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Evolutionary Multitasking Sparse Reconstruction:
Framework and Case Study

Hao Li ", Yew-Soon Ong

Abstract—Real-world applications typically have multiple
sparse reconstruction tasks to be optimized. In order to exploit
the similar sparsity pattern between different tasks, this paper
establishes an evolutionary multitasking framework to simulta-
neously optimize multiple sparse reconstruction tasks using a
single population. In the proposed method, the evolutionary algo-
rithm aims to search the locations of nonzero components or
rows instead of searching sparse vector or matrix directly. Then
the within-task and between-task genetic transfer operators are
employed to reinforce the exchange of genetic material belonging
to the same or different tasks. The proposed method can solve
multiple measurement vector problems efficiently because the
length of decision vector is independent of the number of mea-
surement vectors. Finally, a case study on hyperspectral image
unmixing is investigated in an evolutionary multitasking setting.
It is natural to consider a sparse unmixing problem in a homoge-
neous region as a task. Experiments on signal reconstruction and
hyperspectral image unmixing demonstrate the effectiveness of
the proposed multitasking framework for sparse reconstruction.

Index Terms—Evolutionary algorithm, hyperspectral unmix-
ing, multitasking optimization, sparse reconstruction.

I. INTRODUCTION

PARSE reconstruction aims to find sparse solutions to

large under-determined linear systems of equations. It has
been widely used in many applications, such as signal process-
ing, pattern recognition, computer vision, and so on [1]-[3].
Let x € RY be a sparse vector that contains many zero ele-
ments, its reconstruction normally takes the following linear
equation:

y =Ax (D
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where A € RM*N with M < N is known as the sensing matrix
or over-complete dictionary and y € R is called the mea-
surement vector. If noise is considered, sparse reconstruction
is to recover the sparse vector from under-determined linear
systems of equations

y=Ax+n 2)

where n € RY is the additive independent identically dis-
tributed noise. In the noise-free or noisy cases, sparse recon-
struction can be formulated as the following constrained
optimization problems:

min |x[lp, s.t. y=Ax )
X
. 2
min xflo, st [y —Ax|; <o 4)
where || - ||o is the lp norm that counts the number of nonzero

values of a vector. With the penalty method, the above two
problems can be converted into the following form:

min[ly — Ax[|3 + Allxllo )

where A is a positive regularization parameter.

The sparse reconstruction problem is highly nonconvex and
has been proven to be an NP-hard optimization problem [4].
Many schemes have been developed to deal with the sparse
reconstruction problem. Among them, greedy algorithms and
relaxation methods are two widely used techniques for sparse
reconstruction. Greedy algorithms (e.g., the orthogonal match-
ing pursuit and its variants [5]) select the column most
correlated with the current residuals so as to add the corre-
sponding entry into the set of nonzero entries in each iteration.
Greedy algorithms have good performance when the nonzero
entries are identified correctly. However, if noise exists, the
performance of greedy algorithms may degenerate signifi-
cantly since some zero components may be considered as the
nonzero ones. Relaxation methods use the [,(0 < p < 1)
norm minimization instead of the /o norm so that they are
less sensitive to noise compared with greedy algorithms [6].
Nevertheless, the quality of the signal reconstructed with
the relaxation method is easily affected by the selection of
Lagrangian parameter [7], [8].

In this paper, the sparse reconstruction in case of multiple
measurement vectors (MMVs) is also considered. Its model
can be generalized from the basic single measurement vec-
tor (SMV) model [i.e., (2)] [9]-[11]. Given L structurally
equivalent SMV models, the MMV model can be expressed as

Y=AX+N (6)
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where Y = [y, ¥,,...,y;] and X = [x,x2,...,xz]. Similar
to the sparse constraint in the SMV model, the number
of nonzero rows in X should be less than a threshold to
ensure sparsity. The MMV model has been demonstrated to
be more suitable for some applications [9], [10], [12]-[16].
For example, a theoretical result of hyperspectral unmix-
ing shows that the probability of recovery failure decays
exponentially in the number of measurement vectors [15].
Iordache et al. [15] proposed a collaborative hyperspectral
unmixing method based on the MMV model. The sparsity
is simultaneously imposed to all pixels in the data set. Then
Tordache et al. [16] proposed a two-step algorithm to exploit
the usual low dimensionality of the hyperspectral data sets.
The algorithm identifies a subset of the library elements and
then applies collaborative hyperspectral unmixing.

Recently, multiobjective evolutionary algorithms (MOEAs)
have been employed to solve the sparse reconstruction prob-
lems [7], [8], [17]-[19]. In order to balance the measurement
error and the sparsity constraint, Li et al. [17] modeled
sparse reconstruction as a multiobjective optimization problem
involving measurement error and a sparsity-inducing term.
In [7], a local search strategy based on a soft thresholding
method was embedded into the NSGA-II algorithm [20] to
increase the speed of convergence. Luo et al. [18] proposed a
multiobjective sparse spectral clustering method and designed
a ratio cut-based method to select a tradeoff solution from
the Pareto front (PF). Zhou et al. [8] proposed a two-phase
evolutionary approach for sparse reconstruction. In the first
phase, MOEA/D [21] is applied to generate a set of robust
solutions by optimizing /; norm of the solutions. In the second
phase, a forward-based selection method is proposed to further
update the solution set to make the identification of nonzero
entries more precise. In [19], a preference-based multiobjective
approach was proposed to solve sparse optimization problems.
The randomness of the sparsity level can be viewed as a muta-
tion operator. Notwithstanding, most of these MOEA-based
methods are proposed to deal with SMV problems. For MMV
problems, the solution representation is a matrix, not a vector.
It is a difficult task to design a suitable representation strategy
and genetic operators for considering the structure of MMVs.
Furthermore, it suffers from the curse of dimensionality with
the increase of the length of sparse vector and the number of
measurement vectors.

In many real-world applications, there often exist more than
one sparse reconstruction tasks that have to be solved at the
same time and notably these tasks typically share similar spar-
sity pattern [22]. Taking the cue, in this paper, we extend the
evolutionary multitasking framework proposed in [23]-[25]
for simultaneous optimization of multiple sparse reconstruc-
tion tasks by taking advantage of the similar sparsity pattern
found across the tasks. Evolutionary multitasking optimization
was first proposed by Gupta et al. [23] and then extended to
a multiobjective version in [24]. In evolutionary multitask-
ing optimization, each individual is assigned to a skill factor
for indicating the cultural trait of the associated task. Then
the individuals are encoded in a unified search space and the
genetic operators are applied to produce offspring in this space.
The offspring also inherits the parents’ skill factors through the

vertical cultural transmission. In the phase of evaluation, these
individuals are decoded into the solution representation of the
associated task.

