97], [102], [103], [105].
Although there are more works on multi-objective feature
selection using GAs than using other EC techniques, the
potential of GAs for multi-objective feature selection has
still not been thoroughly investigated, since feature selec-
tion is a complex task that requires specifically designed
multi-objective GAs to search for the nondominated solutions.

In summary, GAs have been applied to feature selec-
tion for around 25 years and have achieved reasonably
good performance on problems with hundreds of features.

TABLE II
CATEGORIZATION OF GP APPROACHES

Researchers introduced GAs to address feature selection prob-
lems, including thousands of features with limited success,
whereby most are wrapper approaches. This leads to a high
computational cost since GAs usually involve a large number
of evaluations, and each evaluation in a wrapper approach usu-
ally takes a relatively long time, especially when the number of
instances is large. As a result, although GAs approaches have
been proposed for some feature selection tasks with thousands
of features, almost all these feature selection tasks have a rela-
tively small number of instances, i.e., less than 1000 [70], [71].
Such approaches struggle to solve “big data” tasks, whereby
both the number of features and the number of instances are
huge. This is not only an issue for GAs, but also for other EC
techniques for feature selection. To use GAs to address such
tasks, a novel representation that can reduce the dimensional-
ity of the search space will be needed. The design of genetic
operators, e.g., crossover and mutation, provides opportunities
to identify good building blocks (i.e., feature groups) and com-
bine or adjust complementary features to find optimal feature
subsets, but this is a challenging task. Furthermore, when and
how to apply these operators and the parameter settings in GAs
are also key factors that influence their performance on feature
selection.

B. GP for Feature Selection

Table II shows typical works on GP for feature selection.
Compared with GAs and PSO, there is a much smaller number
of works on GP for feature selection. GP is used more often
in feature construction than feature selection because of its
flexible representation. In feature selection, most GP works
use a tree-based representation, where the features used as the
leaf nodes of a tree are the selected features. GP can be used
as a search algorithm and also as a classification algorithm. In
filter approaches, GP is mainly used as the search algorithm.
In most wrapper (or embedded) approaches, GP is used as
both the search method and the classification algorithm. In a
very few cases, GP was used as a classification algorithm only
in a feature selection approach [81].

One of the early works on GP for feature selection was pub-
lished in 1996 [123], where a generalized linear machine was
used as the classifier to evaluate the fitness of the selected fea-
tures. Later, Neshatian and Zhang [128] proposed a wrapper
feature selection approach based on GP, where a variation of
NB algorithm was used for classification. A bit-mask encoding
was used to represent feature subsets. Set operators were used
as primitive functions. GP was used to combine feature subsets
and set operators together to find an optimal subset of fea-
tures. Hunt et al. [115] developed GP-based hyper-heuristics
for wrapper feature selection, where two function operators
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for removing and adding features were proposed. The results
showed that the proposed algorithm improved the classification
performance and reduced the number of features over using
standard GP.

For filter approaches, GP was applied to feature selection
using an improved information theory-based measure [41].
Further, a GP-based relevance measure was proposed to eval-
uate and rank feature subsets [130], which was a single
objective algorithm but could provide solutions with different
sizes and accuracies. However, it may suffer from the problem
of high computational cost.

In most works, GP was used to search for the opti-
mal feature subset and simultaneously trained as a classifier.
Muni et al. [19] developed a wrapper feature selection model
based on multitree GP, which simultaneously selected a good
feature subset and learned a classifier using the selected
features. Two new crossover operations were introduced to
increase the performance of GP for feature selection. Based
on the two crossover operations introduced by Muni et al. [19],
Purohit et al. [40] further introduced another crossover oper-
ator, which was randomly performed for selecting a subtree
from the first parent and finding its best place in the second
parent. Both [19] and [40] showed the powerful ability of GP
for simultaneously performing feature selection and learning a
classifier. They are similar to the works [71], [79] using GAs
to simultaneously select features and optimize a classifier, but
the main difference is that GP itself was used as both a search
technique for selecting features and as a classifier for classi-
fication (i.e., embedded feature selection), whereas GAs were
used as search techniques only.

Two-stage approaches have been investigated in GP for
feature selection. Venkatraman et al. [124] proposed to use
a mutual information measure to rank individual features
and remove weakly relevant or irrelevant features in the
first stage and GP was then applied to select a subset of
the remaining features. Later, to take different advantages
of different measures, multiple filter measures were used to
rank features and a set of features were selected accord-
ing to each measure. The combination of these features
was used as input to GP for further feature selection [116],
[119]. However, a potential limitation is that individual fea-
ture ranking may remove potentially useful features without
considering their interactions with other features. Neshatian
and Zhang [120] proposed another type of individual fea-
ture ranking approach, where each feature was given a score
according to its frequency of appearance in the best GP indi-
viduals. Feature selection was achieved by using only the
top-ranked features for classification. This way of evaluating
individual features took other features into account, which
could avoid the limitation of most single feature ranking
methods.

