
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019 935

Dynamic Cooperative Coevolution for
Large Scale Optimization

Xin-Yuan Zhang, Student Member, IEEE, Yue-Jiao Gong , Member, IEEE, Ying Lin , Member, IEEE,

Jie Zhang, Member, IEEE, Sam Kwong , Fellow, IEEE, and Jun Zhang , Fellow, IEEE

Abstract—The cooperative coevolution (CC) framework
achieves a promising performance in solving large scale global
optimization problems. The framework encounters difficulties
on nonseparable problems, where variables interact with each
other. Using the static grouping methods, variables will be
theoretically grouped into one big subcomponent, whereas the
random grouping strategy endures low efficiency. In this paper,
a dynamic CC framework is proposed to tackle the challenge.
The proposed framework works in a computationally efficient
manner, in which the computational resources are allocated to
a series of elitist subcomponents consisting of superior vari-
ables. First, a novel estimation method is proposed to evaluate
the contribution of variables using the historical information
of the best overall fitness. Based on the contribution and the
interaction information, a dynamic grouping strategy is con-
ducted to construct the dynamic subcomponent that evolves in
the next evolutionary period. The constructed subcomponents are
different from each other, and therefore the required parameters
to control the optimization of each subcomponent vary a lot in
each evolutionary period. A stage-by-stage parameter adapta-
tion strategy is proposed to adapt the optimizer to the dynamic
optimization environment. Experimental results indicate that the
proposed framework achieves competitive results compared with
the state-of-the-art CC frameworks.

Index Terms—Cooperative coevolution (CC), dynamic group-
ing (DyG) strategy, large scale global optimization (LSGO),
nonseparable problems.

Manuscript received May 28, 2018; revised September 25, 2018 and
November 18, 2018; accepted January 15, 2019. Date of publication
January 28, 2019; date of current version November 27, 2019. This
work was supported in part by the National Natural Science Foundation
of China under Grant 61873095, Grant 61772569, Grant 61873097, and
Grant U1701267, and in part by the Science and Technology Planning Project
of Guangdong Province under Grant 2014B050504005. (Corresponding
authors: Yue-Jiao Gong; Jun Zhang.)

X.-Y. Zhang is with School of Data and Computer Science, Sun Yat-sen
University, Guangzhou 510006, China.

Y.-J. Gong and J. Zhang are with the School of Computer Science
and Engineering, South China University of Technology, Guangzhou
510006, China, and also with the Guangdong Provincial Key Laboratory
of Computational Intelligence and Cyberspace Information, South
China University of Technology, Guangzhou 510006, China (e-mail:
gongyuejiao@gmail.com; junzhang@ieee.org).

Y. Lin is with the Department of Psychology, Sun Yat-sen University,
Guangzhou 510006, China.

J. Zhang is with the School of Information Science and Technology, Beijing
University of Chemical Technology, Beijing 100029, China.

S. Kwong is with the Department of Computer Science, City University of
Hong Kong, Hong Kong.

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author. The supplementary file con-
tains three parts to elaborate on the performance of the proposed DCC:
1) Sensitivity Study of the Parameters; 2) Ablation Study; 3) Summary of
the Experimental Results. The total size of the file is 404 KB.

Digital Object Identifier 10.1109/TEVC.2019.2895860

I. INTRODUCTION

IN THE era of Big Data, the dimensional space of prob-
lems becomes extremely large due to the growing volume,

velocity, and variety of the data [1]. Large scale global
optimization (LSGO) problem is a crucial component in many
Big Data applications. These problems involve hundreds or
even thousands of variables, which arise in the areas ranging
from industrial design [2], [3] to social service [4], [5].

Literature on evolutionary computation [6], [7] shows that it
is a powerful and prevalent optimization technique. For small
or medium scale optimization problems, evolutionary algo-
rithms (EAs) achieve a huge success in numerous kinds of
applications [8]–[10]. However, when the problem dimension-
ality goes beyond the search ability of traditional EAs (EAs
are commonly developed for problems of dimension lower
than 100 [11]–[13]), it becomes a challenge to achieve satis-
factory solutions in terms of solution quality and convergence
rate [14].

There commonly exist two ways to tackle the curse of
dimensionality challenge, one is designing more powerful
LSGO algorithms [15]–[17], while the other is to perform
dimension reduction. The motivations of the two methods
are totally different. The former method focuses on how to
enhance the search ability in the high-dimensional space of
the problem. It considers all variables as a whole and devel-
ops appropriate evolving strategies required in LSGO, e.g.,
the strategy to enhance the population diversity. Compared
with the former approach, the later uses the divide-and-
conquer mechanism to achieve the dimension reduction, which
is a more flexible framework in terms of scalability and
parallelizability [18], [19]. Owing to the remarkable abilities
of the human cooperation in the social development, the coop-
erative manner is prevalent in the design of the optimization
algorithms. In this paper, we focus on the improvement of
optimization algorithm when using cooperation strategy. The
cooperative coevolution (CC) framework transforms the orig-
inal problem into a number of small scale subproblems, and
solves them separately. Finally, the local feasible solutions are
assembled into a global one. An early attempt to this line of
thinking is the CC framework developed in [22]. In the tradi-
tional CC frameworks, the decision variables are pregrouped
into different subcomponents by specific grouping methods.
For separable LSGO problems, variables can be divided into
a set of disjoint subcomponents [24]. Each subcomponent rep-
resents an independent subproblem. The optimization process
of each subproblem does not influence each other. However,

1089-778X c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5648-1160
https://orcid.org/0000-0003-4141-1490
https://orcid.org/0000-0001-7484-7261
https://orcid.org/0000-0001-7835-9871

936 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

real world LSGO problems can be nonseparable [23]. In this
case, variables are theoretically nonseparable, and hence it is
difficult to perform dimension reduction.

To the best of our knowledge, the literature of the methods
that address the nonseparable LSGO problems is rather lim-
ited. The random grouping mechanism [22] has some effects,
but it endures low efficiency due to its randomness. Therefore,
in order to expand the usage of CC framework to nonsep-
arable LSGO problems, we propose a dynamic CC (DCC)
framework in this paper. The main contributions are given as
follows.

1) A DCC Framework for the Nonseparable LSGO
Problems: DCC decomposes LSGO problems according
to the contribution of variables as well as their interactive
relationship, which is a totally different mechanism com-
pared with the existing static grouping methods. The
nonseparable LSGO problems become separable in the
proposed DCC framework, and hence the divide-and-
conquer mechanism is applicable.

2) A Dynamic Computational Resources Allocation (CRA)
Strategy: DCC dynamically constructs a series of sub-
components. Each subcomponent consists of two types
of members, i.e., the basic members and the affiliated
members. A prespecified number of variables are first
determined to be the basic members if they have high
contribution. After that, affiliated members are chosen
from those who directly interact with the basic mem-
bers. Computational resources are dynamically allocated
to the constructed subcomponents, which makes DCC
work in a computationally efficient manner.

3) A History-Assisted Contribution Estimation Method:
For nonseparable LSGO problems, the contribution of
each specific variable interacts with the other variables.
Therefore, it is hard to compute the contribution of each
single variable. In order to tackle this challenge, a novel
history-based estimation method is proposed to evaluate
the contribution of variables. In each evolutionary period
of DCC, a few variables constitute a subcomponent
and thus the improvement of the global objective value
comes from the evolution of these variables. Considering
this, DCC records the historical information of the objec-
tive improvements and their associated variables in each
generation. The contribution of each variable is then
estimated by its averaged contribution over a few gen-
erations in the history. The proposed estimation method
makes the contribution information of variables count-
able and offers a promising thread of designing new
grouping strategies.