In summary, a novel multitasking sparse reconstruction
(MTSR) framework is proposed in this paper to solve both
SMV and MMV problems in the evolutionary multitasking
setting. In the proposed multitasking framework, each task is
modeled as a multiobjective optimization problem. Instead of
coding the sparse vector or matrix directly, evolutionary algo-
rithm in the proposed method aims to search the locations of
the nonzero components of the sparse vector in SMV problems
or the nonzero rows of the sparse matrix in MMV prob-
lems. Then the within-task and between-task genetic transfer
occurred in the candidate parents is used to generate the next
population. Eventually, a set of nondominated solutions is
attained for each task. A case study on hyperspectral sparse
unmixing is also investigated to validate the effectiveness of
the proposed method. In this case study, a sparse unmixing
problem in a homogeneous region is considered as a task.
The pixels in the homogeneous region are more likely to
share the same active set of endmembers than that of the pixels
in the whole image.

The contributions of this paper are threefold.

1) This paper solves the sparse reconstruction problems
in an evolutionary multitasking setting to facilitate
improved convergence characteristics. The overall con-
vergence characteristics can be significantly improved by
the between-task transfer in the multitasking framework.

2) While existing MOEA-based algorithms are designed for
SMV problems, this paper is the first one to consider
MMV problems.

3) A case study on hyperspectral sparse unmixing is inves-
tigated in the evolutionary multitasking setting.

This paper is organized as follows. Section II gives the back-
ground knowledge on multiobjective optimization and mul-
titasking optimization. Our motivation of using evolutionary
multitasking optimization is also discussed. In Section III, we
describe the proposed MTSR framework in detail. Section IV
presents a case study on hyperspectral image unmixing. The
experimental results on signal reconstruction and hyperspec-
tral unmixing are provided in Section V. Finally, the main
conclusions are drawn in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we introduce the basic concepts of multiob-
jective optimization and multitasking optimization. In particular,
we distinguish the differences between the two paradigms.
Moreover, we present the motivation of using multitasking
optimization for solving sparse reconstruction problems.

A. Background

1) Evolutionary Multiobjective Optimization: Generally, a
multiobjective optimization problem (MOP) with m decision
variables and n objectives can be expressed as

min F(x) = (fi(x), LX), ..., fux)T

st x=(x1,x2,...,x0)7 € Q 7
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where Q2 is the feasible set, and x is the decision variable
vector in it. F : Q — R”" consists of n real-valued objective
functions. Normally, there is no single solution in the feasi-
ble region that can simultaneously minimize all the objective
functions. Instead, there is a set of Pareto optimal solutions
that are tradeoffs between different objectives [26]. The Pareto
set is the set of all Pareto-optimal solutions and its mapping
to objective space is the PF. MOEAs aim to find a set of
approximate solutions to the PF [20], [21], [26], [27].

2) Evolutionary Multitasking Optimization: The paradigm
of multitask learning has been investigated over two
decades [28]. The idea is to employ relevant information
available in different tasks by performing learning using a
shared representation. Evolutionary multitasking optimization
aims to reveal the multitasking potential of evolutionary algo-
rithms [29], [30]. A multitasking optimization problem with
K tasks can be mathematically expressed as

{x1,x2,...,xg} = argmin {F1(x), F2(x), ..., Fg(x)}
st.  xeQ,i=1,2,....,K. (8)
It is easy to distinguish the differences between

multiobjective optimization and multitasking optimization. For
multiobjective optimization, there exists a design space for
a given task and all variables are contained in this single
space. Evolutionary multitasking optimization has multiple
heterogeneous design spaces and every individual is encoded
into a unified space. Furthermore, each task in the mul-
titasking setting can be one multiobjective optimization
problem. In [24], a multifactorial optimization technique was
proposed to solve the multitasking optimization problems.
Then Gupta et al. [24] extended it to deal with multiobjective
optimization problems.

In evolutionary multitasking optimization, every individual
pi in a population P is associated with a task. For the ith
individual p; with the jth task Tj, the factorial rank r}, skill
factor 7; and scalar fitness ¢; are defined as follows.

1) rjl The factorial rank r/’ is the index of p; in the list
of population members sorted in ascending order with
respect to 7.

2) t;: The skill factor t; indicates the associated task. If p;
is evaluated for all tasks, we can have 1; = arg min{rj’:},
where j € {1,2,...,K}.

3) ¢;: The scalar fitness of p; in a multitasking environment
is given by ¢; = 1/rij.

In the multiobjective case, nondominated sorting and
crowding distance are employed to order population
members [20], [24]. Each individual is associated with the
most effective task, on which the individual has the best fac-
torial rank. If ¢1 > ¢, the individual p; is considered to
dominate p;.

B. Motivation

As described in Section I, some MOEA-based sparse recon-
struction methods have been proposed to deal with SMV prob-
lems. These schemes always consider the measurement error
and sparsity-inducing terms as two objective functions and
then search the sparse vector directly. Whereas, it is difficult

735

to extend them to solve MMV problems since multiple sparse
vectors exist in the MMV model. Therefore, this paper aims
to propose an efficient MOEA-based sparse reconstruction
method for solving both SMV and MMV problems.

In the real-world applications, multiple sparse reconstruc-
tion tasks may have to be solved at the same time and share
similar sparsity pattern. These sparse reconstruction problems
can be solved individually by existing sparse reconstruction
algorithms. However, these methods may ignore the relevant
information available in related tasks. In order to take the
advantage of the similar sparsity pattern found across the tasks,
this paper investigates the MOEA-based sparse reconstruction
method in an evolutionary multitasking setting to facilitate
improved convergence characteristics.

