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Framework of Evolutionary Algorithm for
Investigation of Influential Nodes in

Complex Networks
Yang Liu , Xi Wang, and Jürgen Kurths

Abstract—There are many target methods that are efficient
to tackle the robustness and immunization problem, in particu-
lar, to identify the most influential nodes in a certain complex
network. Unfortunately, owing to the diversity of networks, none
of them could be accounted as a universal approach that works
well in a wide variety of networks. Hence, in this paper, from
a percolation perspective, we connect the immunization and
robustness problem with an evolutionary algorithm, i.e., a frame-
work of an evolutionary algorithm for investigation of influential
nodes in complex networks, in which we have developed pro-
cedures of selection, mutation, and initialization of population
as well as maintaining the diversity of population. To validate
the performance of the proposed framework, we conduct inten-
sive experiments on a large number of networks and compare
it to several state-of-the-art strategies. The results demonstrate
that the proposed method has significant advantages over others,
especially on empirical networks in most of which our method
has over 10% advantages of both optimal immunization thresh-
old and average giant fraction, even against the most excellent
existing strategies. Additionally, our discussion reveals that there
might be better solutions with various initial methods.

Index Terms—Complex networks, evolutionary algorithm,
immunization, percolation transition, robustness.

I. INTRODUCTION

WHILE systems are modeled by a graph whose nodes
represent the dynamic units and edges capture their
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interactions [1], problems, like investigating efficient strate-
gies to prevent the outbreak of viruses [2], [3] or designing
more reliable communication networks, could be mapped onto
finding a set of nodes. After the removal (immunized or pro-
tected) of that set, the network is more effective to suppress
the propagation of information or keep the function of the
system [4]–[7]. This problem, as one of the fundamental struc-
tural problems in network science, is also called immunization
or robustness problem [8] and has recently attracted increasing
attention in a large range of domains [1], [9]–[12].

Indeed, due to the heterogeneous nature of real networks,
the roles that different nodes play might be far from each
other in a network [9]. In other words, protecting one node
may be more significant for the network function than pro-
tecting another one. Thus, if a certain state is given (for
example, to collapse the network to a given size of the giant
component), the immunization or robustness problem could
be addressed by minimizing the size of removal set for the
purpose of saving resources. To identify this set, numerous
methods have been developed in the past few years, from the
demand of local information (e.g., counting the number of
neighbors) to the capture of global structure (such as counting
the number of shortest paths that a node is located on [13]),
and further to the study of dynamic process (like heuristic
strategies [8], [14], [15]).

Generally, the more topological information a method con-
siders, the better the performance which the method will
achieve. For instance, because of the knowledge of neighbors’
information, the acquaintance strategy [16], [17] is usually
much better than the random immunization [18] which ran-
domly selects immune nodes without any preference, but the
acquaintance strategy tries to immunize one of the neighbors
of those selected nodes (with higher probability to immunize
the hub nodes). In addition, in contrast to the high degree cen-
trality strategy (HD) immunizing the hub nodes directly [19],
the high adaptive degree centrality strategy (HAD) repeatedly
removes the highest-degree node from the remained network
after the removal of the previous highest-degree node. Thus,
HAD is also much better than HD in most situation. Further, a
similar strategy (to HAD) is adopted by the collective influence
(CI) method [14] which considers several layers of neigh-
bors’ information, so that it is more effective than HAD.
Moreover, the betweenness centrality strategy takes account of
the shortest-path flows among each pairwise nodes and iden-
tifies the influential nodes which frequently appear on those

1089-778X c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7604-8279


1050 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

shortest paths. And thus the high adaptive betweenness cen-
trality strategy (HAB) is quite effective in most situations,
but it is limited due to its high time complexity. Other
methods, like the belief propagation-guided decimation strat-
egy viewing networks as conditional random fields [15], are
continuously developed to handle the robustness and immu-
nization problem [8], [14], [20]–[26]; however, none of them
could be accounted as a universal approach that works well in
a wide variety of networks, especially in real-world networks.

In fact, the immunization and robustness problem is actu-
ally an NP-hard problem [14]. Undeniably, the evolutionary
algorithm is actually a prevalent solution to address the NP-
hard problem, which has been proved effective to solve a
great number of such problems over the past decades, like
the traveling salesman problem [27], the many-objective knap-
sack problem [28], [29], or the community and controlling
regions detection problems in complex networks [30]–[33].
But unfortunately, there is so far no effective way which
can connect an evolutionary algorithm with the immuniza-
tion and robustness problem. Besides, in [34], we have found
that the occupation of a node would, directly or indirectly,
affect the occupation of other nodes when studying on a given
network. In this way, we consider not only the information
from the nearest nodes [14], [23], but also the information
from other nodes. Thus, we have the basic methods [34]
which could notably inhibit the average giant (susceptible)
fraction in most networks but only make an acceptable
immunization threshold. The fact is that there is a conflict
between the optimal average giant fraction and the immunized
threshold.

Hence, in this paper, for obtaining the optimal immunized
threshold, we develop a framework of evolutionary algorithm
for investigating influential nodes. The main contributions are
listed below.

1) A new goal function is proposed to cope with the con-
flict between the optimal threshold and average giant
fraction. On the one hand, the threshold can benefit from
minimizing the average giant fraction at the beginning
(i.e., converge more quickly) and sometimes yield bet-
ter results compared to the direct optimization of the
threshold. On the other hand, with the increase of iter-
ations, a smaller average giant fraction might induce a
worse threshold. In this regard, we develop a new goal
function which captures the positive feedback from the
average giant fraction and deals with the conflict in the
meantime.

2) To further handle the conflict, local and global muta-
tion operators as well as a special selection strategy are
developed. While studying the conflict in detail, we find
that a larger giant fraction might promote a better thresh-
old. Therefore, we design a special selection method
to choose the offspring with larger giant fraction by
higher probability, which is numerically demonstrated
quite effective.

3) In addition, a similar idea is also generalized to optimize
the average giant fraction.

4) Besides, an initialization strategy of population is also
designed.

5) Lastly, we validate the efficacy of the proposed method on
both real-world and synthetic networks compared to the
state-of-the-art strategies [14], [21], [23], [34] using per-
colation metric and the susceptible-infectious-recovery
(SIR) epidemic spreading model [35]. Explicitly, exper-
imental results manifest that our method overwhelms
others significantly, especially demonstrates excellent
performance on empirical networks.

The rest of this paper is organized as follows. In Sections II
and III, the problem, related methods, and information of
networks are briefly introduced. Afterward, Section IV in
detail describes the proposed strategy including several tem-
porary results. Following that, applications and the regard-
ing performance are conducted and evaluated in Section V.
Finally, a discussion and the conclusions are given in
Sections VI and VII, respectively.