4) A Stage-by-Stage Parameter Adaptation (SSPA)
Strategy: The subcomponents of DCC framework are
dynamically constructed, and they are different from
each other. Therefore, the solution subspace in DCC
is dynamically changed during the optimization. Under
this circumstance, the sudden change of the solution
subspace challenges the traditional parameter adaptation
methods that perform the adaptation strategies gradually
at low frequencies. To solve the problem, we further
develop an SSPA strategy that is more suitable for

our DCC framework. The strategy enhances the search
efficiency of the optimizer.

Apart from the nonseparable LSGO problems, DCC
achieves higher efficiency than the existing CC frameworks in
solving fully separable LSGO problems. Due to the fully irrel-
evant structure, the superiority of variables is determined only
by their contribution. Instead of optimizing separable variables
one by one or as a whole, we dynamically construct the elitist
subcomponents to undergo evolutionary optimization.

The performance of DCC is verified by four types of exper-
iments and the experimental results indicate that it achieves
promising results in terms of the solution quality and the
convergence. The rest of this paper is organized as follows.
Section II introduces the formulation of LSGO problems and
the related work of the CC frameworks. The proposed DCC
framework is described in Section III. In Section IV, the
DCC framework is comprehensively investigated by compar-
ison with state-of-the-art algorithms. Finally, the conclusions
are drawn in Section V.

II. RELATED TECHNIQUES

In this section, first, we introduce and define different
types of LSGO problems, including separable and nonsepa-
rable ones. After that, numerous decomposition methods are
summarized.

A. LSGO Problems

Real world LSGO problems can be divided into two
categories (separable and nonseparable) according to the
interaction relationship among variables. Furthermore, there
exist direct and indirect interactive relationships between any
two variables. Based on the above mentioned attributes, there
exist four types of LSGO problems: 1) fully separable LSGO
problem; 2) partially separable LSGO problem; 3) overlapping
LSGO problem; and 4) fully nonseparable LSGO problem.
The separable LSGO problem is defined as

arg min f (x)
x

=
(

arg min
x1

f (x1, . . .), . . . , arg min
xm

f (. . . , xm)

)

(1)

where x = (x1, . . . , xD) represents the overall decision vector
with D variables. The set s = {x1, x2, . . . , xm} indicates the
m disjoint subcomponents of x. Given any subcomponents xi

and xj, we have xi ∩ xj = φ. For a separable LSGO function
f (x), f (x) is fully separable if m = D, and f (x) is partially
separable if 1 < m < D. If m = 1 and the variables of x
directly interact with each other, f (x) is called fully nonsepara-
ble LSGO function. Overlapping LSGO problems are a special
type of nonseparable LSGO problem, which is defined as

f (x) = F(f (x1), f (x2), . . . , f (xm)) (2)

where function F(f (xi), f (xj)) represents the combination of
f (xi) and f (xj), e.g., linear combination. Given two subcom-
ponents xi and xj, they are called overlapping subcomponents
if xi ∩ xj = xo(xo �= Ø). For any variable xk ∈ xo, xk interacts
with variables of xi and xj at the same time.

ZHANG et al.: DYNAMIC CC FOR LARGE SCALE OPTIMIZATION 937

In order to investigate the generalization of the LSGO algo-
rithms, benchmark functions are desired to simulate different
types of real world LSGO problems. Therefore, benchmark
functions, such as CEC2010 [27] and CEC2013 [28], are
developed to provide a suitable evaluation platform of the
LSGO algorithms. Each type of the LSGO benchmark function
represents a specific type of the real world LSGO problem. In
the CEC’2013 benchmark functions, the LSGO function f (x)

is defined as

f (x) =
m∑

i=1

fi(xi) (3)

where subcomponents (x1, x2, . . . , xm) are combined using the
weighted linear combination.

B. Traditional Cooperative Coevolution Frameworks

Owing to the evolutionary struggles, the cooperation strat-
egy becomes a unique tool of the human beings [30]. The
cooperation theory is promoting the development of human
beings, such as the successful vaccination [31], [32]. The
coevolutionary games are reviewed in [33]. An early attempt
of the design of generic divided-and-conquer framework is
conducted by [34]. A CC genetic algorithm is proposed to
divide the original D-dimensional problem into D subcompo-
nents, and each subcomponent is solved by a subpopulation
in a round-robin fashion. In the traditional CC frameworks,
the performance of this divide-and-conquer strategy depends
on whether a decomposition method is appropriate for a spe-
cific type of the LSGO problem. A number of decomposition
strategies are designed to divide the LSGO problem into a set
of subcomponents. The existing decomposition methods of
CC framework can be classified into two categories: 1) static
grouping strategy and 2) dynamic grouping (DyG) strategy.

As for the static grouping strategy, the decision variables
are divided into numerous subcomponents by a determinis-
tic decomposition procedure and the subcomponents remain
unchanged over the whole optimization process. In the coop-
erative particle swarm optimization (CPSO) [35], the decision
variables are randomly split into k parts (k << D) and the
k parts remain unchanged in the following optimization pro-
cess. Using the random decomposition strategy is not quite
accurate, because there are interactions between decision vari-
ables. The CC with variable interaction learning (CCVIL) is
an early attempt to group interacting variables into subcompo-
nents by the perturbation technique [36] on LSGO problems.
CCVIL consists of two stages, i.e., interaction detection and
optimization of a set of reduced space, which becomes a clas-
sic procedure of traditional CC. In order to improve the
grouping efficiency, differential grouping (DG) strategy is
proposed in [24], which is derived from the problem for-
mulation in Subsection A. DG divides variables interacting
with each other into a same subcomponent by a determinis-
tic interaction detection operator. The DG strategy achieves
high grouping accuracy on CEC’2010 large scale benchmark
functions. However, the original DG strategy encounters diffi-
culties in terms of grouping accuracy and effectiveness when
new attributes of high-dimensional functions are introduced.

Specifically, for the overlapping LSGO functions, DG fails
to detect the indirect interactive relationship between decision
variables, i.e., overlapping components. The extended DG [37]
is an early attempt to address this issue. It merges two subcom-
ponents with same decision variables and repeats this process
until all subcomponents are totally independent with each
other. Global DG (GDG) [38] deals with this issue by con-
ducting breadth-first or depth-first search within the interaction
structure matrix. In addition to the overlapping component
issue, computational error caused by computer operations is
also considered in GDG. Further, the DG2 [39] is an updated
version of the original DG, which enhances grouping accuracy
and efficiency by the parameters adaptation technique and the
reusing of sampling points, respectively.

As can be noted from the above static grouping meth-
ods, they focus on how to transform the original problem
space into a series of independent reduced subspaces using
different decomposition (i.e., variable grouping) techniques.
Concretely, the mechanism of the static grouping strategy
works well when the high-dimensional problem is fully or
partially separable. However, this is not the case for nonsepa-
rable problems. For nonseparable problems, decision variables
directly or indirectly interacts with each other. Therefore, the
original problem space is divided into a number of indepen-
dent reduced subspaces. It is therefore desirable to design
dynamic decomposition techniques to cope with this issue.
In multilevel CC (MLCC) [42], the high-dimensional problem
is decomposed by a series of specific designed decomposers
and decomposers are selected according to their performance
during the evolutionary process. A new CC framework is
proposed in [40], unlike CPSO, it conducts random decom-
position in every beginning of the evolution cycle, and the
theoretical analysis is given to ascertain the effectiveness of
this random grouping strategy. Li and Yao [41] proposed
a CC-based PSO, where an adaptive scheme is adopted
to dynamically determine the size of subcomponent. These
DyG strategies are random methods and they achieve better
performance than static grouping on nonseparable large scale
optimization problems.