In this paper, we propose an MOEA-based sparse recon-
struction method for MMV problems and investigate it in an
evolutionary multitasking setting. There are two major dif-
ferences between the previous MOEA-based works and our
proposed method. On the one hand, the proposed method
can solve both SMV and MMV problems while most of the
previous schemes are designed for SMV problems. On the
other hand, the proposed method solves multiple sparse recon-
struction tasks simultaneously to leverage upon the underlying
commonalities between different tasks.

III. EVOLUTIONARY MULTITASKING SPARSE
RECONSTRUCTION

In this section, an evolutionary multitasking framework
for sparse reconstruction is presented. First, we show the
multiobjective model for SMV problems and then extend it
to solve MMV problems. An evolutionary multitasking frame-
work based on the multiobjective model is described in detail.
Next, we elaborate the strategies of the representation and the
initialization. Then we show the within-task and between-task
genetic transfer occurred in the candidate parents. The evalua-
tion of the individuals is also given. Finally, the computational
cost of the proposed method is analyzed.

A. Evolutionary Multitasking Framework for Sparse
Reconstruction

As described in Section I, it is a difficult task to set the
regularization parameter or estimate the true sparsity in sparse
reconstruction. In order to detect the true sparsity automati-
cally, sparse reconstruction can be modeled as a multiobjective
optimization problem [7], [18], [19]. Some studies have shown
that the best sparse solution is located in the knee region
of PF [7], [31]. In the MOEA-based sparse reconstruction
methods, the measurement error and the sparsity terms are
simultaneously optimized to obtain a set of tradeoff solutions.
The multiobjective sparse reconstruction model for the SMV
problem can be formulated as

min Fx) = min( [jelo, | 4x - y13). ©)

Compared with the regularization problem (5), no regulariza-
tion parameter is needed in the multiobjective model. This
paper aims to extend the above multiobjective model for
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Algorithm 1: Evolutionary MTSR

Step 1 Initialization
Generate N, individuals to form the initial population Py.
for every p; in Py do
Assign the skill factor 7.
Evaluate p; based on Algorithm 3.
end
Compute scalar fitness ¢; for every p; based on the
nondominated sorting and crowding distance [20], [24].
Set the generation number g = 0.
9 Step 2 Cycling
10 Obtain Pig by the tournament selection method according
to P,.
11 Acquire offspring C, based on the within-task and
between-task genetic transfer shown in Algorithm 2.
12 for every c; in Cy do
13 ‘ Evaluate ¢; based on Algorithm 3.
14 end
15 Rg = Py |JC,.
16 Update scalar fitness of all individuals in R,.
17 Select N, individuals from R, to form Pgq .
18 Step 3 Stopping criteria
19 If the stopping conditions are not satisfied, then
g =g+ 1 and go to Step 2, otherwise, stop the
algorithm and output P,.

N A AW N -

=]

solving MMV problems and investigates it in the evolution-
ary multitasking setting. Inspired by the multiobjective model
in (9), we arrive at the following multiobjective model for
MMV problems:
min F(x) = min(J(X), IAX — Y||%) (10)

where J(X) represents the row-/p quasi-norm [32], [33].

For the MMV model, the target signals are supported on a
common support set and we have

L
supp(X) = |_J supp(xy). (11)

i=1
Then the row-Iy quasi-norm of a matrix can be defined as

J(X) = [supp(X)]. (12)

Similar to the SMV model, many existing methods employ
IXllo,; (¢ > 1) to measure the number of rows in X. The
ly norm is applied to rows of || X|| and then the /p norm is
applied to the resulting vector. Similar to the use of the /,-
norm (0 < p < 1) in the SMV model, || X]|, 4 can be used to
replace || X||o,4 in the relaxation methods [33].

It has been demonstrated that the transfer of genetic mate-
rials among different tasks can speed up the convergence for
various optimization problems [23]-[25], [30], [34]. In fact,
in many real-world applications, there exist multiple sparse
optimization problems that typically share similar sparsity pat-
tern [22]. In order to take full advantage of the parallelism
of population-based search, this paper aims to solve multiple

sparse reconstruction problems simultaneously using a sin-
gle population. The algorithm of the proposed evolutionary
multitasking framework for sparse reconstruction is shown in
Algorithm 1. In the proposed method, we aim to search the
locations of the nonzero components/rows instead of searching
the sparse vector/matrix directly. Every individual is encoded
into a unified space and is assigned to a skill factor to indicate
the associated task. During the evolution of the population,
the genetic materials can be transferred among the candidate
parents belonging to the same or different tasks. The skill fac-
tor of the offspring is obtained from one of its parents. In
the evaluation phase, we obtain the corresponding sparse vec-
tor/matrix based on the acquired locations by solving a simple
optimization problem and then evaluate each individual for the
associated task. Finally, we arrive at a set of nondominated
solutions for each task.

B. Representation and Initialization

In existing EA-based algorithms, the sparse vector x € RY
in the SMV model is considered as the decision vector. It is
difficult to modify these methods to deal with MMV problems
because the solution X € RV*L is a matrix. When either or
both of N and L become large, EA-based sparse reconstruction
approaches face the curse of dimensionality. Instead of coding
the sparse vector x or sparse matrix X directly, we search the
locations of the nonzero components in x or nonzero rows of
X and then calculate the values of these nonzeros entries by
solving a simple optimization problem. In this paper, a binary
variable v is used to indicate the nonzero components/rows.

In the multitasking environment with K optimization tasks,
it is assumed that the dimensionality of the kth task is Dy.
Because v only takes “0” or “1,” it is an easy task to construct
a unified search space with the maximum dimensionality of
the K tasks, which can be expressed as

Dax :m}iix{Dk},k: 1,2,..., K. (13)

In the initialization, every individual has a vector of D,y ran-
dom variables. For kth task, Dy variables are extracted from the
Dmax random variables based on some prior domain knowl-
edge [24]. However, in cases where prior domain knowledge
is unavailable, a simple default is to use the first Dy variables
of the Dpyax random variables [23], [24].

C. Within-Task and Between-Task Genetic Transfer

In an evolutionary multitasking setting, the transfer of
knowledge may occur in the candidate parents belonging to
the same or different tasks. The pseudocode of the within-task
and between-task genetic transfer is depicted in Algorithm 2,
which aims to generate two offspring c¢; and ¢ from two can-
didate parents p; and p». It is assumed that the skill factors of
p1 and pr are 71 and 17, respectively. When the two parents
are most effective for the same task, i.e., 71 is equal to 13, the
offspring inherit the same skill factor from their parents. When
the skill factors of the two parents are different, a random mat-
ing probability (rmp) is defined to determine whether the two
parents belonging two different tasks conduct genetic transfer
or not. Only the mutation operator is employed to generate
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Algorithm 2: Within-Task and Between-Task Genetic
Transfer

Input: Two candidate parents p; and p; in Pg,, rmp.
Output: Two offspring ¢ and c;.