A GP-based multi-objective filter feature selection approach
was proposed for binary classification problems [129]. Unlike
most filter methods that usually could measure only the rel-
evance of a single feature to the class labels, the proposed
algorithm could discover hidden relationships between sub-
sets of features and the target classes, and achieve better
classification performance. There are only a few works on

TABLE III
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GP for multi-objective feature selection. It will be interest-
ing to investigate this in the future, since GP has shown
its ability in addressing feature selection and multi-objective
problems [131].

In summary, GP for feature selection has achieved some
success, but with much less work than GAs. Compared with
GAs, GP is able to perform embedded feature selection to
be used as both a search technique and a classifier. GAs are
easier to implement and have a straightforward representa-
tion easily indicating the selection of features, which can be
a good choice for relatively low-dimensional problems, e.g.,
less than 1000. Due to the flexible representation, GP can also
perform feature construction to create new high-level features
to further increase the classification performance, and GP has
a potential to handle large-scale feature selection since the rep-
resentation does not have to include the selection information
(or the index) of all features. Further, many real-world prob-
lems, such as gene selection, include a large number (i.e., tens
of thousands) of features, but a very small number (less than
100) of instances, which is a challenge not only in machine
learning but also in statistics and biology. GP can handle tasks
with a very small number of instances [132], which provides
an opportunity to better solve feature selection tasks with a
small number of instances. When and how to apply genetic
operators is also important in GP, but the design and the use
of the genetic operators in GP is more difficult than in GAs
due to the flexible representation and the different return types
of the functions. The parameter settings in GP are also very
important. Because of the large population size, GP may suffer
from the issue of being computationally expensive.

C. PSO for Feature Selection

Both continuous PSO and binary PSO have been used for
both filter and wrapper, single objective and multi-objective
feature selection. The representation of each particle in PSO
for feature selection is typically a bit-string, whereby the
dimensionality is equal to the total number of features in the
dataset. The bit-string can be binary numbers in binary PSO
or real-value numbers in continuous PSO. When using binary
representation, 1 means the corresponding feature is selected
and 0 means it is not selected. When using the continuous
representation, a threshold θ is usually used to determine the
selection of a particular feature, i.e., if the value is larger than
θ , the corresponding feature is selected. Otherwise, it is not
selected.

As can be seen from Table III, there has been more
research on PSO for single objective than multi-objective,
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and more research on wrapper than filter feature selection.
For wrapper approaches, different classification algorithms
have been used with PSO to evaluate the goodness of the
selected features, e.g., SVMs [33], [70], [134], [135], [137],
[141]; KNN [147], [148], [150], [151], [159]; LDA [143];
ANNs [42], [146], [177]; logistic regression classification
model [10]; and Adaboost [142]. SVMs and KNN are the
most popular classification algorithms because of their promis-
ing classification performance and simplicity, respectively. For
filter approaches, different measures have been applied to PSO
for feature selection and details can be seen in Section IV.

A number of new PSO algorithms have been proposed to
improve performance on feature selection problems, includ-
ing initialization strategies, representation, fitness functions,
and the search mechanisms. Xue et al. [157] developed a new
initialization strategy to mimic the typical forward and back-
ward feature selection methods in the PSO search process,
which showed that good initialization significantly increased
the performance of PSO for feature selection.

There are only a few works on developing new representa-
tions in PSO for feature selection. The typical representation
has been slightly modified to simultaneously perform feature
selection and parameter optimzation of a classification algo-
rithm, mostly optimizing the parameters in the kernel functions
of SVMs [138], [141], [152], [178]. The length of the new
representation is equal to the total number of features and
parameters. The representation was encoded in three differ-
ent ways: continuous encoding [138], binary encoding [152],
and a mixture of binary and continuous encoding [141], [178].
Since PSO was originally proposed for continuous optimiza-
tion, continuous encoding performed better than the other two
encoding schemes. Lane et al. [153] proposed the use of PSO
and statistical clustering (which groups similar features into
the same cluster) for feature selection, where a new represen-
tation was proposed to incorporate statistical feature clustering
information during the search process of PSO. In the new
representation, features from the same cluster were arranged
together, and only a single feature was selected from each
cluster. The proposed algorithm was shown to be able to signif-
icantly reduce the number of features. Lane et al. [156] further
improved the algorithm by allowing the selection of multiple
features from the same cluster to further improve the classifi-
cation performance. Later, Nguyen et al. [154] proposed a new
representation, where the dimensionality of each particle was
determined by the maximum number of desired features. The
dimensionality of the new representation is much smaller than
the typical representation; however, it is not easy to determine
the desired number of features.

Learning from neighbors’ experience, i.e., social inter-
action through gbest, and learning from each individual’s
own experience through pbest, are the key ideas in PSO.
Chuang et al. [140] developed a gbest resetting mechanism
by including zero features in order to guide the swarm to
search for small feature subsets. Xue et al. [157] considered
the number of features when updating pbest and gbest dur-
ing the search process of PSO, which could further reduce
the number of features over the traditional updating pbest
and gbest mechanism without deteriorating the classification

performance. Tran et al. [155] used the gbest resetting mecha-
nism in [140] to reduce the number of features and performed
a local search process on pbest to increase the classification
performance. Each evaluation in the local search was sped up
by calculating fitness based only on the features being changed
(from selected to not selected or from not selected to selected)
instead of based on all the selected features. The proposed
algorithm further reduced the number of features and improved
the classification performance over the previous method [140]
and standard PSO. PSO with multiple swarms to share expe-
rience has also been applied to feature selection [11], [179],
but may lead to the problem of high computational cost.