C. Computational Resource Allocation

There are two critical research points of CC-based algo-
rithm, the one is the above-mentioned decomposition strategy,
and another is how to allocate the limited computational
resource to different subcomponents. The former focuses
on how to accurately and efficiently transform the high-
dimensional problem space into a number of reduced sub-
spaces and ensure its effectiveness as high as possible. The
decomposition strategy can be viewed as a preprocessing
procedure of the optimization process. After decomposition,
subcomponents are optimized in a round-robin mode under
traditional CC framework. Recent research has shown the
imbalance feature among subcomponents in terms of their
contributions to the original LSGO problem [43]. Due to
the imbalance among subcomponents, it will be an effi-
cient way of balancing computational resources among dif-
ferent subcomponents. Along this line of thinking, various

938 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

contribution-based CC (CBCC) frameworks with resource
allocation are proposed.

In [43], two CBCC (CBCC1 and CBCC2) algorithms are
proposed, where the contributions of different subcompo-
nents are quantified and the one with the biggest contri-
bution is chosen to undergo the next evolutionary period.
The experimental results show that the mechanism of CBCC
obtains improved performance for high-dimensional problems
with imbalanced subcomponents. However, on some problem
instances, the existing CBCC variants still endure over explo-
ration or over exploitation issue, which limit the solution qual-
ity. CBCC3 [44] inherits main part of CBCC, and balances the
exploration and exploitation of CC optimizer, which achieves
significant improvement over CBCC. Yang et al. [45] proposed
a CC framework named CCFR and conduct resource allocation
in a more efficient way according to the dynamic contribu-
tions of each subcomponent. Experimental results suggest that
CCFR is capable of scheduling computational resources in
a more efficient way than CBCC methods. The performance of
above CBCC frameworks depends on the accuracy of group-
ing methods, because “contribution” is measured at the grain
of subcomponent. For separable LSGO problems, the contri-
bution of each subcomponent can be accurately computed if
the grouping results are correct. However, it is impossible to
divide a nonseparable LSGO problem into a series of disjoint
subcomponents. It becomes a challenge of how to conduct
a decomposition strategy and computational resource alloca-
tion. In order to alleviate this issue, an overlapped CC is
proposed in [26], where variables with a strong impact on
objective function are assigned more computational resource.
The impact of each variable is tested by a deterministic delta-
disturbance strategy, but the impact of each variable changes
with the current local search area and it consumes extra fitness
evaluations (FEs). The above-mentioned CBCC algorithms
perform successfully in improving the performance of the
traditional CC framework. On account of accurate grouping
results, crucial subcomponents possess more computational
resource and therefore achieve higher solution quality.

The existing divide-and-conquer frameworks show promis-
ing performance on separable LSGO problems in the literature
owing to the accurate grouping strategy and contribution-
based mechanism. However, they endure limitations on some
other problems, such as nonseparable LSGO problems. As the
important components of real world LSGO problems, there are
no specially designed LSGO algorithms to deal with them.
This paper proposes a generic DCC framework to cope with
this type of LSGO problem. The mechanism of DCC will be
described in the following section.

III. PROPOSED METHOD

A. Dynamic Co-Operative Coevolution Framework

This section shows the overall framework of the proposed
DCC framework including three novel operations: 1) the esti-
mation of the dimensional contribution (EDC) strategy; 2) the
DyG method; and 3) the SSPA strategy. The idea behind DCC
is that the original LSGO nonseparable problems are consid-
ered as a series of dynamic subcomponents for optimization.

Fig. 1. Overall flowchart of DCC. The DyG, EDC and SSPA represent the
dynamic grouping operation, the estimation of dimension contribution, and the
stage-by-stage parameters adaptation, respectively. The algorithm terminates
at a given number of the fitness evaluations.

Each subcomponent is dynamically constructed during the
optimization process consisting of numerous superior vari-
ables. The superiority of a variable depends on its contribution
and the interaction relationship with other variables. The EDC
strategy is first conducted to evaluate the contribution of each
variable according to the historical information of the best
overall fitness value, which will be introduced in detail in the
following Subsection B. After the EDC operation, the dynamic
subcomponent is constructed by the DyG method. In DyG, the
superiority of variables is ranked according to their contribu-
tion information and interaction information. In static grouping
methods, subcomponents are predetermined and unchanged
during the whole optimization process. The optimization of
the same subcomponent is continuous. However, this is not
the case for DyG methods. The new constructed dynamic
subcomponent can be different from the previous dynamic
subcomponents. Therefore, parameters of the previous opti-
mizers become insignificant for the following optimization
process. An SSPA strategy is proposed in order to ensure the
effectiveness of the parameter adaptation strategy.

Fig. 1 illustrates the overall flowchart of DCC, which
consists of two steps. First, a random grouping-based CC
algorithm is conducted as a startup phase in order to col-
lect the variable contribution information. Then, the most
superior subcomponent is determined by DyG, and this sub-
component is optimized by the optimizer with SSPA strategy.
After the optimization of this subcomponent, the contribu-
tion information of this subcomponent is collected using the
EDC strategy. Based on the new contribution information,
the most promising subcomponent will be generated again
by DyG. Pseudocode of this DCC framework is given in

ZHANG et al.: DYNAMIC CC FOR LARGE SCALE OPTIMIZATION 939

Fig. 2. Variable interaction relationship. The dashed and solid arrows
represent the indirect and direct interaction between any two variables.

Algorithm 1 DCC Framework(f, D, P, Optimizer())
1: Procedure DCC(f, D, P, Optimizer())
2: Interaction matrix � = DG2 (f, D);
2: while (fes < FEsr) do
3: {x1, x2, . . . , xM} ← Random Grouping (f, D);
4: for k = 1 → M do
5: (P) ← optimizer(f, D, FEs = |P|, non-PA)
6: update H; // EDC
7: k← k + 1;
8: end for
9: fes ← fes + |P|;
10: end while
11: while fes < FEsm do
12: for g = 1 → Gd do
13: Computational resource allocation(f, D, H); // DyG
14: (P) ← optimizer(f, D, FEs = |P| · Go, SSPA); // SSPA
15: update H;
16: fes ← fes+ |P|· Gd ;
17: end for
18: end while
19: end procedure

Algorithm 1. The details of EDC, DyG, and SSPA strategies
are given in the following subsections.

B. Estimation of Dimensional Contribution

The approximation accuracy of the contribution information
influences the efficiency of CRA. In this section, we first
analyze the difficulty of using the existing contribution-based
techniques on the nonseparable LSGO problems, and then we
introduce the execution details of the EDC method.

The challenge of using a contribution-based mechanism
in solving nonseparable LSGO problems is derived from
the fully interactive structure of nonseparable LSGO prob-
lems. The interaction relationship between any two decision
variables is a critical factor that determines the interaction
structure of an LSGO problem, and it is hence a crucial
criterion of conducting decomposition strategy. There are
two types of variable interaction relationships which are
depicted in Fig. 2. If variable x1 and variable x3 directly
interact with variable x2, the relationship between x1 and
x3 is called indirect interaction [37]. Let the LSGO problem
f (x), x = (x1, x2, . . . , x9), be a typical partially separable
LSGO problem, the interactive graph of decision variables is
depicted in Fig. 3(a). Variable xi and xj will be connected by
the two-headed solid arrows if they directly interact with each
other. In this case, the interaction graph is an unconnected
graph, and it can be divided in to three connected subcom-
ponents, i.e., x1 = {x1, x2, x3}, x2 = {x4, x5, x6}, and x3 =
{x7, x8, x9}. The subcomponents x1, x2, and x3 are independent
and the contribution of each subcomponent can be evaluated
independently. The existing CBCC frameworks evaluate the
superiority of each subcomponent according to their contri-
bution and interactive relationship. After that, computational

(a)

(b)

Fig. 3. Interaction graph of (a) partially separable LSGO function and
(b) overlapping LSGO function. The dashed and solid arrows represent the
indirect and direct interaction between any two variables.

resources are allocated to the subcomponents with highest
superiority (SHS). Therefore, the existing CBCC frameworks
achieve success in solving partially separable LSGO problems
owing to the special interactive structure. For nonseparable
LSGO problems, decision variables interact with each other.
In Fig. 3(b), the interaction graph is a connected graph in
which the two-headed dashed arrows represent the indirectly
interactive relationship. In this case, there is no deterministic
partition strategy to divide the connected graph into inde-
pendent subcomponents. For static grouping methods, DG
divides the connected graph using the greedy strategy, whilst
DG2 considers the connected graph as a single component.
As for random grouping methods, the connected graph is ran-
domly partitioned. The subcomponents obtained by DG and
random grouping methods are independent. Therefore, it is
difficult to evaluate the contribution of the subcomponents.
In order to tackle this issue, we propose a novel method to

940 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

estimate the contribution of variables. If the contribution crite-
rion is capable of ranking the impact of subcomponents, it is
not necessary to obtain the accurate contribution of subcompo-
nents. Along this line of thinking, we propose an EDC method.
EDC estimates the contribution of each single variable using
the historical information of the best overall fitness.