II. PRELIMINARIES

A. Problem

We consider a network composed of n = |N |1 nodes tied
by m = |M| edges, where N and M are the node set and
the edge set, respectively. Assuming that C is the connected
component set of the network, then

|C|⋂

i=1

ci = ∅,
|C|⋃

i=1

ci = N (1)

where ci ∈ C is a subset of N and |C| represents the size of C.
Further, for two nodes v� and vz in N , we use v� ↔ vz to
denote that there is a path between them, i.e., v� can reach vz

through the edges in M. Thus, we have

v� ↔ vz, ∀v�, vz ∈ ci, � �= z

v� � vz, ∀v� ∈ ci,∀vz ∈ cj, i �= j (2)

in which v� � vz means v� cannot reach vz. With those, the
giant connected component of the network is defined to be

cmax := arg max
ci

Gci ,∀ci ∈ C (3)

where Gci = |ci| is the size of the component ci. Further,
let Sa be an arbitrary configuration (sequence) of N , namely
{Sa(i)|i ∈ [1, n]} ≡ N , where Sa(i) corresponds to a unique
node in N . We define the immunization threshold qc(Sa) as a
function of Sa

qc(Sa) := min q, G(Sa; q) ≤ θ,∀q ∈ [0, 1] (4)

where θ is a given value and G(Sa; q) = Gcmax/n is the fraction
that a node is part of the giant connected component after the
removal of all nodes in {Sa(i)|i ∈ [1, 
n× q�]}, including the
incidental edges. Moreover, denoting with F(Sa)

F(Sa) := 1

n

1∑

q=1/n

G(Sa; q) (5)

the related average fraction of giant components of Sa (the
average susceptible fraction), then the solution to the immu-
nization (robustness) problem is to search for the optimal

1A main nomenclature list is referred to the Appendix.
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(a) (b) (c) (d) (e)

Fig. 1. Illustration of HAD, CI, EI, and PR. (a) and (b) HAD method immunizes a network by repeatedly removing the highest-degree node (node v3) from
the remaining network after the removal of the highest-degree node (node v1). (c) ∂Ball(v2, 1) and ∂Ball(v2, 2) can be identified by the two types of dotted
line. (d) In this example, the occupied nodes are colored with blue and others are the nonoccupied nodes (candidates). Considering node v1, the node in
component c2 is a leaf, Gc1 = 2 and C(v1) = {c1, c2, c3}. If K = 3 and the calculation of v2 is in front of v1, then only node v1 is a hub. (e) ξ(v2) = 4/14.

sequence Sopt satisfying

Sopt :=
{

arg minSa
qc(Sa), ∀a ∈ [1, n!], if θ is given

arg minSa
F(Sa), ∀a ∈ [1, n!], otherwise

(6)

where {Sa|a ∈ [1, n!]} means all the permutation configura-
tions of N . Note that in this paper, θ is fixed to 0.01 except
for a special explanation.

Now, we inverse this process (4) and (5) as a percola-
tion transition [change the process from the removal of the
most influential node Sa to the occupation of the least impor-
tant node Sε

a, which is implemented by inversing Sa, scilicet,
Sε

a(1) = Sa(n), Sε
a(2) = Sa(n−1), and so forth]. Moreover, let

Nε(Sε
a; t) = {Sε

a(i)|i ∈ [1, t]} be the node set of the temporary
network consisting of t = |Nε(Sε

a; t)| occupied nodes and the
related edges. In particular, Nε(Sε

a; t = 0) represents an empty
network. Then, (5) can be rewritten as

F(Sε
a) ≡

1

n

n∑

t=1

Gε(S
ε
a; t) (7)

where Gε(Sε
a; t) is the corresponding giant fraction after

the occupation of Nε(Sε
a; t). Note in the following sections,

the symbol ε indicates that the process is in percolation
transition (7), otherwise, in normal regime (5).

B. Related Methods

It is possible to tackle this problem by approaches based
on main properties of networks, like the centrality of
networks [36] including the degree centrality (remove or
immunize the part of nodes with the highest degree, called
the HD) and the betweenness centrality [the high betweenness
centrality strategy (HB)], pagerank [37] or k-shell decom-
position [38] etc. [8], [39]. Meanwhile, we can also think
about heuristic algorithms developed from these basic strate-
gies, e.g., the HAD. Furthermore, we could handle it by means
of percolation-based methods, e.g., the inverse targeting (IVS)
approach [21], the CI strategy [14], or the explosive immu-
nization (EI) method [23]. Here, we mainly introduce three of
them, namely HAD, CI, and EI.

Denoting the degree of the node vi ∈ N with kvi , the
HAD method immunizes a network by repeatedly remov-
ing the highest-degree node from the remained network
after the removal of the previous highest-degree node
[Fig. 1(a) and (b)].

Let � be the length of the shortest path between two nodes
and ∂Ball(vi, �) be the node set consisting of all the nodes with
�-length shortest path to node vi [Fig. 1(c)]. The CI strategy
(for large networks) first identifies each node through CI�(vi)

(the CI strength of node vi at level � [14])

CI�(vi) = (kvi − 1)
∑

vj∈∂Ball(vi,�)

(kvj − 1). (8)

Then, analogous to HAD, each time CI chooses the node with
highest CI� to be immunized from the remained network after
the top CI� node was removed.

Letting C(vi) denote the occupied component set which
comprises all the components that node vi would connect to;
then the EI method (based on percolation transition) selects
the node with minimal σ to be occupied from a random set
of candidates [randomly select part of nodes from node set
N rc = N \Nε(t)]

σvi = k(eff)
vi
+

∑

cj∈C(vi)

(
√
Gcj − 1) (9)

where k(eff)
vi is used to quantify the potential danger of node

vi in the epidemic spread [23], i.e., a node with large k(eff)
vi

indicates that it is more likely to spread the epidemic out

k(eff)
vi
= kvi − Lvi −Mvi({k(eff)

vj
|vj ∈ �(vi)}) (10)

in which Lvi is the number of leaves (nodes with degree 1),
�(vi) denotes all of vi’s nearest neighbors, and Mvi({k(eff)

vj })
is the number of strong hubs (nodes with k(eff)

vj ≥ K, K is an
undetermined parameter, usually K = 6 [23]). An example is
shown in Fig. 1(d). Note that in this paper we only consider
σ

(1)
vi of [23] because it has better results of both qc and F in

most real-world networks compared to σ
(2)
vi .

C. Union-Find Algorithm

The union-find (UF) algorithm [40] is designed for the UF
set which is a data structure that can track disjoint subsets
when the elements are partitioned into several groups. One
of its main application is to identify connected components in
networks. Let Np be the parent set associated with the node set
N and G(vi) be the size of the component that node vi belongs
to, respectively. The UF algorithm can help us, within nearly
constant time (for ER-type networks), to merge components
(union) or to determine whether any two nodes are in the same
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Algorithm 1 UF Algorithm
1: function ROOT(vi, Np)
2: while vi �= Np(vi) do
3: Np(vi) ← Np(Np(vi))
4: vi ← Np(vi)
5: end while
6: return vi
7: end function

8: function FIND(vi, vj, Np)
9: return ROOT(vi, Np) = ROOT(vj, Np)

10: end function

11: function UNION(vi, vj, Np, G)
12: v� ← ROOT(vi, Np)
13: vz ← ROOT(vj, Np)
14: if G(v�) < G(vz) then
15: Np(v�) ← vz
16: G(vz) ← G(vz) + G(v�)

17: return G(vz)
18: else
19: Np(vz) ← v�
20: G(v�) ← G(v�) + G(vz)
21: return G(v�)

22: end if
23: end function

component (find). The details of this algorithm are shown in
Algorithm 1.