The fitness function plays an important role in PSO for
feature selection. For filter approaches, the fitness function
is formed by using different measures, which will be dis-
cussed in detail in Section IV. For wrapper approaches, many
existing works used only the classification performance as the
fitness function [11], [134], [135], [137]–[140], [142], [159],
which led to relatively large feature subsets. However, most of
the fitness functions used different ways to combine both the
classification performance and the number of features into a
single fitness function [70], [136], [141], [147], [179], [180].
However, it is difficult to determine in advance the optimal
balance between them without a priori knowledge. Multi-
objective feature selection can help solve this problem by
simultaneously optimizing these two objectives to obtain a set
of trade-off solutions.

Research on PSO for multi-objective feature selection
started only in the last two years during which Xue et al. [29],
[160] conducted the first work to optimize the classification
performance and the number of features as two separate objec-
tives. Continuous and binary PSO in multi-objective feature
selection were directly compared in [160], wherein the results
showed that continuous PSO can usually achieve better per-
formance than binary PSO since binary PSO has potential
limitations, such as the position of a particle in binary PSO is
updated solely based on the velocity, whereas while the posi-
tion in standard PSO is updated based on both the velocity
and current position [181]. Further, the performance of the
multi-objective PSO algorithm for feature selection was com-
pared with three other popular evolutionary multi-objective
(EMO) algorithms, NSGA-II, Strength Pareto Evolutionary
Algorithm 2, and the Pareto Archived Evolution Strategy [29],
where the multi-objective PSO approach was shown to be
superior to the other three methods. PSO was also applied
to multi-objective filter feature selection, where information-
based theory [170], [172] and rough set theory [171], [173]
were used to evaluate the relevance of the selected features.
These works showed that PSO for multi-objective feature
selection provided multiple and better solutions/choices to
users.

To sum up, there has been rapid development on PSO for
feature selection. PSO has a similar advantage to GAs in terms
of a straightforward representation, but neither of them can be
used for feature construction (unlike GP with its flexible repre-
sentation). However, the representation of GAs and PSO might
not scale well on problems with thousands or tens of thou-
sands of features, since it forms a huge search space. In other
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TABLE IV
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important aspects GAs and PSO take different approaches
to evolving good feature subsets. GAs address combinatorial
optimization problems by identifying good building blocks of
information, combining complementary blocks via crossover,
and adjustment via mutation. Thus, GAs are likely to be
suited to domains in which there are groups of interacting fea-
tures, potentially with multiple good subsets, to consider. PSO
has a more structured neighborhood guiding its recombination
method than GAs, as well as a velocity term that enables fast
convergence to a solution. PSO should suit domains in which
there is a structure in how features interact, i.e., low sensitivity
to the inclusion of each feature in a solution, and where fast
convergence does not lead to local optima. PSO has an advan-
tage over GAs and GP of being easy to implement. Developing
novel PSO algorithms, particularly novel search mechanisms,
parameter control strategies and representation for large-scale
feature selection, is still an open issue.

D. ACO for Feature Selection

Table IV shows typical works on ACO for feature selec-
tion, where the earliest work was proposed around 2003 [182].
Table IV shows that there are more papers on wrapper meth-
ods than filter and embedded methods. Most of work focuses
on single objective methods, and there are only a few papers
on multi-objective approaches.

In one of the early works, ACO and an SVM were used for
wrapper feature selection for face recognition, where the orig-
inal features were extracted by principal component analysis
from the images in the preprocessing stage [43]. Ke et al. [196]
proposed the use of limited pheromone values in ACO for
feature selection and the proposed algorithm also updated the
pheromone trails of the edges connecting every two differ-
ent features of the best-so-far solution. Experimental results
showed that the proposed algorithms achieved better perfor-
mance than SA, GA, and Tabu search-based algorithms in
terms of both the classification performance and the num-
ber of features. O’Boyle et al. [187] proposed to use ACO
to simultaneously select features and optimize the parameters
of an SVM, where a weighting method was also proposed
to determine the probability of an ant selecting a particu-
lar feature. Khushaba et al. [47] combined ACO and DE for
feature selection, where DE was used to search for the opti-
mal feature subset based on the solutions obtained by ACO.
A traditional feature selection algorithm, forward selection,
was also introduced to ACO [205], where ACO started with
a small set of core features. Vieira et al. [189] proposed
a cooperative ACO algorithm with two colonies for feature
selection, where the first one decided the number of features
needed and the second colony was to select individual features.

Santana et al. [44] compared the performance of ACO with
a GA-based feature selection method for ensemble classifiers.
The results showed that ACO performed better when the num-
ber of individual classifiers was small while the GA performed
better when this number was large.