Let H = (H1, H2, . . . , HD) be the contribution vector
archiving historical contribution of each variable. Vector Hi =
(Hi,1, Hi,2, . . . , Hi,t) tracks the contribution of the ith variable
xi, where index t represents that the ith variable is selected
into SHS for the tth time. To make it concrete, we assume
that the current subcomponent is xc = {xc,1, xc,2, . . . , xc,T}.
After the optimization of xc, we calculate the improvement
of the best overall objective value �F as (4), where flbest and
fbest represent the last and the current best overall objective
value, respectively. The current contribution of xi is computed
as (5). Factor λi represents that whether the ith variable is
a member of xc. If the ith variable xi belongs to xc, λi is set
to 1, otherwise, λi is set to 0, as shown in (6). Owing to the
parameter setting of λi, the contribution of the variables within
the current SHS are updated

�F = |fbest − flbest| (4)

Hi,t+1 = λi ·�F (5)

λi =
{

1 if xi ∈ xc

0 otherwise.
(6)

C. Dynamic Grouping

Divide-and-conquer mechanism is a crucial and effective
way of solving the large scale optimization problems. The
existing grouping methods achieves significant success when
adopted to solve the fully separable or the partially sepa-
rable LSGO problems. However, they encounter difficulties
on the nonseparable LSGO problems. As for static grouping
strategies, all variables of nonseparable LSGO problems are
grouped into a big single group even if the majority of vari-
ables are not directly interacted with each other. Therefore, the
divide-and-conquer mechanism is not applicable for nonsepa-
rable LSGO problems. For random grouping strategy, variables
are randomly divided into numerous subcomponents with the
same probability. The interaction information is not adopted
in random grouping strategy, which is not an efficient way of
conducting dimension reduction.

Based on the above-mentioned challenges, we propose
a DyG strategy considering both the interaction and contri-
bution information of variables. At the beginning of DCC,
variables are randomly divided into numerous subcomponents
and each subcomponent is optimized with specific predeter-
mined generations. In the startup stage, the contribution vector
H is initialized. After the startup stage, there is sufficient con-
tribution information so as to support DyG. We first transform
the contribution vector H into an averaged contribution vector
A = (A1, A2, . . . , AD), where Ai represents the mean contri-
bution of the ith variable over the |Ai| evolutionary periods.
The calculation of the vector A is given as (7), where Hi,j

Algorithm 2 Dynamic Grouping (f, D, H)
1: Procedure Dynamic Grouping (f, D, H)
2: averaged contribution vector A ← 0;
3: dynamic group xc ← ∅;
4: for i = 1 → ‖H‖ do
5: for j = 1 → ‖Hi‖ do
6: Ai ← Ai + hi,j;
7: j ← j+ 1
8: end for
9: end for
10: sort (A, descending);
11: for i = 1 → N1 do
12: for j = 1 → N2 do
13: xi ← variable index corresponding to Ai
14: if xi /∈ xc then
15: xc ← xc ∪ xi;
16: end if
17: for k = 1 → D do
18: xk ← variable index interacting with xi

19: if xk /∈ xc then
20: xc ← xc ∪ xk;
21: break
22: end if
23: k ← k + 1
24: end for
25: end for
26: end for
27: end procedure

represents the jth evolutionary period of the ith variable

Ai = 1

|Hi|
|Hi|∑
j=1

Hi,j. (7)

Two integers (N1 and N2) are adopted to control the size
of the SHS. SHS consists of basic members and affiliated
members. We rank the variables in a descending order accord-
ing to averaged contribution vector A. The top N1 variables
{xr,1, xr,2, . . . , xr,N1} are chosen as the basic members of the
current SHS, i.e., xc = {xr,1, xr,2, . . . , xr,N1}. For each xr,i

(i ∈ {1, 2, . . . , N1}), we denote its interactive variables by
a linked list L(xr,i). The computation of the interactive matrix
uses the techniques proposed by [39]. The variables of L(xr,i)
are ranked in a descending order according to averaged con-
tribution vector A. We adopt the notation xr,i,k to represent the
kth item of L(xr,i). After that, we use a round-robin manner to
select the affiliated members. Starting with the first basic mem-
ber xr,1, we add the affiliated variable xr,1,1 into xc and then
eliminate xr,1,1 from all linked list L(xr,i) (i ∈ {1, 2, . . . , N1}).
For the remaining basic members xr,i (i ∈ {2, 3, . . . , N1}),
we find their affiliated variables and add them into xc. The
above mentioned operation is repeated for N2 times. The con-
structed xc is adopted as the current SHS. The details of DyG
are given in Algorithm 2. The construction of SHS is hot
on the heels of the sorting operation, which is a two nested
loop (step 11 to step 26). The outer loop selects variables
with highest averaged contribution whilst inner loop selects
variables interacting with the variables selected by the outer
loop. The constructed SHS is the subcomponent that is ready
for the next optimization. As can be noted from DyG, the
computational resource is allocated to variables with high
contribution and their interactive variables. DyG considers
both contribution and interaction information and therefore

ZHANG et al.: DYNAMIC CC FOR LARGE SCALE OPTIMIZATION 941

Algorithm 3 Optimizer(f, D, FEs, SSPA)
1: while fes < FEs do
2: if fes equals 1 then
3: initialize all parameters;
4: end if
5: Initialize P using xlbest;
6: for i = 1→ NP do
7: update Pi;
8: Evaluate Pi;
9: fes ← fes +1
10: i ← i + 1;
11: end for
12: PA;
13: end while

becomes more efficient when solving large scale nonseparable
problems (especially on overlapping LSGO problems).

D. Stage by Stage Parameters Adaptation Principle

Parameter adaptation (PA) is an effective way of improv-
ing the performance of optimizers. For CC-based LSGO
frameworks, SaNSDE [25] is widely used as the optimizer
and achieves promising performance. In SaNSDE, the scale
factor and crossover rate are self-adapted according to the
improvement of the best overall value of objective func-
tion, which serves as a basis criterion in numerous parameter
adaptation strategies. For separable LSGO problems, sub-
components are disjoint and the optimization process of the
same subcomponent is continuous. However, for nonsepara-
ble LSGO problems, the subcomponents constructed by DyG
are different from each other and interactive with each other.
Improvement on the best overall value of objective function
is meaningless for parameter adaptation when optimization
is switched from one subcomponent to another subcompo-
nent, since the two subcomponents represent two different
subproblems.

Apart from the continuity issue, the PA of LSGO algorithms
encounters another challenge. In order to give a fair chance
for different subcomponents, computational resources allo-
cated to optimizing each subproblem is not so much. Taking
the contribution-based large scale optimization algorithms as
an example. The prespecified number of evolutionary gener-
ations for each subcomponent is 100. However, the PA, such
as the mutation related factor and the crossover related fac-
tor, are conducted for every 50 and 25 generations. If PA is
independently conducted between optimizing different sub-
components, the frequency of PA will be pretty low. Therefore,
it takes no significant effects in improving the evolutionary
searching efficiency.