1 if 71 == 1, then

2 % Within-task genetic transfer

3 Obtain ¢y and c¢; by the crossover and mutation
operators.

4 The skill factors of ¢; and ¢, are equal to t1(12).

5 else

6 %Between-task genetic transfer

7 if rand < rmp then

8 Obtain ¢y and ¢ by the crossover and mutation

operators.

9 fori=1,2do

10 if rand < 0.5 then

11 ‘ The skill factors of ¢; is 1.

12 else

13 | The skill factors of ¢; is 7.

14 end

15 end

16 else

17 fori=1,2 do

18 Obtain ¢; by the mutation operator on p;.

19 The skill factors of ¢; is ;.

20 end

21 end

22 end

the offspring when the random number is larger than rmp.
Otherwise, both crossover and mutation operators are utilized
to acquire the offspring and each offspring randomly inherits
the skill factor of one of their parents. Note that the two off-
spring may share the same skill factor. The parameter rmp is
used to balance exploitation and exploration of search space.
When the value of rmp is close to 0, only culturally alike indi-
viduals are allowed to crossover. Therefore, there is always the
tendency for solutions to get trapped in local optima. In con-
trast, when the value of rmp is close to 1, the between-task
genetic transfer is able to enhance exploration of the entire
search space. Here, we consider uniform crossover [35] and
bit-wise mutation [36] as the mutation and crossover operators.

The between-task genetic transfer shown in Algorithm 2 is
able to transfer genetic material between individuals belonging
to different tasks. On the one hand, the rmp allows individu-
als with different skill factors to crossover and the offspring
can randomly inherit the skill factor from one of their parents.
The transfer turns out to be beneficial if the genetic material
from one task happens to be useful for the another task. On
the other hand, inferior genes generated due to negative trans-
fer are removed from the population by means of “survival
of the fittest.” In the special case of one sparse reconstruction
task, only within-task transfer is considered and the proposed
MTSR framework degenerates to a standard multiobjective
method.

Algorithm 3: Obtain the Nonzero Values and Evaluation

Input: The binary vector v; in the ith individual.
Output: The sparse signal x; or X;.

1 S = supp(»).

2 if It is an SMV problem then

3 ‘ Obtain x; by solving the problem (14) based on the

index set S.
4 else

‘ Obtain X; by solving the problem (15) based on the

index set S.
end

Evaluate x; or X; for task t; only.

W

N

D. Evaluation

As described in Section III-B, a binary vector v is employed
to represent the nonzero locations of the sparse vector or
matrix. After obtaining v, in the case of SMV, we can solve the
following optimization problem to acquire the nonzero values
of x:

xs = argminf[ly — Asxs|l2} (14)
where S = supp(v). supp(v) is index set of nonzero entries
of v. Therefore, Ag is the submatrix of A containing the
columns specified in the set S. xs is the subvector of x con-
taining the rows specified in the set S. Furthermore, the MMV
problems can be easily extended from (14) to the following:

Xs = argmin{||Y — AsXsllr} 15)
where X is the submatrix of X containing the rows specified
in the set S. The problems (14) and (15) can be solved by
the least square method [8], [37], [38]. The solutions to the
two problems in the noiseless case are expressed as xg =
(A?AS)_IAgy and Xg = (AgAS)_lAgY, respectively.

As described in Section III-C, the offspring inherits the
genetic material from their parents and is culturally influenced
by them via vertical cultural transmission. In the proposed
method, the offspring randomly inherits the skill factor of one
of their parents and we evaluate each individual only for one
task based on the assigned skill factor. This selective eval-
uation strategy can reduce the computational cost with the
increasing number of tasks. After evaluation of the offspring,
the next population is selected based on the scalar fitness
¢, which is calculated according to the skill factor T and
the factorial rank r. As described above, the skill factor of
the offspring is obtained from one of its parents. In evolu-
tionary multitasking optimization, the nondominated sorting
and crowding distance are employed to order population for
acquiring the factorial rank [20], [24]. It is assumed that the
nondominated fronts of the individuals p; and p; are NF;
and NF,, respectively. The crowding distances of p; and p»
are CD; and CD», respectively. The individual p is preferred
over p if any one of the following conditions hold.

1) NF; < NF;.

2) NF; = NF; and CD; > CD;.
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E. Analysis on Computational Cost

Function evaluation is a common factor for defining the
computation cost. It is known to be computationally expen-
sive to evaluate every individual for every task. Therefore, the
selective evaluation strategy proposed in [23] is used to evalu-
ate an individual for only selected tasks. As indicated in [23],
for K tasks, function evaluations are reduced almost by a fac-
tor of K in comparison with the case that an individual is
evaluated for all tasks.

Existing MOEA-based sparse reconstruction methods,
including StEMO [7] and MOEA/D [8], [17], have consid-
ered the sparse vector as the decision variables of interest.
The number of decision variables represents one of the major
factors contributing to the complexity and challenges of sparse
reconstruction problems [39]. For MMV problems, the num-
ber of decision variables explodes with the increase of L. In
our proposed method, evolutionary algorithm is used to search
the locations of nonzero entries or rows, which are encoded
into a binary vector. Therefore, the number of decision vari-
ables remains unchanged despite the increase in L. Since the
decision variables are binary in nature, our proposed method is
computationally more efficient for solving sparse optimization
problems when compared to the representation used in StEMO
and MOEA/D algorithms.

IV. CASE STUDY ON HYPERSPECTRAL UNMIXING

In this section, we provide a case study on hyperspec-
tral unmixing problems. We begin by briefly introducing the
hyperspectral unmixing model and establish the multitasking
unmixing model.