The representation of ACO for feature selection is typically
a graph, where features are encoded as nodes to construct a
graph model. Each ant represents a feature subset, where the
features selected are the nodes it visited. In most ACO-based
algorithms [16], [187], features/nodes are fully connected to
each other in the graph, but in [188], each feature was con-
nected only to two features. The final solution [188] was a
binary set whose length was equal to the number of nodes
(features) that the ant visited. The value of 1 means the corre-
sponding feature is selected and 0, otherwise. Chen et al. [45]
proposed a new representation scheme to reduce the size of
the search space (i.e., graph), where each feature/node was
connected only to the next node using two edges showing
“selected” or “not selected.” This representation scheme sig-
nificantly reduced the total number of edges that ACO needed
to traverse. Kashef and Nezamabadi-Pour [191], [192] also
proposed a new representation in which each feature had two
nodes; one for selecting that feature and the other for remov-
ing it. At the end of a tour, each ant had a binary vector with
the length as the total number of features, where 1 indicated
selecting and 0 indicated removing the corresponding feature.

In most ACO-based wrapper approaches, the classifica-
tion performance was used as the fitness evaluation criterion.
In [47] and [184], the fitness of ants (feature subsets) was
evaluated using the overall classification performance, but the
performance of individual features was also considered to fur-
ther improve the performance. The fitness functions in [16]
and [186] included both the classification performance and
the number of features. Later, by extending the work on
single objective ACO and a fuzzy classifier for feature selec-
tion [185], Vieira et al. [193] developed a multi-objective
wrapper approach, where ACO aimed to minimize both the
classification error and the number of features. Recently,
Ke et al. [203] developed new multi-objective ACO for filter
feature selection, which adopted an elitism strategy to speed
up the convergence performance, used the nondominated solu-
tions to add pheromone so as to reinforce the exploitation,
and applied a crowding comparison operator to maintain the
diversity of the solutions. The results showed that the pro-
posed multi-objective approaches achieved similar or better
performance than single objective approaches, so it will be
interesting to further investigate the use of multi-objective
ACO for feature selection in the future.

An interesting finding in ACO approaches is that a large
number of the filter works are based on rough set theory [182],
[195], [196], [203], [205], where [203] is the only discov-
ered work on ACO for multi-objective filter feature selection.
Jensen and Shen [182] first applied ACO to find a small feature
subset in a rough set to address feature selection problems.
Later, He [205] proposed a filter algorithm to use the core
features from the rough set as the starting point of ACO
for feature selection. Jensen [195] proposed a filter feature
selection model based on ACO and fuzzy-rough theory for
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classification of Web content and complex systems monitoring.
The popularity of rough set theory in ACO for feature selec-
tion is likely because the rough set-based measures are easy
to update when adding or removing features during the travel
of ants.

In summary, in ACO for feature selection, the proportion
of filter approaches is much higher than that in GAs, GP, and
PSO for feature selection. The graph representation in ACO
is more flexible than the representation in GAs and PSO, but
the order of encoding the features as nodes may influence the
performance. Building feature subsets through ants traversing
nodes is similar to many traditional ways of gradually adding
or removing features to a subset, which makes it easy to adopt
existing filter measures in ACO for feature selection. However,
the graph representation may not scale well to problems with
thousands of features, which might be the reason why current
ACO approaches focus mainly on relatively small-scale prob-
lems. Further, investigating the parameter settings in ACO and
the capabilities of ACO for multi-objective feature selection
are still open issues.

E. Other EC Techniques for Feature Selection

Table V shows other EC techniques for feature selec-
tion, including DE, memetic algorithms, LCSs, ES, ABC,
AISs, estimated distribution algorithm (EDA), gravitational
search algorithm (GSA), tabu search (TS), and SA,2 where
only [206], [207] are multi-objective approaches. There are
many more works on DE and memetic algorithms than on
other algorithms listed in Table V.

DE was introduced to solve feature selection problems in
recent years, mainly since 2008. Most of the works focus on
improving the search mechanisms of DE, while the represen-
tation scheme has also been investigated. Khushaba et al. [47]
combined DE with ACO for feature selection, where DE was
used to search for the optimal feature subset based on the solu-
tions obtained by ACO. Experiments showed that the proposed
algorithm achieved better performance than other traditional
feature selection algorithms on EEG brain–computer-interface
tasks. Ghosh et al. [17] applied an adaptive DE algorithm
to feature selection, where the parameters in DE were self-
adapting depending on the problems. The results showed that
the proposed algorithms outperformed a GA [65], ACO [198],
DE [208], and the combination of ACO and DE [47] on
image problems. Khushaba et al. [47], [209] proposed a new
representation with each individual encoded as a vector of
floating numbers and the dimensionality was the desired num-
ber of features. The results showed that the proposed DE
algorithm achieved better performance than PSO and a GA on
EEG brain–computer-interface tasks. DE has also been applied
to multi-objective feature selection [206], which showed that
the proposed multi-objective approach obtained better feature
subsets than single objective approaches in terms of the clas-
sification performance and the number of features. However,
DE has not been applied to filter multi-objective feature selec-
tion, which is an opportunity for future work. Further, DE has

2TS and SA are not EC techniques, but we include them here since they
have often been used together or compared with EC algorithms.

TABLE V
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achieved success in large-scale optimization [210], [211], but
it has not been investigated for feature selection with a large
number of features, e.g., more than 500 or 1000 features.