Due to the above reasons, in the proposed DCC, it is not
suitable to employ the PA that is commonly used in the current
LSGO algorithms. To the best of our knowledge, the descrip-
tion of PA of the LSGO algorithms is unclear. This paper
proposes an SSPA strategy. A stage refers to the optimization
of a dynamic subcomponent. In SSPA strategy: 1) PA is
independently conducted within different stages and 2) PA is
supposed to obtain high frequency. In order to satisfy the first
principle, we initialize parameters at the beginning of each
stage. PA is conducted according to the fitness improvement
caused by the optimization of the current subcomponent. As
for the second principle, it helps us to find the appropriate

Fig. 4. Computational resource allocation of various CC framework including
traditional CC, CBCC, CCFR, and DCC. The subgroup Gi (i > 3) is denoted
by the dashed cycle, which represents the dynamic subgroup of DCC. For
PCC, CBCC, and CCFR, the subgroups remain unchanged during the whole
optimization process.

optimizer, e.g., JaDE [46]. In JaDE, PA is conducted after
each evolutionary generation. If the dynamic subcomponent is
assigned 100 evolutionary generations, PA will be conducted
100 times in this stage, which will be significantly higher than
that of SaNSDE. The details of SSPA strategy is shown in
Algorithm 3. SSPA ensures that PA is guided only by the
searching behavior within the current subspace, and PA is
conducted in a high frequency.

E. Comparison Between DCC and the Other CC
Frameworks

In this section, we compare the difference of computation
resource allocation between DCC and other CC frameworks.
Fig. 4 shows the computational resource allocation meth-
ods of traditional pure CC (PCC), CBCC, CCFR, and DCC
framework. To make it concrete, we assume that the over-
all LSGO problem is divided into three sub-subcomponents
using a static grouping method, e.g., DG2. The solid gray
cycle represents that three sub-subcomponents are optimized
from subcomponent G1 to subcomponent G3. For the tradi-
tional CC framework, sub-subcomponents are optimized in
a round-robin manner and each optimization process is limited
to prespecified evolutionary generations. The computational
resource is uniformly allocated to each sub-subcomponent in
the traditional CC framework. CBCC adopts a test phase to
collect the contribution information of each subcomponent.
Assuming that subcomponent G1 obtains the highest contribu-
tion after the test phase, G1 wins the control of computational
resource for evolutionary process. After the optimization of
G1 with prespecified generations, CBCC enters the test phase
again. Compared with CBCC, CCFR works in a more effi-
cient way, which conducts test phase only at the beginning
of the whole optimization process. In CCFR, if the subcom-
ponent G1 achieves the biggest contribution, G1 win the next
optimization chance. After the optimization of G1, the contri-
bution of all sub components (G1, G2, and G3) are changed

942 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

and the one with the biggest contribution (G1) undergoes the
next evolutionary process.

As can be noted from the above mentioned operation
flowchart, the CBCC is able to dynamically select the most
promising subcomponent and allocate more computational
resources to them. The dynamic computational resource allo-
cation mechanism makes the CCFR work efficiently in solving
separable or partially separable LSGO problems. In Fig. 4,
PCC, CBCC, and CCFR frameworks adopt static grouping
strategy in which all subcomponents are predetermined before
the optimization process. Different from above mentioned CC
frameworks, DCC works in a more efficient way in deal-
ing with LSGO nonseparable problems. Particularly, DCC
allocates the computational resource to a series of dynamic
subcomponents, which are depicted using the cycles with
dashed line. Similar to the CBCC frameworks, DCC adopts
a startup phase to collect the contribution of each variable.
In the startup phase, random grouping strategy is conducted
and the subcomponents are optimized in a round-robin manner.
After the startup phase, a new subcomponent G4 is constructed
using the DyG operation, and G4 achieves the next chance of
optimization. In a similar way, G5 and G6 are new dynamic
subcomponents for the next two optimization periods.

The divide-and-conquer mechanism plays a crucial role
in solving the LSGO problems. The majority of the state-
of-the-art large scale optimization algorithms are based on
this mechanism and achieve success. There are two criti-
cal parts of implementing the divide-and-conquer mechanism:
1) the division strategy (for the “divide” process) and 2) the
cooperative and coevolution (for the “conquer” process). This
proposed algorithm improves both of the two parts, and the
main contributions can be given as follows.

1) For the divide process, a dynamic division strategy
for the nonseparable LSGO problems is proposed. For
the cooperative and coevolution framework in solving
LSGO problems, it is a critical issue to divide the large
scale problems into a number of small scale problems.
There are numerous division strategies to deal with
the separable LSGO problems. The existing division
strategies are based on the DG method. As for the non-
separable LSGO problems, variables are interactive with
each other according the DG-based methods. There are
no specific division strategies to decompose the nonsepa-
rable LSGO problems in addition to the random division
strategies. In order to solve the LSGOs in a more effi-
cient and effective way, we design a DyG method by
which the LSGO problem is dynamically divided into
small scale optimization problems. In the DyG method,
the variables are divided according to their contribution
to the LSGO problem. In this paper, the contribution of
dimension is adopted to replace the gradient of each vari-
able, which is supposed to point in the direction of the
greatest rate of the decrease of the optimization problem.
The computation of gradient consumes too many FEs,
whilst the calculation of the contribution of dimension
requires no additional evaluations.

2) For the conquer process, a novel CRA method is
proposed. The existing CRA methods depend on the

static division methods, i.e., DG [24] and DG2 [39].
The subgroups of variables are fixed during the whole
optimization process. The computational resources are
assigned to the static subgroups with biggest contribu-
tion in terms of the improving of the fitness function.
In the proposed DCC, the computational resources
are allocated to the dynamic subgroups with superior
variables.

We propose DCC to branch the contribution-based concept
out into nonseparable LSGO problems. Different from the
existing static grouping methods or random grouping methods,
we transform the nonseparable LSGO into a series of dynamic
subcomponents. Along this line of thinking, we propose the
EDC operation and DyG method to estimate the superior-
ity of variables and construct the promising subcomponents,
respectively. Due to the DyG mechanism, the constructed sub-
components are different from each other. An SSPA strategy is
proposed to adapt the existing PA strategy into our framework.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In this section, experiments are conducted to ascertain
the performance of DCC. The LSGO benchmark functions
of CEC2010 and CEC2013 are widely used to test the
performance of LSGO algorithms. CEC2010 contains 18 sep-
arable LSGO problems and 2 nonseparable problems, whilst
CEC2013 contains 11 separable LSGO problems and 4 non-
separable problems. As can be noted from the benchmark
combinations, the majority are separable LSGO problems,
which may favor a portion of LSGO algorithms. Particularly,
the recently proposed CC frameworks focus on static grouping
strategy, and they achieve high solution quality on separable
LSGO problems. Their performance is well investigated on
the CEC2010 and CEC2013. However, we also notice that
their performance deteriorates a lot on nonseparable LSGO
problems. To our best knowledge, there are no LSGO CC
frameworks addressing this issue. The proposed DCC frame-
work focuses on nonseparable LSGO problems. However,
because of the low number of nonseparable LSGO problems
in the CEC2010 and CEC2013 test suits, it is difficult to test
the proposed method sufficiently. Fortunately, CEC2013 pro-
vides a flexible framework to develop new nonseparable LSGO
problems. We develop ten nonseparable functions follow-
ing the framework of CEC2013. In CEC2013, function f12
to function f14 are overlapping functions. Functions f13 and
f14 provide two different templates of overlapping LSGO
problems. In order to obtain enough benchmark functions,
ten overlapping functions are derived from f13 and f14, rep-
resented by DF1–DF10. For simplicity, we adopt the way
of designing overlapping functions with conforming sub-
components and conflicting subcomponents as f13, and f14,
respectively. To be more concrete, DF1, DF2, DF3, DF4, and
DF5 are derived from f13 by replacing the original base func-
tions by Sphere, Elliptic, Rastrigin, Ackley, and Rosenbrock
functions. Similarly, DF6, DF7, DF8, DF9, and DF10 are
derived from F13 by replacing the original base functions by
Sphere, Elliptic, Rastrigin, Ackley, and Rosenbrock functions.