D. Basic Relationship Related Method

The relationship related (RR) method is mainly based on
the assumption of the existence of a mutual influence among
nodes [34]. Therefore, RR also starts with an empty and arbi-
trary sequence Sold (or a certain strategy, e.g., HD). Each time
RR selects the node vs which would minimize the correspond-
ing rule function ξ(·) [the node satisfies vs = arg minv� ξ(v�)]
from a random set of candidates N rc(t) to be occupied, where
ξ(v�) is defined as the following two cases (corresponding to
the sum rule and the product rule [41], respectively):

ξ(v�) =
{

1+∑
ci∈C(v�) Gci

1+∏
ci∈C(v�) Gci .

(11)

The random set N rc(t) consists of the nodes which are from
{Sε

old(i)|i ∈ [t+1, min(
t+r×n�, n)]} through τ times random
selection, where r = rs/(T × δr+ 1), τ = τs+
T × δτ + 0.5�,
and T ≤ T̂ . rs, T̂ , δr, τs, and δτ are undetermined parameters
(more details refer to [34]). Then, update Sε

old and repeat the
occupation until all nodes are occupied. Note that here Sold
keeps unchanged while Sε

old is updated as the increase of t,
and we use Snew to denote the inverse of Sε

old for convenient
description. Finally, compare Snew with Sold through (6), and
choose the better one as Sold for another Snew (Algorithm 2).
An example of RR is shown in Fig. 2.

E. Basic Prediction Relationship Method

The prediction relationship (PR) method [34] is specially
designed for model networks. The main idea of this method is
trying to keep the occupied components away from as many
high degree nodes as possible, since there are hardly any nodes
with low degree that are more important than those with high
degree in a synthetic network. PR first identifies each node

Algorithm 2 RR Method
Input: Network, Sε

old, rs, T̂ , δr , τs, δτ
Output: Sε

new
1: T ← 1
2: while T ≤ T̂ do
3: Sε

new ← Sε
old

4: Np(vi)← vi, G(vi)← 1 // Initialize for UF algorithm
5: t← 1
6: r← rs/(T × δr + 1)

7: τ ← τs + 
T × δτ + 0.5�
8: while t ≤ n do
9: N rc(t)← based on t, r and τ

10: vs ← arg minv� ξ(v�), v� ∈ N rc(t) // UF algorithm
11: Sε

new ← update itself
12: t← t + 1
13: end while
14: if Snew is better than Sold then // according to Eq. (6)
15: Sε

old ← Sε
new

16: end if
17: T ← T + 1
18: end while

based on the distribution of node degree

Hv� = 1−
∑

kvj<kv�

p(kvj) =
∑

kvj≥kv�

p(kvj) (12)

where p(kvj) is the probability of nodes with degree kvj . Then,
similar to RR, we construct the rule function ξ(·) and choose
the node vs which would minimize ξ(·) to be occupied

ξ(v�) =
∑

ci∈C(v�)

∑

vj∈ci

∑

vz∈�u(vj)

Hvz +
∑

vz∈�u(v�)

Hvz (13)

in which �u(vj) denotes all of the vj’s nearest-unoccupied
neighbors (here view v� as occupied node). In this way, those
components would manage to be connected by just a few
high-degree nodes [Fig. 1(e)].

III. NETWORKS

The network associated with the robustness and immu-
nization problem mainly corresponds to three categories:
1) infrastructure networks [4], [6]; 2) population or com-
puter related networks [2], [3]; and 3) information tran-
sition networks [5]. For example, the failure of a trans-
former in the power grid network or an accident in a
crossroad in the road network might devastate the whole
system like blackouts or traffic jam. In this regard, we
choose the real-world networks including a power grid
network [42], [43] (power) and two road networks [44]
(including roadNet-PA and roadNet-TX) belong to infrastruc-
ture networks; the Scottish cattle movements network [23],
autonomous systems graphs [45] (including as-733 and
as-Skitter) and two Internet peer-to-peer networks [46], [47]
(including p2p-Gnutella08 and p2p-Gnutella31) are popu-
lation or computer related networks; and three collabo-
ration networks [46] (including ca-GrQc, ca-AstroPh, and
ca-CondMat), two citation networks [45], [48] (including hep-
th and cit-HepTh), two communication networks (including
Email-Enron [44], [49] and Email-EuAll [46]), one location-
based online social network [50] (loc-Gowalla), the Amazon
product co-purchasing network [51] (com-Amazon), and the
Google Web graph [44] (Web-Google) represent information
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(a) (b) (c)

Fig. 2. Illustration of the RR method. (a) and (b) Example under product rule (11), where the occupied nodes are colored with blue and the others are the
nonoccupied nodes (possible candidates colored with green). The new occupied node v3 is chosen from the random candidate set N rc(20) = {v3, v4, v1}
because ξ(v3) = 3 compared to ξ(v1) = 5 and ξ(v4) = 5. In (c), we show the performance of RR based on HD (namely, start with Sold = HD) for different
repeated times T on SF networks with the exponential parameter γ = 3.0, average degree 〈k〉 = 4.0 and n = 105 (over 50 implementations). RR and CI are
with rs = F(HD), τs = 10, δr = 0.01, δτ = 0.01, and � = 4, respectively.

TABLE I
BASIC INFORMATION OF THE 18 REAL-WORLD NETWORKS

transition networks. Most of them can also be classified into
other categories, such as peer-to-peer network can be viewed
as information transition networks. Some basic information
regarding these networks can be found in Table I.2 Note that
for all networks considered here, the directed edges are sim-
ply replaced with undirected ones, and also all self-loops and
isolated nodes are entirely removed. In addition, without loss
of generality, we also conduct our experiments on paradig-
matic model networks [including Erdös–Rényi (ER) [52] and
scale-free (SF) [43] networks].

IV. METHOD

These two basic methods, RR and PR, are always more
effective than CI, EI, and also the approaches in [15], [21],
and [39], especially RR in real-world networks [34]. Besides,
simulation results show that the optimization of the average
giant fraction F oftentimes obtains similar and sometimes
much smaller immunized threshold qc compared to the direct
optimization of qc (6) through RR [Fig. 3(a)]. Moreover, while
studying the Pearson correlation coefficient (Coef) between F
and qc by optimizing F [Fig. 3(b)], we find that Coef decreases
as the rise of repeated times T . These facts are twofold. On
the one hand, the optimization of F might help us find a bet-
ter qc, i.e., there may be a positive feedback between F and
qc. On the other hand, undoubtedly there is also a conflict
between the optimal qc and F. Therefore, in the following
part of the method, we first focus on the optimization of the

2The source data of these networks is either from
http://snap.stanford.edu/data or http://konect.uni-koblenz.de/networks/opsahl-
powergrid.