Memetic algorithms, which combine population-based
search (an EC technique) with local search, provide a great
opportunity to combine wrapper and filter methods. Therefore,
in most memetic-based feature selection approaches, an EC
technique was used for wrapper feature selection and a
local search algorithm was used for filter feature selection.
Zhu et al. [49], [226], and Zhu and Ong [227] proposed
memetic algorithms for feature selection, i.e., GAs for wrap-
per feature selection and a local search using Markov blanket
for filter feature selection. Similarly, local search for filter fea-
ture selection using mutual information was applied together
with GAs and PSO for wrapper feature selection to develop
memetic approaches in [50], [176], and [228]. A two-stage
feature selection algorithm was proposed in [213], where a
Relief-F algorithm was used to rank individual features and
then the top-ranked features were used as input to the memetic
wrapper feature selection algorithm. In addition, a memetic
algorithm was used for feature selection to improve the per-
formance of LCSs in [230], where an LCS was used as a
classification algorithm to evaluate the fitness of the selected
features.

Other EC techniques have also been applied to feature selec-
tion, mainly including LCSs, ES, ABC, AISs, GSAs, EDAs,
TS, and SA. Some of them were combined with other EC
techniques [38], [53], [139], while most were applied indi-
vidually to address feature selection problems [54], [56], [79],
[151], [219]–[221], [223]–[225], [231]. Almost all of them are
wrapper-based methods.

In summary, a variety of EC techniques have recently been
applied to address feature selection problems. Since all algo-
rithms have their own advantages and disadvantages, they can
be used for potential further investigation to address different
new challenges in the feature selection area.

IV. MEASURES IN FILTER APPROACHES

Feature selection measures have previously been classified
into five categories [1]: 1) information measures; 2) con-
sistency measures; 3) dependency (or correlation) measures;
4) distance measures; and 5) precision measures (i.e., wrap-
per approaches). As this section aims to study typical filter
measures used in EC for feature selection, only the first four
types of filter measures are reviewed. Since rough set theory
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TABLE VI
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and fuzzy set theory are important feature selection measures
in computational intelligence, they are also listed as another
two separate categories. The six categories of filter measures
in EC for feature selection can be seen from Table VI.

Information theory-based measures are used more often than
all other measures. The use of information measures is mainly
in four ways.

1) Use an information measure to rank individual features
before using an EC technique. Symmetrical uncertainty
or mutual information was used for filter feature ranking
and then the top-ranked features were used in ACO [201]
or GA-based [72] wrapper feature selection.

2) Use an information measure in the local search of a
memetic algorithm. Mutual information [176], [226],
symmetrical uncertainty [50], and Markov blanket [227]
were used in local search to perform a filter feature
selection to refine the solutions obtained by a GA or
PSO for wrapper feature selection.

3) Incorporate an information measure into the updat-
ing/search mechanism. Mutual information was incorpo-
rated in the position updating procedure of PSO in [33]
to help in improving the performance of PSO and an
SVM for wrapper feature selection. Based on the infor-
mation theory and GP, a new relevance measure was
proposed in [41] to improve the feature selection and
classification performance of GP.

4) Use information theory to form a fitness function in an
EC algorithm. This is considered the most popular way
to use information theory for feature selection. Based on
the idea of “max-relevance and min-redundancy” [32],
mutual information was used to measure the redundancy
within a feature subset and the relevance between fea-
tures and the class labels. Different EC methods have
been used to maximize the relevance and minimize the
redundancy in both single objective and multi-objective
manners [34], [102], [106], [194], [200]. However, most
of these measures evaluate features individually except
for [34], [41], and [102].

Correlation measures qualify the ability to predict the value
of one variable based on the value of another. Two correlation
measures were proposed in [207] to evaluate the relevance
and redundancy in ES and NSGA-II for feature selection on
two credit approval datasets. Li et al. [75] proposed a multiple

populations-based GA for feature selection, and the correlation
between features and the class labels were used as a filter
measure to test the performance of the proposed GA.

Distance measures are also known as separability, diver-
gence, or discrimination measures. Iswandy and Koenig [136]
used two distance measures, the overlap measure and the
compact measure, in PSO for feature selection and suc-
cessfully reduced the dimensionality. Signal-to-noise ratio
was also used for feature selection in [15], where GP was
used for classification, and the features used by GP were
ranked by signal-to-noise ratio with only the top-ranked ones
being selected. Signal-to-noise ratio was also used to evalu-
ate the goodness of each individual feature in PSO for feature
selection [170].

Consistency measures are based on whether two instances,
which have the same feature values, have the same class label.
GAs were the first EC technique to use consistency mea-
sures [98]. Later, a fuzzy set-based consistency measure was
proposed in [165], which was different from most consistency
measures that required discrete data. The proposed measure
was used in PSO for feature selection and shown to be
faster than PSO with a fuzzy set-based fitness function [163].
Consistency measures are in general computationally more
expensive than other filter measures [1], which presents an
opportunity for further improvement.