ZHANG et al.: DYNAMIC CC FOR LARGE SCALE OPTIMIZATION 943

TABLE I
PARAMETER SETTINGS OF DCC

The base functions are the same as those of CEC2013. Default
dimension of the above mentioned overlapping functions is
set to 905. Apart from the nonseparable LSGO problems, the
proposed DCC framework achieves high efficiency in terms
of the CRA on the fully separable LSGO problems. In order
to investigate the performance of DCC on the fully separable
LSGO problems, the original LSGO functions f1–f3, f19, and
f20 of CEC2010 are adopted and denoted by OB01–OB03,
OB19, and OB20. The original LSGO functions f1−f3, f12,
f13, f14, and f15 of CEC2013 are adopted and denoted by
OA01–OA03, OA12, OA13, OA14, and OA15.

In Section IV-B, we compare DCC with the non-
CBCC frameworks, including DECC-G, MLCC [42],
DECC-DG [24], and FT-DNPSO [14], in order to investigate
the effectiveness of DyG strategy. In Section IV-C, we com-
pare DCC with the CBCC frameworks, such as CBCC [43],
and CCFR, in order to ascertain the significance of the
dynamic computational resource allocation. Apart from the
overlapping functions, DCC achieves promising results on
fully separable functions, which is studied in Section IV-D.
Finally, experiments in Section IV-E are conducted to show
the influence of different PA methods.

DCC and other large scale optimization algorithms are
tested on the same platform with Intel core i7-7700 CPU run-
ning at 3.60 GHz, 8 GB memory, and Ubuntu 16.04.2 LTS
64-bit operating system. DCC adopts JADE [46] as optimizer
since its PA mechanism satisfying the requirements of SSPA,
i.e., high frequency of PA. The optimizer of DECC-G, MLCC,
DECC-DG, CBCC, and CCFR is SaNSDE. Parameter settings
are given in Table I. Gr and Gd are evolutionary genera-
tions used by random grouping and DyG, which are set to
800 and 200. The outer and inner cycle number of DyG are
set to 100 and 0.02D, respectively. For the compared algo-
rithms, the group size is set to 50, which is suggested in [49].
The prespecified number of evolutionary generations is set
to 200. The maximum FEs is set to 3 × 106 as suggested
in [27] and [28]. Parameters settings of SaNSDE follow the
default settings of the corresponding original paper. For
CC-based algorithms (DECC-G, MLCC, DECC-DG, CBCC,
CCFR), each subproblem is optimized for 100 evolutionary
generations, which is suggested in [45]. The parameter set-
tings of FT-DNPSO are recommended by [14]. The other

parameter settings remain the same with the corresponding
original papers.

All compared algorithms are conducted in 30 indepen-
dent trials and the results are averaged over the trials. In all
the four tables, two-sided Wilcoxon rank sum test is con-
ducted at significance level α = 0.05. In every bottom of
the four tables, w/t/l represents that DCC achieves signifi-
cantly superior, similar, and significantly inferior results than
the compared algorithm.

B. Comparison With Noncontribution-Based CC Framework

In this section, comparison experiments are conducted in
order to verify the performance of DCC in comparison with
non-CBCC frameworks. The random grouping-based algo-
rithms (DECC-G and MLCC), the DyG-based algorithm (FT-
DNPSO), and the static grouping-based algorithm (DECC)
are adopted in this paper. For DECC, we use DG other than
DG2. Although DG2 achieves more accurate grouping results
in CEC2013 benchmark functions than DG, DG2 is not appro-
priate in decomposition of overlapping functions. In DG2, all
decision variables are interactive with each other and there-
fore divided into one single group. Thus, CC framework is
not applicable in that case. In DG, indirectly interactive rela-
tionship between variables is not taken into consideration, and
thus variables are divisible. Based on the above mentioned
reasons, DG is adopted as a basic static grouping method in
this paper.

Experimental results of DECC-G, DECC-DG, MLCC, and
DCC are summarized in Table I. As can be noted from
Table II, DCC significantly outperforms the other algorithms
on almost all benchmark functions with several order of
magnitude, functions DF01-DF02, DF05, and DF07-OB15.

In DECC-G and MLCC, random grouping method and
adaptive random grouping methods are adopted. Random
grouping mechanism is applicable in solving overlapping func-
tions but pure random grouping method is in lack of efficiency.
The reasons are given as follows. For a connected graph
representing variable interaction information, there is no deter-
ministic way of dividing the connected graph into a number
of subcomponents. Although random grouping strategies is
capable of increasing the probability of selecting two critical
variables (e.g., interactive variables) into a same subcom-
ponent, it is still not a straight way of using interaction
information between variables. From the perspective of the
CC evolutionary process, interaction relationship is not the
only criterion that influences the search efficiency in solv-
ing overlapping function. The contribution of each variable
is also a critical issue that is supposed to be considered.
DECC-G and MLCC take no consideration of this contribution
information. In the conclusion, the random grouping meth-
ods of DECC-G and MLCC are lack of guideline in terms of
interaction information and contribution. In comparison, the
DyG mechanism uses both the contribution and the interaction
information. Therefore, DCC performs better than DECC-G
and MLCC.

As for DECC-DG, it incorporates the DG method, which
divides the fully connected interaction graph into a number

944 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

TABLE II
EXPERIMENT ON 12 OVERLAPPING FUNCTIONS AND 3 FULLY

NONSEPARABLE FUNCTIONS IN COMPARISON WITH

NONCONTRIBUTION-BASED ALGORITHMS. ALL THE ALGORITHMS ARE

CONDUCTED IN 30 INDEPENDENT TRIALS. THE AVERAGE AND

STANDARD DEVIATION VALUES OF THE RESULTS ARE REPRESENTED BY

MEAN, AND STD., RESPECTIVELY. THE HIGHLIGHTED ENTRIES ARE

SIGNIFICANTLY BETTER. WILCOXON RANK SUM TEST IS

CONDUCTED AT SIGNIFICANCE LEVEL α = 0.05

of deterministic subcomponents using greedy strategy. For
overlapping functions, the subcomponents are supposed to
be dynamically changed as evolutionary optimization pro-
cess. Although DG-based decomposition methods take the
interaction information into consideration, it is still not appro-
priate to divide all variables into a static set containing
numerous deterministic subcomponents.

(a) (b)

(c) (d)

Fig. 5. Convergence curves of DCC, DECC-G, DECC-DG, and MLCC for
functions OB12, OB13, OB14, and OB15.

Fig. 5(a)–(d) shows the convergence curves of DECC-G,
DECC-DG, MLCC, and DCC on functions OB12, OB13,
OB14, and OB15, where x-axis represent the FEs and y-axis
represent the best fitness value. DCC achieves higher con-
vergence rate than the other compared algorithms. Take
Fig. 6(a) as an example, DCC obtains a solution of high qual-
ity at about 5 × 105 functions evaluations, whilst DECC-G,
MLCC obtain the similar value at about 1.5×106 and 2×106

functions evaluations, respectively. DECC-DG is tracked into
local optima at about 2 × 106 functions evaluations. For the
other convergence curves, DCC still have the potential to
achieve better solutions at the end of the evolutionary pro-
cess due to its high gradient. Observing from Fig. 5(a)–(d),
the performance of DECC-DG is close to those random-based
CC frameworks. This phenomenon indicates that interaction
relationship is not a dominate attribute of designing CC frame-
work for large scale nonseparable problems. DCC considers
the contribution of each variable, and the interaction relation-
ship. The DyG method is capable of constructing the most
superior subcomponent and allocating computational resources
to the superior subcomponent. DCC works in a more computa-
tionally efficient manner than the non-CBCC frameworks. The
experimental results ascertain the effectiveness of the dynamic
mechanism over static or random methods.