A. Hyperspectral Unmixing Model

A hyperspectral camera acquires the data for a large num-
ber of spectral bands. It is obvious that hyperspectral images
provide much more detailed information about the scene than
a color image. A set of images are collected by the hyper-
spectral sensors and then formed a 3-D hyperspectral data
cube for processing and analysis. However, each pixel of a
hyperspectral image may be a mixture of several materials.
Spectral unmixing aims to separate the mixed pixels into a
collection of spectra (endmembers) and estimate their frac-
tional abundances. The traditional spectral unmixing consists
of an endmember extraction step and an abundance esti-
mation step [40]. To date, numerous endmember extraction
schemes have been proposed to find the pure signatures, such
as PPI [41] and N-FINDER [42]. Several other algorithms
have been proposed based on the assumption that the input
data has no pure signatures [43]. However, such methods do
not perform well in highly mixed scenarios [44], [45].

In recent years, several libraries of natural and man-made
materials are available for public use [44]. Compared with
the number of materials in the spectral library, the number
of endmembers existing in a hyperspectral pixel is small and
the fractional abundances are sparse. Therefore, hyperspectral
unmixing problem can be transformed into a sparse recon-
struction model. Iordache et al. [44] provided a comparison
of several sparse reconstruction algorithms and proposed a

Observed Image Spectral Library  Fractional Abundances
X1
X2
Yi|y2 V1| | 7| @] - a"x
x
Y A X
Fig. 1. Graphical illustration of the MMV-based sparse unmixing model.

The nonzero rows of the matrix of fractional abundances are shown in purple
color.

constrained sparse unmixing method via variable splitting and
augmented Lagrangian (SUnSAL). Overall, a variety of algo-
rithms have been proposed to deal with the sparse unmixing
problems [45].

Let y denote an M x 1 column vector representing an M
dimensional vector of a hyperspectral image with M spectral
bands. A = [ay, a3, ..., ay] is a spectral library with N spec-
tral signatures and each of them has M spectral bands. x is an
N x 1 vector representing the estimated fractional abundances.
Therefore, the pixel observation y can be expressed as

y =Ax +n. (16)

Many algorithms considered the sparse unmixing problem
as an SMV problem and obtained the fractional abundances
in a pixel-wise manner [44], [45]. In general, the pixels in the
hyperspectral image may share a common set of endmembers.
If the factional abundances are reformulated as a matrix, there
should be only a few nonzero rows. Assuming that the data
contains L pixels organized in the matrix Y = [y, y5,...,¥.],
we have

Y=AX+N (17)

where X = [X1, X», ..., X ] is the abundance fraction matrix.
It is obvious that hyperspectral unmixing can be established
as an MMV-based sparse reconstruction model. Fig. 1 shows
the graphical illustration of the MMV-based sparse unmix-
ing model. lordache et al. [15] improved their previous
work and presented a collaborative SUnSAL algorithm, which
showcases better performance compared to the pixel-wise
independent approach.

B. Hyperspectral Unmixing in Evolutionary Multitasking

The collaborative sparse unmixing model employed
in [15] and [16] assumes that all pixels in the
hyperspectral images share the same active set of

endmembers [15], [46], [47]. In fact, the active endmembers
might be different between pixels. Compared to the pix-
els in the entire image, the pixels belonging to the same
homogeneous region are more likely to share the same
active set of endmembers [46], [47]. This paper aims to
find a small set of endmembers to unmix all the pixels in a
homogeneous region. Assuming that we have 7 homogeneous
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Fig. 2. Evolutionary MTSR for solving hyperspectral unmixing problems.

regions, Y can be represented as

T
y=Jv
i=1

where Y; is the pixels in the ith homogeneous region. For each
region, we have

(18)

Y, =AX;+ N; (19)

where X; is the fractional abundances for the pixels in ith
homogeneous region.

It is a natural idea to employ the proposed framework
of evolutionary MTSR to solve the above sparse unmixing
problems. Fig. 2 illustrates the proposed evolutionary MTSR
algorithm for solving hyperspectral unmixing problems. In the
proposed method, we partition the hyperspectral image into
several homogeneous regions. Various clustering or classifi-
cation methods for hyperspectral images have been proposed
and can be employed in this step [48]. For each homogeneous
region, the pixels are very likely to share a same active set
of spectral signatures. Therefore, solving the sparse unmix-
ing problem in a homogeneous region can be considered as a
task. As shown in Fig. 2, in the original model, some nonzero
rows involving all pixels have zero elements because different
endmembers might have null abundance in different pixels.
The sparsity measured by (12) may not be accurate to con-
sider all pixels in the whole image. The proposed method
aims at unmixing all the pixels in a homogeneous region. The
sparsity-inducing term in (12) is able to approximately mea-
sure the true sparsity of the sparse matrix involving the pixels
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in a homogeneous region. Finally, the proposed evolutionary
MTSR method can be used to solve these tasks simultaneously.

In this paper, hyperspectral unmixing is considered as a case
study to investigate MTSR. In general, the potential applica-
tion in other tasks can also be investigated in the proposed
evolutionary multitasking framework. For example, in objec-
tive detection and tracking, many sparse-representation-based
trackers have been proposed for tracking [49]-[51]. Multitask
joint sparse representation has been employed for feature-
level fusion [49]. It may exist multiple sparse optimization
tasks in objective detection and tracking. These tasks can be
optimized simultaneously by the proposed evolutionary mul-
titasking framework. It is promising to improve the overall
performance of related tasks by exploiting relevant information
available in different tasks.

V. EXPERIMENTAL STUDY

In the proposed MTSR method, the population size is set
to 100. The parameter rmp serves to reflect the possibility of
fruitful genetic transfer between tasks. This parameter has been
widely investigated in the previous works [23], [24]. As rec-
ommended in [24], the parameter rmp is set to 1 to reinforce
the exchange of genetic material between tasks. In this section,
several experiments are conducted on signal reconstruction and
hyperspectral unmixing problems. For signal reconstruction,
six problems are generated with different configurations and
each of them has five tasks. In the experiments on hyperspec-
tral unmixing, a simulated data set is generated based on the
available spectral library. Next, two benchmark problems are
used to validate the effectiveness of the proposed multitasking
framework.

In order to compare the performance of the sparse recon-
struction algorithms, two evaluation indicators are considered
in the experiments.

1) Signal to Reconstruction Error (SRE): This index can

be used to measure the quality of the reconstruction of
a signal, which is expressed in dB [44]

SRE(dB) = 101 M 20
(dB) = 0810 E[IIx—x,II%] (20)

where x; is the true sparse vector and x stands for the
estimated sparse vector. The higher SRE represents the
better quality of the reconstruction.