(a)

(b)

Fig. 3. Different percentage D(qc) = (q1
c − q2

c)/[(q1
c + q2

c)/2] of q1
c and q2

c ,
and the Pearson correlation coefficient (Coef) between q1

c and F versus T on
the 18 real-world networks. q1

c and q2
c are obtained through the optimization

of F and qc, respectively. Twenty independent realizations are conducted on
each network.

immunized threshold qc by capturing the positive feedback
from the average giant fraction F and coping with the conflict
between them at the same time, so that the framework of evo-
lutionary algorithm for investigation of the influential nodes
is developed, including the goal function, selection, mutation,
and initialization of population. Then, a similar idea is also
used to optimize F.

A. Goal Function

For a certain network, it is obvious that if the occupied
node set is certain, the size of the giant component would be
certain too, no matter what configuration the node set has,
namely Gi

ε(t) = Gj
ε(t) if N i

ε(t) = N j
ε(t). Thus, if we partition

the nodes of a network into several groups and make the calcu-
lation (RR) happen only on their own group (Fig. 4); then the
threshold qc would, to some extend, only directly depend on
the group where the critical node belongs to. In other words,
we here try to use the other groups to catch the positive feed-
back from F and deal with the conflict on the group where
the critical node is part of.

In detail, given an arbitrary sequence Sa of the node set N ,
we denote the corresponding occupied node set at t + δt by

Nε(S
ε
a; t + δt) = {Sε

a(i)|i ∈ [1, t + δt]}, t + δt ≤ n (14)

where δt ∈ N is the size of each group. Then, it is easy
to verify that the configuration of the node set Nε(Sε

a; t +
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(a) (b) (c) (d) (e)

Fig. 4. Illustration of Evol1 on the German Power Grid network. (a) qc(HD) = 0.40. (b) and (c) Divide the nodes into three groups (δt = 
n/3�) and
make the calculation happen only on their own group, then the threshold qc only directly depends on the group where the critical node belongs to. (d) New
sequence is obtained and has an improvement of 17.50% of qc compared to HD. (e) Other δt for a better performance. Note that RR is under sum rule with
τ̂ = 50, r̂ = 0.9, and T̂ = 20.

δt)\Nε(Sε
a; t) is independent of the occupied order of nodes

in the sets Nε(Sε
a; t) and N \Nε(Sε

a; t+δt). Namely, the change
of F2(Sa) would not bring about any influence to F1(Sa) and
F3(Sa) if we let F1(Sa), F2(Sa), and F3(Sa)

F1(Sa) =
t∑

i=1

Gε(S
ε
a; i)

F2(Sa) =
t+δt∑

i=t+1

Gε(S
ε
a; i)

F3(Sa) =
n∑

i=t+δt+1

Gε(S
ε
a; i)

be associated with Nε(Sε
a; t), Nε(Sε

a; t + δt)\Nε(Sε
a; t), and

N \Nε(Sε
a; t + δt), respectively. Denoting with vc the critical

node corresponding to the last removed node (4) after which
G(Sa; q) ≤ θ , then our goal function is defined as

f (goal) =
{

qc, if vc ∈ Nε(Sε
a; t + δt)\Nε(Sε

a; t)∑t+δt
i=t+1 Gε(Sε

a; i), otherwise.
(15)

Consequently, starting with Nε(Sε0
a ; t = 0) and a certain

δt ∈ [1, δ̂t], we orderly occupy the nodes in the node set
Nε(Sε

a; t+ δt)\Nε(Sε
a; t) based on RR, where δ̂t is an undeter-

mined parameter; following that we further handle the nodes in
Nε(Sε

a; t+2δt)\Nε(Sε
a; t+δt), in Nε(Sε

a; t+3δt)\Nε(Sε
a; t+2δt)

etc. Note that these procedures can be processed in parallel.
Then, we will get a new sequence Sε1

a , as well as Sε2
a ,. . . , S

εTg
a

with other δt.
In addition, since usually δt � n (note that δt is the main

factor to influence the parallel computation), the adaptive strat-
egy [i.e., r = rs/(T × δr + 1) and τ = τs + 
T × δτ + 0.5�]
in RR [34] is not valid any more. So we here adjust them to
be randomly selected from r ∈ (0, r̂] and τ ∈ [1, τ̂ ] with
same probability, where r̂ ≤ 1 and τ̂ ∈ Z

+ are undeter-
mined parameters accordingly for the upper bounds of the
proportion of possible candidates and the times of selection
(Evol1). An example is detailed in Fig. 4 and the related
processes are shown in Algorithm 3. In Fig. 5, we also show

Algorithm 3 Evol1 Method

Input: Network, r̂, τ̂ , T̂ , δ̂t, Sε0
a , T̂g

Output: S
εT̂g
a

1: Tg ← 0

2: S
εTg
a ← Sε0

a
3: while Tg < T̂g do
4: δt ∈ [1, δ̂t] // δt is a random number
5: Divide N into several group based on S

εTg
a and

δt: Nε(Sε
a; δt)\Nε(Sε

a; 0), Nε(Sε
a; 2δt)\Nε(Sε

a; δt), . . . ,
Nε(Sε

a; n)\Nε(Sε
a; (
 n

δt � − 1)δt)

6: Initialize Np(vi) and G(vi) for each group according to S
εTg
a

7: At each group call RR (Algorithm 2) with different goal
function (Eq. (15))
//Parallel, and here RR with r ∈ (0, r̂] and τ ∈ [1, τ̂ ]

8: Tg ← Tg + 1
9: end while

10: S
εT̂g
a ← S

εTg
a

Fig. 5. Improvement percentage I(qc) = [qc(RR) − qc(Evol1)]/qc(RR) of
qc for Evol1 compared to RR on the 18 real-world networks.

the performance of Evol1 on the 18 real-world networks com-
pared to RR, where RR is with the same settings of parameters
as [34] and Evol1 is based on HD with τ̂ = 50, r̂ = 1,
T̂ = 20, δ̂t = 
0.1 × n�, and T̂g = 5000 for networks with
n ≤ 105, T̂g = 2500 for 105 < n ≤ 106, and T̂g = 500
for n > 106, respectively. These settings are also conducted
in the following part of this paper if there is no special
explanation.
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(a) (b)

Fig. 6. Illustrations of Selection-I. (a) In the group where the critical node
vc belongs to, the sequence with smaller qc is chosen directly. (b) In the other
groups the selection tends to a smaller average giant fraction (16).

Fig. 7. Improvement percentage I(qc) of qc for Evol2 compared to Evol1 on
the 18 real-world networks where I(qc) = [qc(Evol1)−qc(Evol2)]/qc(Evol1).