C. Comparison With Contribution-Based CC Framework

In this section, experiments are conducted in order to inves-
tigate the performance of DCC in comparison with CBCC
frameworks. Two typical CBCC frameworks (CBCC and
CCFR) are adopted here. Considering the similar reason as
the previous section, DG is used in CBCC and CCFR.

Experimental results of CBCC-DG, CCFR-DG, and DCC
are summarized in Table III. As can be noted from Table III,
DCC significantly outperforms the other algorithms on almost

ZHANG et al.: DYNAMIC CC FOR LARGE SCALE OPTIMIZATION 945

(a) (b)

(c) (d)

Fig. 6. Convergence curves of DCC, CBCC, CCFR, for functions OB12,
OB13, OB14, and OB15.

all benchmark functions with several order of magnitude.
As can be noted from the experimental results given in
Tables II and III, the contribution-based algorithms show close
or even inferior performance on nonseparable LSGO func-
tions than non-CBCC frameworks on functions DF02, DF03,
and OB13. According to the literatures of CBCC frame-
works, their performances are influenced by the grouping
accuracy. The overlapping and fully nonseparable LSGO func-
tions are theoretically nonseparable from the perspective of
interaction. Although the nonseparable LSGO functions can
be partitioned using greedy strategy, e.g., the DG method,
the grouping results are not accurate and appropriate. This
explains why classic CBCC frameworks are not appropriate
for solving overlapping LSGO problems. Nevertheless, it is
still a great inspiration for computational resource allocation.
In the proposed DCC framework, the nonseparable problems
become separable. Owing to the novel DyG method, a series
of dynamic subcomponents are constructed according to the
dynamic contribution of variables and their interactive relation-
ship. Computational resources can be dynamically allocated to
those superior subcomponents. The better performance of the
DCC framework reveals that the grouping results of the DyG
method is more appropriate than that of the DG method.

Fig. 6(a)–(d) shows the convergence curves of CBCC-DG,
CCFR-DG, and DCC on OB12, OB13, OB14, and OB15,
respectively. In Fig. 7(a)–(d), DCC achieves higher conver-
gence rate than the other compared algorithms. In Fig. 6(a),
DCC achieves solutions of high quality at about 5×106 func-
tion evaluations, whilst CBCC-DG obtains a similar solution
quality at about 1.6 × 106 function evaluations. CCFR-DG
is trapped into local optima at about 1.9 × 106 function
evaluations. For CBCC-DG and CCFR, they achieve close
performance in terms of convergence rate. However, CCFR

TABLE III
EXPERIMENT ON 12 OVERLAPPING FUNCTIONS AND 3 NONSEPARABLE

FUNCTIONS IN COMPARISON WITH NONCONTRIBUTION-BASED

ALGORITHMS. ALL THE ALGORITHMS ARE CONDUCTED IN

30 INDEPENDENT TRIALS. THE AVERAGE AND STANDARD DEVIATION

VALUES OF THE RESULTS ARE REPRESENTED BY MEAN, AND STD.,
RESPECTIVELY. THE HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY

BETTER. WILCOXON RANK SUM TEST IS CONDUCTED AT

SIGNIFICANCE LEVEL α = 0.05

achieves significantly better performance than CBCC on par-
tially separable LSGO problems according to [45]. This phe-
nomenon indicates that the decomposition strategy becomes
the bottleneck of CBCC frameworks on solving nonseparable
LSGO problems. Owing to the dynamic decomposition mech-
anism, DCC achieves a significantly better performance than
the compared algorithms.

D. Experiment on Fully Separable Functions

In this section, we investigate the performance of DCC
on fully separable functions in comparison with DECC-G,
MLCC, DECC-DG, CBCC-I, and CCFR-I. CBCC-I and
CCFR-I represent that the corresponding CC frameworks
incorporate ideal grouping. Fully separable function is a spe-
cial type function, where variables are independent of each
other. In an ideal grouping method, each variable of fully sep-
arable function is an independent subcomponent, and therefore
the contribution of each variable can be accurately calcu-
lated. This ideal decomposition satisfies the requirement of
contribution-based mechanism, and thus it is adopted in this

946 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

section to investigate the performance of DCC in terms of the
CRA.

Experimental results are given in Appendix A. DCC
achieves the best performance in the majority of the LSGO
functions. For functions OA01, OA03, and OB01, DCC out-
performs the other algorithms by several magnitudes. For
random grouping-based algorithms (DECC-G and MLCC),
variables are randomly divided into a number of subcompo-
nents. Although each variable obtains the chance to undergo
evolutionary optimization process, it is a way without any
guideline and therefore inefficient. For DECC-DG, the sub-
components are optimized in a round-robin manner, which
is not a computationally efficient way. Furthermore, the
DG method divides a D-dimensional fully separable LSGO
problem into D subcomponent, i.e., a variable represents a sub-
component. Although the contribution-based algorithms work
in the computationally efficient way, the size of each subcom-
ponent is too small to limit the ability of optimizer, which
is a waste of the computational resources. For the fully sep-
arable LSGO problems, variables are independent from each
other. The contribution information becomes the only crite-
rion for the decomposition strategy of the DyG method. The
computational resources are allocated to the superior vari-
ables with high contributions, which makes the proposed DCC
work in a computationally efficient manner. Compared with
static CC and CBCC frameworks, the way of CRA is more
efficient in the proposed DCC framework. The experimental
results indicate that the dynamic decomposition mechanism of
DCC works well when dealing with fully separable objective
functions.

E. Investigation on the Influence of Different PA Strategies

In this section, we investigate the influence of different PA
strategies on the performance of CC frameworks. This is a first
attempt to clarify the usage of various PA methods by exper-
imental statistics. Two optimizers, i.e., JaDE and SaNSDE,
are assembled with DCC and DECC-DG. Furthermore, fixed
parameters setting are adopted for JaDE and SaNSDE.

Experimental results are listed in Appendix A. DCC-JA
and DCC-JF represents that DCC is assembled with JaDE
optimizer with self-adaptive parameters and fix parameters,
respectively. Similarly, DCC-SA and DCC-JF represents DCC
is assembled with JaDE optimizer with self-adaptive param-
eters and fix parameters, respectively. As can be noted from
experimental results, optimizers with self-adaptive parameter
strategy perform better than those with fixed parameter strat-
egy for most of the functions, and the differences are signif-
icant. The experimental results indicate the adaptation mech-
anism of small scale optimization still works in large scale
optimization. However, the performance of CC frameworks
is influenced by different PA strategies. For functions OB01,
OB02, OB12, OB13, OB14, and OB15, DCC with JaDE opti-
mizer performs better than that with SaNSDE due to the high
adaptation frequency when both of them are working in the
SSPA mode.

V. CONCLUSION

This paper proposes a dynamic cooperative coevolutionary
framework in order to solve nonseparable LSGO problems.
DCC consists of three crucial parts: 1) the EDC; 2) the
DyG strategy; and 3) the SSPA strategy. EDC evaluates the
contribution of each dimension, which expands the usage of
contribution-based mechanism from partially separable LSGO
problems to nonseparable LSGO problems. DyG is totally
different from the existing grouping strategies, which appro-
priately incorporates two critical attributes of the variables,
i.e., interaction relationship and contribution, in solving the
nonseparable LSGO problems. SSPA strategy is introduced to
enhance the search efficiency of the optimizer.