2) Success Ratio (SR): If the relative error is smaller than a
given threshold 7, the corresponding run of this method
is denoted as a successful run [19], [44]. SR under the
threshold 7 is defined as

2
X —X
R, =P e = xilli ;”Fgr )
llx: 1l &

The probability is the ratio of the successful runs
on 100 random instances. If we set T = 10 and arrive
at SR; =1, this implies that the relative error of the
reconstruction result is less than 10 with probability one.

21
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TABLE I
S1X SIMULATED PROBLEMS WITH DIFFERENT SETTINGS (M, N, L, Q, o)
IN OUR EXPERIMENTS

ID  Task Configuration ID  Task Configuration
1 (80,200,1,20,0.05) 1 (120,200,2,20,0.05)
2 (100,200,1,20,0.05) 2 (120,200,4,20,0.05)
Pl 3 (120,200,1,20,0.05) P4 3 (120,200,6,20,0.05)
4 (140,200,1,20,0.05) 4 (120,200,8,20,0.05)
5 (160,200,1,20,0.05) 5 (120,200,10,20,0.05)
1 (120,200,1,20,0.05) 1 (120,200,4,20,0.05)
2 (120,200,1,25,0.05) 2 (120,200,4,25,0.05)
P2 3 (120,200,1,30,0.05)  P5 3 (120,200,4,30,0.05)
4 (120,200,1,35,0.05) 4 (120,200,4,35,0.05)
5 (120,200,1,40,0.05) 5 (120,200,4,40,0.05)
1 (80,200,4,20,0.05) 1 (120,200,4,20,0.02)
2 (100,200,4,20,0.05) 2 (120,200,4,20,0.04)
P3 3 (120,200,4,20,0.05)  P6 3 (120,200,4,20,0.06)
4 (140,200,4,20,0.05) 4 (120,200,4,20,0.08)
5 (160,200,4,20,0.05) 5 (120,200,4,20,0.10)

A. Experiments on Signal Reconstruction

In this experiment, we artificially constructed six sets of
test problems and each of them has five optimization tasks.
These optimization tasks are associated with the configuration
(M,N, L, Q, o), where Q is the number of nonzero entries or
rows and o is the standard deviation of noise. The six simu-
lated problems with different settings are shown in Table 1. P1
and P2 are SMV problems and the others are MMV problems.
The settings of M are different in the tasks of P1 and P3 and
the others are unchanged. The tasks in P2 and P5 have differ-
ent sparsity level Q. The tasks in P4 have the same settings
of M, N, Q, and o and different values of L. The noise level
o is different in the tasks of P6.

In the experiments, StEMO proposed in [7] and MOEA/D
in [17] are considered as the state-of-the-art benchmarks for
comparison. In StEMO, a soft-thresholding method was incor-
porated into the NSGA-II algorithm. In [17], MOEA based
on decomposition [21] was used as the baseline algorithm
and iterative hard thresholding (IHT) was considered as the
local search. The population size in the two algorithms is
configured to 100 for the sake of fair comparison. However,
the two methods are only designed for SMV problems.
Some existing algorithms for SMV problems have also been
extended to deal with MMV problems. In the experiments,
IHT [52], focal under-determined system solver for MMV
model (MFOCUSS) [9], and compressive sampling matching
pursuit [38] represent some of these algorithm benchmarks
that we consider here.

Fig. 3 shows the results obtained by the proposed method
on the five optimization tasks in P5. Note that these tasks
possess different sparsity level Q. The red curves in the left
figures represent the PF curves acquired by MTSR. The solu-
tions in the knee region have the maximum marginal rates of
return [7], i.e., the improvement in one objective brings about
a rapid degradation in other objectives. It is easy to distinguish
the optimal knee points on the five PFs. In this paper, we use
the angle-based method employed in [7] to acquire the knee
solution. Because the PF curve is not as smooth as it looks,
some points may distort the calculations for finding the knee
region. As shown in the blue curves of the left figures, we
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Fig. 3. Results obtained by the proposed method on the optimization tasks
in P5. Left: PF. Right: angle of each point on PF.

interpolate the PF using B-splines to arrive at a smooth curve.
Then we perform resampling from the smooth curves, which
are shown in the dotted curves in the right figures. The curves
of the corresponding angle are also shown in the right figures.
The dashed line indicates the true sparsity. It can be observed
that the point with the largest angle is near to the dashed line.
The solution with maximum angle is approximatively consid-
ered as the best tradeoff solution. Fig. 4 exploits the box-plots
to show the statistical results of the values of fi, which counts
the number of nonzero rows. As shown in Table I, P5 has five
MMV tasks with different number of nonzero rows, i.e., Q =
15, 20, 25, 30, and 35. Obviously, for each task, the value of
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TABLE 11
MEAN AND STANDARD DEVIATION OF THE HYPERVOLUME OBTAINED BY
THE FOUR METHODS ON SiX PROBLEMS. THE RESULTS ARE
OBTAINED OVER 50 RUNS

Problem  Statistics ~StEMO  MOEA/D  MTSRg MTSR
p1 Mean 0.9521 0.9365 0.9634 0.9870
Std 0.0044 0.0031 0.0048 0.0039

P Mean 0.9655 0.9486 0.9752 0.9932
Std 0.0043 0.0021 0.0035 0.0019

P Mean - - 0.9611 0.9885
Std - - 0.0045 0.0032

P4 Mean - - 0.9719 0.9924
Std - - 0.0044 0.0031

P5 Mean - - 0.9644 0.9877
N Std - - 0.0039 0.0035
P6 Mean - - 0.9716 0.9861
Std - - 0.0039 0.0033
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f1 of the knee solution is very close to the setting of Q in a
statistical sense.

As described in Section III, the proposed MTSR method
degenerates to a standard multiobjective method when only
one task is considered, i.e., only the within-task genetic trans-
fer works. Therefore, MTSR without between-task genetic
transfer is denoted as MTSRy. Hypervolume is used to mea-
sure the quality of the PF obtained by StEMO, MOEA/D,
MTSRg, and MTSR. Hypervolume is calculated using a
reference point 1% larger in every component than the corre-
sponding nadir point [53], [54]. The nadir point is constructed
from the worst objective function values of Pareto optimal
solutions. Table II reports the mean and standard deviation
of hypervolume on the six problems. The results of P3-P6
obtained by StEMO and MOEA/D are unavailable since these
two methods were not designed to cope with MMV prob-
lems. The results of StEMO are noted to be inferior to the
other methods. It can also be observed that the hypervolume
attained by the proposed method are larger than 0.98 across
all the problems considered.