Fuzzy set theory is able to measure imprecision and uncer-
tainty through a membership function, which can be used to
evaluate the quality of features. Both PSO and GAs have been
used together with a fuzzy fitness function for feature selec-
tion in both single objective [99], [163] and multi-objective
approaches [104]. Fuzzy set theory has been extensively used
for feature selection in non-EC methods, and there is still great
potential to utilize it in EC-based approaches.

Rough set theory can deal with uncertainty and incomplete-
ness. It measures the consistency degree of a dataset through
the concept of approximations of a target set, which can be
used for feature selection [232]. Wang et al. [162] applied
standard rough set theory to form a fitness function in PSO
for feature selection. Later, Cervante et al. [166], [169] further
used probabilistic rough set theory in PSO for feature selection
and achieved better performance than using standard rough set
theory. Rough set theory has attracted much attention in ACO
for feature selection [182], [195], [203], [205], which has been
discussed in Section III-D. The use of rough set was further
extended for multi-objective feature selection in GAs [103],
PSO [171], [173], and ACO [203] to obtain a set of trade-off
feature subsets to better solve the problems. However, most
of the existing approaches focus mainly on datasets with a
relatively small number of features, say, less than 100.

Using multiple measures simultaneously in a single fea-
ture selection algorithm has become popular in recent years
since each measure has its own advantages and disadvan-
tages. Spolaôr et al. [105] investigated five different filter
measures in NSGA-II for feature selection, including incon-
sistent example pairs as a consistency measure, attribute-class
correlation as a dependency/correlation measure, interclass
distance measure, Laplacian score distance measure, and rep-
resentation entropy as an information measure. The results
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showed that the combination of the interclass distance measure
and the attribute-class correlation measure performed better
than other combinations. Sandin et al. [116] proposed to use
information gain, χ2, odds-ratio, and correlation coefficient,
and Ahmed et al. [118] proposed to use information gain
and Relief-F to rank individual features. Only the top-ranked
features from each measure were used as the input to GP
for feature selection. Tallón-Ballesteros and Riquelme [202]
tested a correlation measure, a consistency measure, and their
combination with information gain in ACO for feature selec-
tion. These works show that using multiple measures can
help discover useful information in features and improve the
performance.

In summary, different types of filter measures have been
adopted in EC for feature selection. Among these measures,
information measures, correlation measures, and distance mea-
sures are computationally relatively cheap, whereas while
consistency, rough set, and fuzzy set theories-based measures
may handle noisy data better. However, almost all of them
were designed for discrete data and the performance may
deteriorate when applied to continuous data, which appears
in many real-word problems. It is worth noting that almost all
these measures are existing ones (or with little modification),
i.e., they were originally used in traditional feature selection
methods, e.g., sequential search. EC techniques were used as
a search method in these approaches. There are also some
measures that are not suitable for using in EC for feature
selection because they are designed for a specific (traditional)
search method. There are only a few filter measures par-
ticularly designed for EC-based feature selection, where an
example is from Neshatian and Zhang [130] who developed
a filter relevance measure based on GP trees with a virtual
structure, which improved the performance of GP for feature
selection. Compared with wrapper approaches, the classifica-
tion performance of filter approaches is usually worse, but
they can be much cheaper than wrapper approaches [233],
which is critical in large datasets. Therefore, developing fil-
ter measures specifically according to the characteristics of
an EC technique may significantly increase the efficiency
and effectiveness, which offers an important future research
direction.

V. APPLICATIONS

Table VII shows the applications of EC for feature selection.
It can be seen that EC-based feature selection approaches have
been applied to a variety of areas.

Generally, the major applications can be grouped into the
following five categories.

1) Image and signal processing, including image analy-
sis, face recognition, human action recognition, EEG
brain–computer-interface, speaker recognition, hand-
written digit recognition, personal identification, and
musical instrument recognition.

2) Biological and biomedical tasks, including gene anal-
ysis, biomarker detection, and disease diagnosis, where
selecting the key features and reducing the dimensional-
ity can significantly reduce the cost of clinic validation,
disease diagnosis, and other related procedures.

TABLE VII
APPLICATIONS

3) Business and financial problems, including financial cri-
sis, credit card issuing in bank systems, and customer
churn prediction.

4) Network/Web service, including text mining, Web ser-
vice, network security, and email spam detection.

5) Others, such as power system optimization, weed recog-
nition in agriculture, melting point prediction in chem-
istry, and weather prediction.

All of the above areas are important and essential to our
society or daily life. Of course, many other fields [235], such
as complex engineering tasks and language learning, also need
feature selection, but EC-based approaches have not been
thoroughly investigated in those areas.

VI. ISSUES AND CHALLENGES

Despiting the suitability, success, and promise of EC for fea-
ture selection, there are still significant issues and challenges,
which will be discussed here.