B. Selection-I

As illustrated in Fig. 5, Evol1 fails in some cases, but still
outperforms RR on more than half of all networks with signif-
icant improvements. This indicates that qc can benefit from the
treatment of the conflict between it and F. Thus, another ques-
tion is: do the perturbations of F in other groups influence qc?
To study this, we add a selection probability p(Sε

new) in all the
groups except for the one that the critical node belongs to

p(Sε
new) =

∑t+δt
i=t+1 Gε(Sε

old; i)∑t+δt
i=t+1 [Gε(Sε

new; i)+ Gε(Sε
old; i)]

. (16)

In other words, the algorithm would rather choose the smaller
average giant fraction F with a higher probability than
directly select it (Evol2). An example and the corresponding
performance are demonstrated in Figs. 6 and 7, respectively.

C. Local and Global Mutation

Furthermore, we introduce mutation operators to disor-
der F, including local and global mutation (Evol3). Both
of them, at each time, equally choose one from the fol-
lowing six mutation operators to produce the corresponding
sequence.

1) The displacement mutation (DM) operator [53] usually
randomly selects a fragment that would be moved from
the sequence and eventually inserted in a random place.

2) The exchange mutation (EM) operator [54] aims at
choosing two nodes in the sequence at random and then
exchanging them (similar strategy could be found in [4]).

3) As for the insertion mutation operator [53], [55], one
random node is moved out the sequence and placed at
a random position afterward.

Fig. 8. Illustration of mutations. The local mutation happens with the prob-
ability pl

m on the groups where the critical node is absent. For the entire
sequence Sold, it may either transfer to Snew directly (with the probability
1−pg

m), or mutates into S′new (with the probability pg
m). If mutation achieves,

then the sequence with smaller qc would be chosen between Sold and S′old
which is obtained based on S′new.

Fig. 9. Improvement percentage I(qc) of qc for Evol3 compared to Evol2
on the 18 real-world networks, where Evol3 is with pl

m = 0.1 and pg
m = 0.3,

and I(qc) = [qc(Evol2)− qc(Evol3)]/qc(Evol2).

4) The simple inversion mutation (SIM) operator [56]
selects randomly two cut points in the sequence, and
then reverses the fragment between these two cut points.

5) On the basis of SIM, we slightly change it by narrow-
ing the cut points (S-SIM), namely the random selection
happens in a narrow range.

6) The inversion mutation [57] operator works similarly to
the DM. It also randomly selects a fragment, removes
it from the sequence and then inserts it in a randomly
selected position, however, in the reversed order.

We show a simple illustration of the two types of
mutations in Fig. 8 and the performance of Evol3 in
Fig. 9, where the local mutation probability pl

m and the
global mutation probability pg

m are fixed to 0.1 and 0.3,
respectively.

D. Selection-II

The results of Evol2 and Evol3 (see Figs. 7 and 9) man-
ifest that: on the one hand, the perturbations of F in other
groups truly affect the threshold qc; on the other hand, large
disturbance (mutation) may slow down the convergence rate
of the algorithm (see the results in the Txroad and as-Skitter
networks). Besides, when investigating G(q) of q under dif-
ferent τ̂ (Fig. 10), we find that a small qc always corresponds
to a large G(q) at the early stage of removal, i.e., when q
is small. This indicates that a better qc may be acquired
by increasing G(q) in some places. Therefore, we finally
make the selection tend to a larger average giant fraction and



1056 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

(a) (b) (c) (d)

Fig. 10. Giant fraction G(q) versus the removed fraction of nodes q for CI and RR (under sum rule with τ̂ = 10 and τ̂ = 320 respectively) on (a) Cit-HepPh
network, (b) loc-Gowalla network, (c) ER network with n = 105 and 〈k〉 = 3.5, and (d) SF network with γ = 3.0, n = 105, and 〈k〉 = 4.0.

Fig. 11. Improvement percentage I(qc) of qc for Evol4 compared to Evol3 on
18 real-world networks, where I(qc) = [qc(Evol3)− qc(Evol4)]/qc(Evol3).

rewrite (16) as (Evol4)

p(Sε
new) =

∑t+δt
i=t+1 Gε(Sε

new; i)∑t+δt
i=t+1 [Gε(Sε

new; i)+ Gε(Sε
old; i)]

. (17)

The corresponding results are shown in Fig. 11.

E. Evolq, EvolF, Reinitialization of Sε0
a , and Summary

For a convenient description, we use Evolq and EvolF to be
associated with the optimization of the immunized threshold
qc and the average giant fraction F, respectively. They are

Evolq := Evol4(to stabilize)+ Evol1(to stabilize)

where Evol4 + Evol1 means we further use Evol1 to optimize
F of other groups that the critical node does not belong to,
after the optimization of qc under Evol4

EvolF := Evol1but with goal function

f (goal) =
t+δt∑

i=t+1

Gε(S
ε
a; i),∀t. (18)

The corresponding algorithms of Evolq are detailed in
Algorithms 4 and 5. Note that it is also possible to obtain
a better F through Evol4(to stabilize)+ EvolF(to stabilize).

Moreover, another strategy is to use RR (Algorithm 2) to
quickly reinitialize the input Sε0

a , and then based on it to further
optimize qc or F. In detail, we employ RR to independently
evolve Sε0

a a number of times (population size, e.g., 100 in this
paper), and then choose the one with smallest F as the input
of Evolq or EvolF . Note here δr = 0.1, δτ = 0.05, τs = 5,
and T̂ = 200 are conducted for the purpose of quick computa-
tion, and this procedure is parallel processed too. Besides, in

Algorithm 4 RR Method-Update

1: function RR-U(Sε
old, t, δt, n, r̂, τ̂ , pl

m, T̂)
2: T ← 1
3: t̂ ← min(t + δt, n)

4: Sp
old ← Sε

old(i), ∀i ∈ [t + 1, t̂] // Sp
old is a fragment of Sε

old
5: Sp

new ← Sp
old

6: while T ≤ T̂ do
7: j← 1
8: r ∈ (0, r̂], τ ∈ [1, τ̂ ] // r and τ are random numbers
9: if vc /∈ Sp

new then
10: Mutate Sp

new with probability pl
m

11: end if
12: while j ≤ t̂ do
13: N rc(t + j)← based on r and τ

14: vs ← arg minv� ξ(v�), v� ∈ N rc(t + j) // UF algorithm
15: Sp

new ← update itself
16: j← j+ 1
17: end while
18: if vc ∈ Sp

new then
19: if qc(S

p
old) < qc(S

p
new) then

20: Sp
new ← Sp

old
21: else
22: Sp

old ← Sp
new

23: end if
24: else
25: if p(Sε

new) then // according to Eq. (17)
26: Sp

old ← Sp
new

27: else
28: Sp

new ← Sp
old

29: end if
30: end if
31: T ← T + 1
32: end while
33: Sε

old(i), ∀i ∈ [t + 1, t̂] ← Sp
old

34: return Sε
old

35: end function

order to differentiate Evolq and EvolF , we mark them with I,
namely EvolIq and EvolIF correspond to Evolq and EvolF but
with reinitialization of Sε0