Fig. 5 exhibits the successful ratios of different sparse recon-
struction methods in 100 runs at different T on P1-P6. These
results indicate that the proposed MTSR method performed
best among the algorithms. Table III tabulates the results
of SRE(dB) and SR; for the different sparse reconstruction

schemes. The results of SRE(dB) are averaged of 100 runs.
Notably, the proposed MTSR method emerges as superior
among the others considered.

B. Experiments on Hyperspectral Unmixing

In this section, several experiments on hyperspectral unmix-
ing are conducted to validate the effectiveness of the proposed
multitasking framework. The proposed multitasking method
for hyperspectral unmixing is also denoted as MTSR. In
the experiments, we report the results obtained by the
proposed method and pit it against the classical NCLS [55],
SUnSAL [44], CLSUnSAL [15], and RCSU [47] algorithms.
For all algorithms, the parameters were carefully tuned for
optimal performance. In the experiments, the regularization
parameter in SUnSAL, CLSUnSAL, and RCSU is tuned:
A € {0.01,9-1073,8-1073,7-1073,6 - 1073,5 - 1073,
4-1073,3-1073,2-107%,1-1073,9-107%,7-1074,5- 1074,
3.1074, 1-10_4}. In total, 15 sets of experiments are conducted
for each algorithm to select the parameter A.

1) Data Sets: The spectral library A used in the experi-
ments is obtained from the USGS library.! It contains spectral
signatures with reflectance values measured in 224 spectral
bands and distributed uniformly in the interval 0.4-2.5 pm.
The first data set is denoted as DS1. Based on the known

1 http://speclab.cr.usgs.gov/spectral.lib06
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TABLE III
PERFORMANCE COMPARISON WITH THE DIFFERENT SPARSE RECONSTRUCTION METHODS. THE
VALUES OF T FOR SMV AND MMV PROBLEMS ARE SET TO 0.05 AND 0.03, RESPECTIVELY

Method SRE SRy

P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

IHT 15.1056  9.7704 17.8530  17.2061 14.4143 17.6643 049 022 087 070 058 0.65
MFCOUSS  16.0796  14.2995 10.0994  8.8733 9.2851 9.9607 092 078 0.00 0.01 0.00 0.00
CoSaMP 21.1771  19.6606 159171  15.2547 14.1768 16.1283 099 1.00 0.65 033 037 041
StEMO 15.8970  13.4621 - - - - 075 042 - - - -
MOEA/D 20.5958  18.6326 - - - - 1.00  0.98 - - - -
MTSRo 21.7231  19.1341 18.3476  17.3815  18.0980  18.1252 1.00 1.00 096 0.65 098 0.65

MTSR 235014  19.8186  19.2343  18.2096  18.7563  18.9971 1.00 1.00 098 0.73 099 0.73

Fig. 6. True fractional abundances of endmembers in DS2.

Hypervolume
o <
S

=1
%
£

library A, we can construct different hyperspectral unmixing B el 1020 00l 10 20
tasks by randomly selecting signatures from the library to form (a) (b)

the endmembers. Therefore, the partition of the hyperspectral
data is known beforehand and the procedure of determining Fig. 8. Comparing the evolution of the hypervolume indicator for DSI.
the homogeneous regions is not needed. For every simulated (@) Task 1. (b) Task 2.
pixel, the fractional abundances of the endmembers follow a
Dirichlet distribution [56]. For DS1, the number of pixels for
each task is set to 500 and the number of endmembers is set  convergence characteristics of the MTSR and MTSR. We pre-
to 8. fer hypervolume indicator because the true PF is not known
The following two benchmark data sets are widely used. The  beforehand for real-world problems. The value of hypervolume
second data set (DS2) has 100x100 pixels and is provided by is expected to increase gradually for an evolving population.
Iordache et al. [57]. The fractional abundances are piecewise Two tasks are constructed in the experiment on DS1. For the
smooth and the observations show a good spatial homogeneity. two benchmark problems, the number of tasks is set to 3.
Fig. 6 exhibits the true abundances of the endmembers. The The evolution of the hypervolume indicator for DS1 is
third data set (DS3) is a hyperspectral image of 64 x64 pixels, shown in Fig. 8. Fig. 9 represents the evolution of the hyper-
which is provided by Tang et al. [58]. There is no pure pixel volume indicator for DS2 and DS3. With a small number
in this hyperspectral data set. The fractional abundances of the  of iterations, the proposed method with between-task genetic
five endmembers are shown in Fig. 7. The two data sets are transfer obtains higher hypervolume values than those of
corrupted by different levels of correlated noise (SNR = 20, MTSR(. As shown in Figs. 8 and 9, when multiple relevant
30, and 40 dB). sparse reconstruction tasks are optimized simultaneously by
2) Test of the Between-Task Genetic Transfer: In this exper- the MTSR with the between-task genetic transfer, the overall
iment, the hypervolume indicator is used to compare the convergence characteristics can be significantly improved in
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TABLE IV
PERFORMANCE COMPARISON WITH THE DIFFERENT UNMIXING
METHODS ON DS1. THE VALUE OF t IS SET TO 0.15

Method SRE(dB) SR~
20 30 40 20 30 40
NCLS 0.7815 3.5658  9.8945  0.18 033 0.67
SUnSAL 0.8215 3.6745 9.8945 0.18 035 0.69
CLSUnSAL  0.8413  3.8039 109431 0.19 035 0.73
RCSU 0.8749 39336 11.1352 0.19 036 0.79
MTSRo 1.2587 5.0751 149283 021 041 0.88
MTSR 1.3806 5.4894 155121 022 044 091

comparison with the MTSR without the between-task genetic
transfer.