A. Scalability

The most pressing issue is due to the trend in big data [13],
the size of the data becomes increasingly large. In 1989, select-
ing features from a dataset with more than 20 features was
called large-scale feature selection [37]. However, nowadays
the number of features in many areas, such as gene analysis,
can easily reach thousands or even millions. This increases
computational cost and requires advanced search mechanisms,
but both of these aspects also have their own issues, so
the problem cannot be solved by only increasing computa-
tional power. Novel methods and algorithms will become a
necessity.
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A number of EC algorithms have been proposed to solve
large-scale feature selection problems [15], [70], [72], [118],
[140], [175], [201], where the dimensionality reaches a
few thousands or tens of thousands. Other computational
intelligence-based techniques have been introduced to feature
selection tasks in the ranges of millions [13], [36]. Most of
the existing EC-based large-scale feature selection approaches
employ a two-stage approach, where in the first stage, a mea-
sure is used to evaluate the relevance of individual features,
then ranks them according to the relevance value. Only the
top-ranked (better) features are used as inputs to the sec-
ond stage to further select features from them. However, the
first stage removes lowly-ranked features without consider-
ing their interaction with other features. To solve large-scale
feature selection problems, new approaches are needed, includ-
ing new search algorithms and new evaluation measures.
EC approaches have shown their potential for large-scale
(global) optimization [210], [211], [236], which provides a
good opportunity to better address large-scale feature selection
tasks.

B. Computational Cost

Most feature selection methods suffer from the problem of
being computationally expensive, which is a particularly seri-
ous issue in EC for feature selection since they often involve
a large number of evaluations. Filter approaches are gener-
ally more efficient than wrapper approaches, but experiments
have shown that this is not always true [233]. Some filter
measures, such as the rough set theory [28], [162], [167],
[182], [195], [196], [203], [205], may take a longer time
than a fast/simple wrapper method [233]. Although there exist
fast filter measures, such as mutual information [32]–[34],
[237], the classification performance is usually worse than
most wrapper approaches. Therefore, it is still a challenge to
propose efficient and effective approaches to feature selection
problems.

To reduce the computational cost, two main factors, an effi-
cient search technique and a fast evaluation measure, need to
be considered [1]. A fast evaluation criterion may produce a
greater influence than the search technique, since in current
approaches the evaluation procedure takes the majority of the
computational cost. It is noted that the parallelizable nature of
EC is suited as grid computing, graphics processing unit, and
cloud computing that can be used to speed up the process.

C. Search Mechanisms

Feature selection is an NP-hard problem and has a large
complex solution space [238]. This requires a powerful global
search technique and current EC algorithms still have great
potential to be improved.

The new search mechanisms should have the ability to
explore the whole search space and also be able to exploit
the local regions when needed. New search mechanisms may
involve local search (to form novel memetic algorithms),
hybridization of different EC search mechanisms, hybridiza-
tion of EC and conventional methods [39], [157], surrogate
approaches [239], etc.

A related issue is that the new search mechanisms should be
stable on feature selection tasks. EC algorithms are stochas-
tic approaches, which may produce different solutions when
using different starting points. Even when the fitness values
of the solutions are the same, they may select different indi-
vidual features. Therefore, the stability of the algorithms not
only involves the difference of the fitness values, but also
involves the consistency of the selected features. Therefore,
to propose new search algorithms with high stability is also
an important task.

D. Measures

The evaluation measure, which forms the fitness function,
is one of the key factors in EC for feature selection. It con-
siderably influences the computational time, the classification
performance, and the landscape of the search space.

Most of the computational time is spent on the evalua-
tion procedure for wrapper approaches and also for many
filter approaches [29], [157], [233]. Although there are some
existing fast evaluation measures, such as mutual informa-
tion [12], [32], [34], [240], they evaluate features individually
rather than a group of features. Ignoring interactions between
features results in subsets with redundancy and lack of com-
plimentary features [2], [241], which in turn cannot achieve
optimal classification performance in most domains of inter-
est. However, discovering complex feature interaction is very
challenging, and only a few works have been conducted on
this direction [242]. There are some measures that can eval-
uate groups of features [27], [31], [162], [173], but they are
usually computationally expensive, such as rough set-based
measures [162], [173]. Furthermore, many studies show that
filter methods do not scale well above tens of thousands of fea-
tures [13]. Therefore, new measures still need to be developed
for feature selection, especially when dealing with large-scale
problems.

For feature selection problems, multiple different solutions
may have the same fitness values. A small (big) change in
the solution may cause a huge (small) difference in the fit-
ness value. This makes the problem even more challenging.
Therefore, developing new measures that can smooth the fit-
ness landscape will significantly reduce the difficulty of the
task and help with the design of suitable search algorithms.

E. Representation

The traditional representation in most EC approaches results
in a huge search space for feature selection problems, i.e., the
size is 2n for a dataset with n features, even when n is only a
few hundreds [1], [2].

A good representation scheme can help to reduce the search
space size. It in turn helps to design new search mechanisms
to improve the search ability. Another issue is that the cur-
rent representations usually reflect only whether a feature is
selected or not, but the feature interaction information is not
shown. Feature interaction usually involves a group of features
rather than a single feature. If the representation can reflect the
selection or removal of groups of features, it may significantly
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improve the classification performance. Furthermore, the inter-
pretation of the solution is also an important issue closely
related to the representation. Most EC methods are not good
at this task except for GP and LCSs as they produce a tree
or a population of rules, which are easier to understand and
interpret. Therefore, a good representation scheme may help
users better understand and interpret the obtained solutions.