a , respectively.
With respect to the computational complexity of Evolq,

it is very hard to analyze it in detail. Actually, the UF
(Algorithm 1) can achieve its function within near-constant
time. That means that the time complexity of Evolq is approx-
imately O(τ 2TTg〈k〉n) (ignore the mutation operators) for
ER-type networks, since the computational complexity of
searching the neighbors of a certain node is O(〈k〉). However,
in SF-type networks (most of real-world networks), the hetero-
geneity of degree makes this approximation invalid. In other
words, there are a few nodes whose degrees are proportional to
n(1/[γ−1]) [1]. This problem also exists in CI and EI [see (8)
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TABLE II
IMMUNIZATION THRESHOLD qc OF HD, HAD, CI, EI, EVOLq , EVOLF , AND EVOLI

q FOR THE 18 REAL-WORLD NETWORKS. � OF CI IS FIXED TO

4 EXCEPT FOR THE EMAIL-EUALL NETWORK (WITH � = 3) AND THE AS-SKITTER NETWORK (WITH � = 2). THE BOLD

NUMBERS ARE THE MINIMAL qc AMONG THESE STRATEGIES FOR A SAME NETWORK

Algorithm 5 Evolq Method

Input: Network, r̂, τ̂ , T̂ , δ̂t, Sε0
a , T̂g, pl

m, pg
m

Output: S
εT̂g
a

1: Tg ← 1

2: S
εTg
a ← Sε0

a

3: S
εTg
b ← S

εTg
a

4: while Tg ≤ T̂g do
5: t← 0
6: Mutate S

εTg
a with probability pg

m
7: δt ∈ [1, δ̂t] // δt is a random integer
8: Nε(Sε

a; δt)\Nε(Sε
a; 0), Nε(Sε

a; 2δt)\Nε(Sε
a; δt), . . . ,

Nε(Sε
a; n)\Nε(Sε

a; (
 n
δt � − 1)δt) // divide N into several group

based on S
εTg
a and δt

9: Initialize Np(vi) and G(vi) for each group according to S
εTg
a

10: while t < n do // parallel

11: S
εTg
a ← RR-U(Sε

old, t, δt, n, r̂, τ̂ , pl
m, T̂) // call Algorithm 4

12: t← t + δt
13: end while
14: if qc(S

εTg
b ) < qc(S

εTg
a ) then

15: qc(S
εTg
a )← qc(S

εTg
b )

16: else
17: qc(S

εTg
b )← qc(S

εTg
a )

18: end if
19: Tg ← Tg + 1
20: end while
21: S

εTg
a ← S

εTg
a // call Algorithm 3 (Evol1) to fix F

22: S
εT̂g
a ← S

εTg
a

and (9)]. On the whole, compared to CI and EI, Evolq can
obtain a better outcome (where Tg is small) with less time
in most networks, especially in large networks, e.g., a bet-
ter result can be obtained within minutes on the as-Skitter
network where CI might take more than one week if � = 3
in the same simulation environment. Besides this, the results
would become better and better with increasing Tg.

V. EXPERIMENTS AND RESULTS

To validate the effectiveness of the proposed method,
we conduct adequate experiments on Lenovo NeXtScale

Fig. 12. Improvement percentage I(qc) = [qc(Sa) − qc(Evolq)]/qc(Sa) of
qc for Evolq compared to CI (green), EI (blue), RR (black), and EvolIq (red)
on the 18 real-world networks, where Sa accordingly corresponds to CI, EI,
RR, and EvolIq. Besides, EI, RR, EvolIq, and Evolq are simulated through 20
independent realizations, respectively.

nx360M5, Xeon E5-2667v3 8C 3.2 GHz, Infiniband FDR14
with eight threads, considering both paradigmatic model
networks (including ER [52] and SF [43], [58] networks) and
several real-world networks (Table I). In this section, if there
is no special explanation, � of CI is fixed to 4, each result of
EI is obtained with K = 6 and 2000 candidates, the param-
eters of RR and PR are same as [34], and our methods are
based on HD with τ̂ = 50, r̂ = 1.0, T̂ = 20, δ̂t = 
0.1 × n�,
pl

m = 0.1, and pg
m = 0.3, respectively.

A. Percolation Metric

The percolation metric includes the immunization thresh-
old qc [here assume θ = 0.01, i.e., G(Sa; qc) ≤ 0.01]
and the average giant fraction F [4], [14], [15], [23], [39].
First, we consider the immunization threshold qc on real-
world networks. The related results are shown in Table II
where mean and standard deviation values of EI, Evolq, EvolF ,
and EvolIq are given. For almost all of the networks tested
here, Evolq performs significantly better than HD and HAD
(over 30%). Further regarding to CI and EI (Fig. 12), Evolq
also has a large improvement of over 20% and 10% in
most networks, accordingly. In particular, on the four largest
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 13. Giant fraction G(q) versus the removed fraction of nodes q for CI, EI, and EvolIF respectively on (a) CA-AstroPh network, (b) Cit-HepPh network,
(c) Email-Enron network, (d) loc-Gowalla network, (e) com-Amazon network, (f) Web-Google network, (g) Txroad network, and (h) as-Skitter network.

networks (the Web-Google, PAroad, Txroad, and as-Skitter),
Evolq decreases the corresponding immunized threshold by
over 80%, 70%, 60%, and 20% against HD, HAD, CI, and
EI, respectively. Besides, EvolF also obtains much smaller
qc than other methods, even though it is designed for the
optimization of the average giant fraction. Moreover, reini-
tialization of Sε0

a strategy (EvolIq) performs extremely better
than all of the other methods in the two road networks, but
it only acquires smaller qc in 6/18 networks compared to
Evolq. This may further demonstrate the existence of con-
flict between smaller F and optimal qc. By contrast, the
reinitialization of Sε0

a strategy promotes the average giant frac-
tion F to an extremely optimal level (see Table III), e.g.,
improvement of 5.49%–98.60% (average 48.85%) versus CI,
12.32%–75.27% (average 35.60%) against EI and 1.78%–
26.88% (average 9.28%) compared to RR. In addition, the
result on the Web-Google network indicate that a better F
may be obtained through Evolq + EvolF in some cases, i.e.,
first optimize qc and then based on it to optimize F.

To further estimate the proposed methods, the giant fraction
G(q) (susceptible fraction) of removed nodes q is plotted in
Fig. 13. The experimental networks include the following.

1) CA-AstroPh: A collaboration network regarding Astro
Physics in Arxiv [46]. In this network, some scientists
(nodes) may be important for the transmission of new
methods or models.

2) Cit-HepPh: A citation network of Arxiv high energy
physics phenomenology (HepPh) [45].

3) Email-Enron: The Email-Enron network is a network in
which a node represents an email address and an edge
denotes that there is at least one mail transferred between
the two addresses [44]. Some viruses may spread relying
on it.