3) Comparison of MTSR Against Other Methods: Fig. 10
graphically depicts the sparse solutions obtained by the dif-
ferent algorithms on the simulated data that comprises two
tasks. Note that only 40 pixels are shown to clearly distin-
guish the differences between these figures. The two columns
in Fig. 10 show the results of the two sparse unmixing tasks,
respectively. The first row exhibits the ground-truth sparse
solutions. From Fig. 10, the maps generated by the proposed
method are more similar to the ground-truth maps than those
of the other algorithms. Next, we compute the sum of the
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Fig. 10.  Sparse solutions obtained by the different algorithms on the

simulated data with two tasks.

elements in each row of the sparse matrix. The results are
shown in Fig. 11. The blue lines represent the true results and
the red lines denote the results obtained by different meth-
ods. Obviously, the results obtained by the proposed method
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Fig. 11.  Sum of the elements in each row of the sparse matrix. The blue

lines represent the true results. The red lines denote the results obtained
by (a) NCLS, (b) SUnSAL, (c) CLSUnSAL, (d) RCSU, (e) MTSR(, and
(f) MTSR.

are more close to the true results in comparison with those of
the other schemes. Table IV shows the performance compari-
son with the different unmixing schemes on the simulated data
with different noise levels. It can be observed that the proposed
approach can achieve the highest values of SRE(dB) and SR,
on the simulated data. The results of MTSR and MTSR are
much better than those of the competing methods because
the proposed multiobjective framework can find a better com-
promise between the measurement error and the sparsity
terms automatically. From Table IV, the proposed MTSR
has better performance compared with that of the MTSRy
method. The multitasking framework is able to enhance
exploration of the entire search space and accelerate the
convergence.

Figs. 12 and 13 graphically exhibit the estimated abundance
maps for the selected endmembers in the two data sets as
the estimated abundance maps. The other endmembers also
show similar behavior. Fig. 12 shows the estimated abun-
dance maps of endmember 1, 8, and 9 for DS1 obtained by
the six sparse unmixing methods. The fractional abundance
maps of endmember 1, 4, and 5 for DS2 are presented in
Fig. 13. It can be observed that the CLSUnSAL, RCSU, and
MTSR algorithms show better performance compared with the
other two schemes. As shown in Fig. 12, the estimated abun-
dance maps of endmember 1 obtained by NCLS and SUnSAL

TABLE V
PERFORMANCE COMPARISON WITH THE DIFFERENT UNMIXING
METHODS ON DS2. THE VALUE OF t IS SET TO 0.15

Method SRE(dB) SR~
20 30 40 20 30 40
NCLS -7.3250  -1.6087 57983 023 035 0.54
SUnSAL -7.0565  -1.5587 59169 034 045 0.65
CLSUnSAL  5.5164  11.4842 18.7935 0.62 0.75 0091
RCSU 5.5829  11.5508 18.7923 0.63 0.75 091
MTSRg 6.5744 129472 222723 0.67 0.78 1.00
MTSR 7.0496 137802 22.7329 0.70 0.80 1.00

TABLE VI

PERFORMANCE COMPARISON WITH THE DIFFERENT UNMIXING
METHODS ON DS3. THE VALUE OF t IS SET TO 0.15

Method SRE(dB) SR~
20 30 40 20 30 40

NCLS -4.7118 3.8059 13.2893 0.15 043 0.74
SUnSAL -4.4264  4.0443 13.9636 0.20 0.50 0.86
CLSUnSAL  8.2382 13.0988  14.3502 0.65 0.83 0.88
RCSU 8.3170 13.2029 143730 0.67 0.85 0.88
MTSRg 9.1933 14.0197 169749 0.68 0.86 0.92
MTSR 10.7254  14.6143 17.6775 0.75 0.89 093

contain many pixels with cool color. It can be seen that the
abundance maps acquired by the proposed MTSR method are
more close to the true abundance maps in comparison with the
abundance maps obtain by the other schemes. Although the
abundance maps in Fig. 13 acquired by different methods are
similar, the abundance maps obtained by the proposed MTSR
method contain much less noise than those of the other algo-
rithms because the pixels in the homogeneous region are likely
to share similar endmembers. Table V exhibits the results
of SRE(dB) and SR; obtained by the six sparse unmixing
methods on DS2. The results of SRE(dB) and SR; obtained
by the six sparse unmixing methods on DS3 are shown in
Table VI. It is obvious that the results of MTSR and MTSR(
are significantly better than those of the other methods. It is
appropriate to consider the unmixing problem involving the
pixels in a homogeneous region as a task. The experimental
results with two hyperspectral data sets demonstrate that the
proposed MTSR method can obtain satisfactory solutions by
establishing multiple optimization tasks and optimizing them
simultaneously.

VI. CONCLUSION

Recently, evolutionary multiobjective optimization has been
successfully used to solve SMV-based sparse reconstruction
problems for eliminating the estimation of the sparsity. The
real-world applications always exist multiple sparse recon-
struction tasks that have to be solved simultaneously. This
paper has proposed an MTSR framework to optimize multiple
sparse optimization tasks simultaneously. To deal with MMV
problems, evolutionary algorithms have been employed to
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Fractional abundance maps of endmember 1, 8, and 9 for DS1 estimated by NCLS, SUnSAL, CLSunSAL, RCSU, MTSR(, and MTSR.

SUnSAL

CLSUnSAL

Fig. 13.

search the locations of the nonzero rows since MMV problems
suffer from the curse of dimensionality with the increas-
ing number of measurement vectors. For a same sensing
matrix or over-complete dictionary, the decision variables
for the MMV model have the same length as the SMV
model in the proposed technique. Genetic materials belong-
ing to the same or different tasks have been, respectively,
exchanged via the within-task or between-task genetic trans-
fer to exploit the similar sparsity pattern and accelerate
convergence.

Fractional abundance maps of endmember 1, 4, and 5 for DS2 estimated by NCLS, SUnSAL, CLSunSAL, RCSU, MTSR(, and MTSR.

A real-world application, hyperspectral unmixing, has been
considered as a case study in this paper. A sparse unmixing
problem involving the pixels in a homogeneous region is con-
sidered as a task and then the proposed MTSR framework is
employed to solve these tasks simultaneously. Experimental
studies on signal reconstruction and hyperspectral unmixing
have demonstrated the superiority of the proposed algorithm.
In the future, we hope to propose an efficient multitask-
ing optimization algorithm to deal with sequential sparse
reconstruction tasks.
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