F. Multi-Objective Feature Selection

Most of the existing EMO algorithms are designed for con-
tinuous problems [243], but feature selection is a discrete
problem. When dealing with large-scale problems, existing
EMO methods do not scale well [210], [211], [244], [245].
This requires the development of novel EMO algorithms.
Furthermore, the two main objectives (minimizing both the
number of features and the classification error rate) are
not always conflicting with each other, i.e., in some sub-
spaces, decreasing the number of features can also decrease
the classification error rate as unnecessary features are
removed [29], [153], [157], [170], [172], [193]. This makes it
tricky to design an appropriate EMO algorithm. Furthermore,
developing new evaluation metrics and further selection meth-
ods to choose a single solution from a set of trade-off solutions
is also a challenging topic.

Finally, besides the two main objectives, other objectives,
such as the complexity, the computational time, and the solu-
tion size (e.g., tree size in GP and number of rules in LCSs),
could also be considered in multi-objective feature selection.

G. Feature Construction

Feature selection does not create new features, as it only
selects original features. However, if the original features are
not informative enough to achieve promising performance, fea-
ture selection may not work well, yet feature construction may
work well [3], [246].

One of the challenges for feature construction is to decide
when feature construction is needed. A measure to estimate
the properties of the data might be needed to make such a deci-
sion. Meanwhile, feature selection and feature construction
can be used together to improve the classification performance
and reduce the dimensionality. This can be achieved in three
different ways: 1) performing feature selection before feature
construction; 2) performing feature construction before fea-
ture selection; and 3) simultaneously performing both feature
selection and construction [3].

H. Number of Instances

The number of instances in a dataset significantly influences
the performance and design of experiments [235]. It causes
problems when the number is too big or too small.

When the number of instances is too small, it is hard to
design appropriate experiments to test the performance of
the algorithms. For example, there might be tens of thou-
sands of features, but the number of instances can be smaller
than one hundred because of the high cost of collecting
such instances [117]. It is difficult to split the data into a
training set and a test set to represent the actual problem.

Therefore, many existing works have the problem of feature
selection bias [247], [248], especially when the whole set of
data is used during the feature selection process [44], [70],
[117], [144], [188], [214], [228]. Although cross-validation or
bootstrap sampling techniques [249] can address the issue to
some extent, they may have the problem of it being hard to
decide the final selection of individual features because EC
algorithms (and conventional deterministic algorithms) often
select different features from different cross-validation runs.

When the number of instances is too big, one major prob-
lem is the computational cost [29], [235]. In feature selection,
each evaluation usually needs to visit all the training examples.
The larger the data/training size, the longer each evaluation.
Meanwhile, for big data problems, it not only needs to reduce
the number of features but also the number of instances [250].
Combining feature selection and instance selection into a sin-
gle process may improve both the effectiveness and efficiency
of the data preprocessing process.

VII. CONCLUSION

This paper provided a comprehensive survey of EC tech-
niques in solving feature selection problems, which covered
all the commonly used EC algorithms and focused on the key
factors, such as representation, search mechanisms, and the
performance measures as well as the applications. Important
issues and challenges were also discussed.

This survey shows that a variety of EC algorithms have
recently attracted much attention to address feature selection
tasks. A popular approach in GAs, GP, and PSO is to improve
the representation to simultaneously select features and opti-
mize the classifiers, e.g., SVMs. Different algorithms have
their own characteristics, such as GAs are able to preserve a
small set of features during the evolutionary process because
of the nature of genetic operators, PSO is relatively compu-
tationally cheap because of its simple updating mechanisms,
ACO can gradually add features because of the graph rep-
resentation, and GP can implicitly perform feature selection
through feature construction. Therefore, these EC techniques
or their combinations can be used with different measures to
solve different types of feature selection problems. This needs
further investigation in the future. Furthermore, all the major
EC algorithms, e.g., GAs, GP, and PSO, have been used to
address feature selection tasks with thousands of features, but
they suffer from the problem of high computational cost. As
a result, when they are applied to large-scale feature selection
tasks, the current target datasets usually have a small number
of instances.

Although EC techniques for feature selection have achieved
some success, they still face challenges and their potential
has not been fully investigated. Scalability is one of the most
important issues since both the number of features and the
number of instances are increasing in many real-world tasks.
This is not only a challenging task in EC, but also in the
machine learning, statistics, and biology communities. The
recent advances in EC for large-scale global optimization moti-
vate further studies on EC for large-scale feature selection, but
it is challenging to develop promising approaches, where novel
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search mechanisms and representation schemes are needed
in both single objective and multi-objective feature selection.
To improve their effectiveness and efficiency, it is necessary
to design a cheap evaluation measure according to the spe-
cific representation and the search mechanism of a particular
EC technique. The proposal of novel approaches may involve
methods or measures from different areas, which encourages
research across multiple disciplines. A comprehensive compar-
ison between EC and non-EC approaches on a large number
of benchmark datasets/problems to test their advantages and
disadvantages can help develop novel effective approaches to
different kinds of problems. In addition, combining feature
selection with feature construction can potentially improve
the classification performance, whereas combining feature
selection with instance selection can potentially improve the
efficiency.
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