4) loc-Gowalla: A location-based social network.
5) com-Amazon: A customers who bought this item also

bought feature network collected by crawling Amazon

website [51]. In this network, each node corresponds to
a product and edges represent that two products are co-
purchased together frequently. Thus, it is quite important
to find out the most influential products.

6) Web-Google: A network of Google Web where nodes
represent Web pages and edges indicate hyperlinks
among them [44].

7) Txroad: A complex road network of Texas [44]. Node is
either an intersection or an endpoint, and an edge repre-
sents the road among them. In this case, the influential
part of nodes may play an important role in monitoring
the status of the whole road network.

8) as-Skitter: An Internet topology network on autonomous
systems by Skitter [45].

The choices of these networks consider both density of
edges [9] and assortativity of degrees [10], which are always
associated with the robustness of a network. As we can see
from Fig. 13, EvolIF displays huge superiority that less nodes
are immunized (q) for the same extent of immunization (G(q))
than both CI and EI in all networks studied here.

Moreover, we perform experiments on model networks,
including ER and SF types. Different from real-world
networks (the existence of community structure makes some
low-degree nodes quite important, the removal of which frag-
ments the network into several independent communities),
nodes with higher degree are always more influential in these
model networks (Fig. 14). Therefore, a larger τ̂ of Evolq is
used to try to maintain the character of HD. In the mean-
time, an adaptive δ̂t is employed to further deal with the
conflict between F and qc. Additionally, the feedback vertex
set (FVS) strategy [34] is also conducted here for Evolq in
model networks. The results of G(q) versus q are shown in
Fig. 15, where Evolq outperforms (with smaller qc) CI and
EI on both kinds of networks. With respect to average giant
fraction, EvolIF can obtain a much smaller F compared to
other methods. Further, we exhibit the immunized threshold
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TABLE III
AVERAGE GIANT FRACTION F OF HD, HAD, CI, EI, EVOLq , EVOLF , AND EVOLI

F FOR THE 18 REAL-WORLD NETWORKS. THE BOLD NUMBERS ARE

THE MINIMAL F OF THESE STRATEGIES FOR A SAME NETWORK

(a) (b) (c) (d)

Fig. 14. Node-degree distribution of the entire network (green circle) and the nodes in N \Nε(Sa; nqc) (blue x-mark). The corresponding method Sa is
either PR for (a) ER networks with n = 106 and 〈k〉 = 3.5, and (b) SF networks with γ = 3.0, n = 106, and 〈k〉 = 4.0 or Evolq for (c) CA-AstroPh network
and (d) as-Skitter network. The red line divides each figure into two parts: on the right pd ≥ 90%, where pd = n1≥(k)/n2≥(k) is the ratio of n1(k) and n2(k),
vice versa. n1≥(k) and n2≥(k) denote the number of nodes with a degree equal or larger than k in N \Nε(Sa; nqc) and N , respectively. The percentage on the
middle of each plot is the percentage of n1≥(kc) and nqc in which kc is associated with the degree k where the red line is.

qc of the average degree 〈k〉 and the exponential parameter
γ [58] in Fig. 16, which shows that Evolq is still better than
other methods. Note that in this paper the SF network is con-
structed using the Barabási–Albert model [43] when γ = 3.0,
otherwise, by the model in [58].

B. SIR Model Simulation

For a network under the simulation of the SIR epidemic
spreading model [35], each node is either in the susceptible
(S), infected (I), or recovered (R) state. At the earliest stage, all
nodes are initialized to be susceptible, and then the immuniza-
tion nodes are put on the recovered state (or they are removed
from the network, including the incidental edges). Next, we
randomly select one node from the susceptible node set to
be infected to investigate the transmissibility of this node on
the remainder network. The infected nodes, at each time step,
infect its susceptible neighbors with the infection rate λ, and
then they recover with the rate η. The recovered nodes would
not be affected anymore. This process is repeated until there
is no infected node in the remaining network.

The simulated results are shown in Figs. 17 and 18 com-
pared to CI and EI on the Email-Enron network, the loc-
Gowalla network, the Web-Google network, and the as-Skitter

(a) (b)

Fig. 15. Fraction G(q) of the size of the giant connected component versus
the fraction of immunization nodes q (over 50 implementations) for CI, EI,
EvolIF , and Evolq for (a) ER networks with n = 106 and 〈k〉 = 3.5, and (b) SF
networks with γ = 3.0, n = 106, and 〈k〉 = 4.0. Here, Evolq optimizes qc by
aid of the optimization of FVS with τ̂ = 200, T̂ = 10, and δ̂t = 
F(HD)×n�.

network. Note that EIb and Evolbq are the sequences with min-
imal qc of 20 realizations for EI and Evolq, respectively, and
EvolIbF with minimal F. In each simulation, λ and η are fixed
to 0.2 and 0.05, accordingly. For all the networks studied here
(Fig. 17), Evolbq has a significantly smaller number of recov-
ered individuals (were infected) than EI does under the same
immunization fraction q (16–96 times smaller at the end of
the infection), especially when the network becomes large.
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(a) (b) (c)

Fig. 16. Immunization threshold qc of the average degree 〈k〉 and the exponent γ for CI, EI1, EI2, PR, and Evolq for (a) ER networks with n = 105, (b) SF
networks with γ = 3.0 and n = 105, and (c) SF networks with 〈k〉 = 4.0 and n = 105. CI-Evolq is the difference of the immunization threshold of PR
and the immunization threshold of CI, and also for EI1-Evolq, EI2-Evolq, and PR-Evolq. Evolq is with τ̂ = 200, T̂ = 10, and δ̂t = 
F(HD) × n� through
optimization of FVS. The results of EI1 are obtained with K = 6 and EI2 is controlled by K = 〈k〉 + 2, respectively.

(a) (b) (c) (d)

Fig. 17. Rate ρ of infected (I) and recovered (R) individuals versus the spreading time tSIR under the immunization fraction q = qc(Evolbq) for EIb and
Evolbq, respectively, on (a) Email-Enron network, (b) loc-Gowalla network, (c) Web-Google network, and (d) as-Skitter network. In each network for each
method, 5× 105 selections are conducted.

(a) (b) (c) (d)

Fig. 18. Final recovered fraction Rf versus the fraction of immunization nodes q for CI, EIb, and EvolIbF , respectively, on (a) Email-Enron network,
(b) loc-Gowalla network, (c) Web-Google network, and (d) as-Skitter network. Each data point is obtained by 104 independent simulations.

Considering the final recovered fraction Rf (Fig. 18), EvolIF
also outperforms CI and EI in almost all situations.

Besides this, we further consider the global airline
network3 [23], [39] which plays a vital role for the spread
of a contagious disease, e.g., SARS or H1N1 [3]. Similar to
the other networks, the weighted edges in this network are
also simply replaced with the unweighted edges and all of
the directed edges and the nodes except for those belonging
to the largest connected component are removed, and as a
result the experimental network composes of n = 3146 nodes
(airports) and m = 18 146 edges (airlines). We immunize the
top-5% nodes of HD, HB, and Evolq by a lower infection rate
λ′ = 0.0001 (keep the network connected), and then respec-
tively estimate the effectiveness of them using the SIR model
with λ = 0.2 and η = 0.05 and a unique infected node chosen

3The source of this data is from https://openflights.org/data.html.

from the giant component after the immunization of Evolq (lat-
itude 41.7994 and longitude 12.5949). The simulation results
are shown in SFig. 1 where all of the spreads are almost stable
at time step tSIR = 100. Compared to HD and HB, Evolq is
considerably better (only a small part of nodes are influenced
after the immunization through Evolq).

VI. DISCUSSION

A. Evolution Ability and Different Initial Methods

We compare the evolution ability of the proposed method
with the method in [39] where an exchange strategy (ES) is
developed to optimize the average giant fraction F. Analogous
to the EM mutation operator, ES randomly selects two nodes
in the sequence, and then exchange them if this operation
can make a better (smaller) F. Due to the high time com-
plexity of HAB, we estimate the performance of ES and
EvolF on several small networks. The simulation results are
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shown in STable I of the Supplementary, where ES is con-
ducted with 106 exchanges for each network. Interestingly,
EvolF(HAB) has better results in all situations except the SF
network even though HAB outperforms HD there. Therefore,
we further investigate the impact of the initial sequence Sa on
the proposed method. As reported in both STables I and II of
the Supplementary, an improvement is obtained with a better
initial sequence in most situations. Moreover, for all initial
methods in all networks studied here, the proposed strategies
have smaller qc and F than both CI and EI, even when starting
with a random sequence.

B. Crossover and Parameters

In this paper, neither Evolq nor EvolF considers crossover
operators, since there are several approaches to maintain the
diversity of the sequence (population), e.g., τ̂ and Selection-II.
In other words, for the example of EvolIF (SFig. 2 in the
Supplementary), a larger r may indicate a better G(q) if a
large enough fraction of nodes is removed (rapid increase of
Fp as the rise of q). However, it cannot always achieve a bet-
ter F which is usually obtained by a small τ (not too small).
The different values of τ , to some degree, correspond to local
and global optimization, respectively. Our simulation results
manifest that an effective strategy of immunization is to com-
bine them. But a large τ would reduce the efficiency of the
algorithm, especially on SF-type networks. Hence, an accept-
able way is to make τ and r be random numbers of τ̂ and r̂,
namely to some extend, a local optimization may be captured
by a large τ and a small r, while avoiding by a small τ and
a large r.

δt is related to the upper bound of the number of parallel
threads. The simulation results (SFig. 3 in the Supplementary)
show that, in most of the networks studied here (15/18), I(qc)

is within 2%. This indicates that, on the one hand, better
solutions can be obtained by an adjustment of δt. On the
other hand, the algorithm may be faster by decreasing δt.
Besides, the results of Evolq under different goal θ are shown
in SFig. 4 of the Supplementary. For most situation, Evolq
makes a smaller giant component (G(q)) with the same amount
of immunized nodes (q) even compared to EvolIF . But some-
times [see SFig. 4(c) in the Supplementary], better qc might
be obtained through the optimization of EvolIF .

By the large, to effectively maintain the diversity of the
sequence, the proposed methods generate offspring using ran-
dom selection and order occupation considering both local and
global optimization. There may be crossovers that could be
conducted on the proposed strategy to further improve it since,
e.g., a better initial sequence can achieve a better result.

C. Other Possible Applications

As demonstrated in Section V, an effective strategy is more
likely to reveal the true robustness of a system that can be
modeled as a network. Besides, for the nodes after the removal
of which the network would drastically collapse, they always
play fundamental roles to keep the system function and more
protection should be given [12]. Thus, minimizing the number

of that part nodes can save a lot of resource, like monitoring
the traffic status of a road network.

1) When studying the robustness of a network, one of
the goals is to optimize the network structure, e.g., to
enhance the network robustness through the swap of
edges but keeping the nodes’ degree unchanged [4], [59].
However, an important factor which should be consid-
ered in this process is the time consumption because
there might be more than million times of swaps to
make the network meet our demand. This indicates
that it is almost impossible to evolve a network based
on the global properties of nodes or heuristic attack
methods, like the Betweenness centrality or CI, espe-
cially for large networks. Thus, node degree as the
most important and easily obtained property naturally
becomes the touchstone for the evaluation of network
status, even though Zhou and Liu [59] tried to find the
Pareto front of different attack methods when enhanc-
ing the network robustness. As shown in SFig. 5 of the
Supplementary, the network robustness F(·) increases
with the rise of F(HD). But there is a critical point of
F(HD) after which F(·) no longer increases. Besides,
different methods are associated with different critical
points but the proposed method makes the transition ear-
lier than other strategies. In other words, a more effective
method might correspond to a more reliable critical
point.

2) There is evidence that the network assortativity can
affect the network robustness [10] and it also plays an
important role in a large range of domains related to
network science [1], e.g., evolutionary games [60] and
synchronization [61] as well as neuroscience [62], [63].
This means the network robustness varies with the
change of the network assortativity [SFig. 5(c) and (d)].
Thus, what role does the network robustness truly play
in those cases?

3) Optimization of FVS. Similar to [34], we further develop
Evolq to minimize FVS. But it can only obtain smaller
FVS than PR in 8/18 networks. Therefore, how to effec-
tively use Evolq to solve the FVS problem is still an open
question.

VII. CONCLUSION

In this paper, we have developed a framework of an evolu-
tionary algorithm for finding the minimum separator of nodes
to fragment a network, which corresponds to the solution to
the robustness and immunization problem in network science.
In detail, we have designed the goal function, added the muta-
tion operators, proposed a special strategy for the selection and
introduced a way for the initialization of population. To test the
effectiveness of our method, we conduct extensive experiments
on both real-world and synthetic networks using the percola-
tion metric and SIR simulations. The results, especially of
the large empirical networks, show that our proposed method
considerably outperforms the other representative strategies.
Moreover, a better solution might be further obtained with
other fundamental approaches.
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APPENDIX

Main Nomenclature
N Node set.
n Network size.
ci Component i.
Gci Size of ci.
C Component set.
cmax Giant component.
Sa Arbitrary sequence of N .
q Proportion of removed nodes.
G(Sa; q) := Gmax/n.
qc(Sa) Threshold related to Sa.
F(Sa) Average fraction of giant components.
ε Symbol related to percolation process.
t Number of occupied nodes.
Nε Occupied node set.
� Undetermined parameter related to CI.
G(vj) Component size associated with node vj.
C(vj) Component set related to node vj.
Np Parent set of N (UF).
τ Times of selection.
r Upper bound of possible candidates.
ξ(·) Rule function (RR and PR).
Sold sequence for next-time evolution.
Sold sequence obtained through evolving.
r̂, τ̂ , T̂, δ̂t, Parameters for Evol.
T̂g, pl

m, pg
m

FVS Feedback vertex set.
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