Four types of experiments have been conducted to verify the
effectiveness of DCC. The experimental results indicate that
DCC achieves significantly superior performance in terms of
solution quality and convergence rate over existing CC frame-
works. For the optimization of the large scale nonseparable
problems, it is more reasonable that the interaction attribute of
variables is supposed to integrate with other attributes, e.g., the
contribution, to achieve dimension reduction. The attributes of
variables can be dynamically changed during the optimization
process, and the DyG is a promising way of coping with this
issue. Future work contains the smart use of different opti-
mizers and the design of more effective parameter adaptation
strategies.

APPENDIX A
SUPPLEMENTARY MATERIAL AVAILABLE ON THE WEB

The experiments in the supplementary material consist of
the following parts.

1) The sensitivity test of the parameters (Gr, Gd, N1, and
N2) of the proposed DCC.

2) Ablation study of the proposed DCC.
3) The summary experimental results of the compared

algorithms.

APPENDIX B
FREQUENTLY USED ACRONYMS

Acronyms Description
LSGO Large scale optimization.
CC Cooperative coevolution.
DCC Dynamic cooperative coevolution
DG Differential grouping.
CBCC Contribution-based CC.
DyG Dynamic grouping.
EDC Estimation of the dimensional contribution.
SSPA Stage-by-stage parameter adaptation.
SaNSDE Self-adaptive differential evolution with neigh-

borhood search.
FEs Fitness evaluations.

REFERENCES

[1] S. K. Goh, K. C. Tan, A. Al-Mamun, and H. A. Abbass, “Evolutionary
big optimization (BigOpt) of signals,” in Proc. IEEE Congr. Evol.
Comput., Sendai, Japan, 2015, pp. 3332–3339.

ZHANG et al.: DYNAMIC CC FOR LARGE SCALE OPTIMIZATION 947

[2] M. S. Sorkherizi and A. A. Kishk, “Use of group delay of sub-circuits
in optimization of wideband large-scale bandpass filters and diplexers,”
IEEE Trans. Microw. Theory Techn., vol. 65, no. 8, pp. 2893–2905,
Aug. 2017.

[3] V. Miranda, J. D. H. Martins, and V. Palma, “Optimizing large
scale problems with metaheuristics in a reduced space mapped by
autoencoders—Application to the wind-hydro coordination,” IEEE
Trans. Power Syst., vol. 29, no. 6, pp. 3078–3085, Nov. 2014.

[4] Y. Cao and D. F. Sun, “A parallel computing framework for large-scale
air traffic flow optimization,” IEEE Trans. Intell. Transp. Syst., vol. 13,
no. 4, pp. 1855–1864, Dec. 2012.

[5] P. Rodríguez-Mier, M. Mucientes, and M. Lama, “Hybrid optimization
algorithm for large-scale QoS-aware service composition,” IEEE Trans.
Services Comput., vol. 10, no. 4, pp. 547–559, Jul./Aug. 2017.

[6] I. Fister et al., “Artificial neural network regression as a local search
heuristic for ensemble strategies in differential evolution,” Nonlin. Dyn.,
vol. 84, no. 2, pp. 895–914, Apr. 2016.

[7] I. Fister, Jr., M. Perc, S. M. Kamal, and I. Fister, “A review of chaos-
based firefly algorithms: Perspectives and research challenges,” Appl.
Math. Comput., vol. 252, no. 1, pp. 155–165, Feb. 2015.

[8] B. Xue, M. J. Zhang, W. N. Browne, and X. Yao, “A survey on evolu-
tionary computation approaches to feature selection,” IEEE Trans. Evol.
Comput., vol. 20, no. 4, pp. 606–626, Aug. 2016.

[9] D. B. Zhao, Y. J. Dai, and Z. Zhang, “Computational intelligence in
urban traffic signal control: A survey,” IEEE Trans. Syst., Man, Cybern.
C, Appl. Rev., vol. 42, no. 4, pp. 485–494, Jul. 2012.

[10] M.-H. Tayarani-Najaran, X. Yao, and H. M. Xu, “Meta-heuristic algo-
rithms in car engine design: A literature survey,” IEEE Trans. Evol.
Comput., vol. 19, no. 5, pp. 609–629, Oct. 2015.

[11] M. Z. Ali, N. H. Awad, P. N. Suganthan, and R. G. Reynoldss, “An
adaptive multipopulation differential evolution with dynamic popula-
tion reduction,” IEEE Trans. Cybern., vol. 47, no. 9, pp. 2768–2779,
Sep. 2017.

[12] Y.-J. Gong et al., “Genetic learning particle swarm optimization,” IEEE
Trans. Cybern., vol. 46, no. 10, pp. 2277–2290, Oct. 2016.

[13] S. Strasser, J. Sheppard, N. Fortier, and R. Goodman, “Factored evo-
lutionary algorithms,” IEEE Trans. Evol. Comput., vol. 21, no. 2,
pp. 281–293, Apr. 2017.

[14] J. C. Fan, J. Wang, and M. Han, “Cooperative coevolution for large-
scale optimization based on kernel fuzzy clustering and variable trust
region methods,” IEEE Trans. Fuzzy Syst., vol. 22, no. 4, pp. 829–839,
Aug. 2014.

[15] R. Cheng and Y. C. Jin, “A competitive swarm optimizer for large
scale optimization,” IEEE Trans. Cybern., vol. 45, no. 2, pp. 191–204,
Feb. 2015.

[16] Q. Yang et al., “Segment-based predominant learning swarm optimizer
for large-scale optimization,” IEEE Trans. Cybern., vol. 47, no. 9,
pp. 2896–2910, Sep. 2017.

[17] Y.-F. Zhang and H.-D. Chiang, “A novel consensus-based particle swarm
optimization-assisted trust-tech methodology for large-scale global
optimization,” IEEE Trans. Cybern., vol. 47, no. 9, pp. 2717–2729,
Sep. 2017.

[18] X.-Y. Zhang et al., “Kuhn–Munkres parallel genetic algorithm for the
set cover problem and its application to large-scale wireless sensor
networks,” IEEE Trans. Evol. Comput., vol. 20, no. 5, pp. 695–710,
Oct. 2016.

[19] Y. Pan, R. K. Xia, J. Yin, and N. Liu, “A divide-and-conquer method
for scalable robust multitask learning,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 26, no. 12, pp. 3163–3175, Dec. 2015.

[20] J. L. Zhang, C. Y. Zhang, T. G. Chu, and M. Perc, “Resolution of
the stochastic strategy spatial Prisoner’s dilemma by means of particle
swarm optimization,” PLoS ONE, vol. 6, no. 7, pp. 1–7, Jul. 2011.

[21] I. Fister, Jr., I. Fister, and M. Perc, “Toward the discovery of citation
cartels in citation networks,” Front. Phys., vol. 4, pp. 1–49, Dec. 2016.

[22] M. A. Potter and K. A. D. Jong, “A cooperative coevolutionary approach
to function optimization,” in Parallel Problem Solving From Nature.
Heidelberg, Germany: Springer, 1994, pp. 249–257.

[23] H. Ge, L. Sun, G. Z. Tan, Z. Chen, and C. L. P. Chen, “Cooperative hier-
archical PSO with two stage variable interaction reconstruction for large
scale optimization,” IEEE Trans. Cybern., vol. 47, no. 9, pp. 2809–2823,
Sep. 2017.

[24] M. N. Omidvar, X. D. Li, Y. Mei, and X. Yao, “Cooperative co-evolution
with differential grouping for large scale optimization,” IEEE Trans.
Evol. Comput., vol. 18, no. 3, pp. 378–393, Jun. 2014.

[25] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential evolution with
neighborhood search,” in Proc. IEEE Congr. Evol. Comput., Hong Kong,
2008, pp. 1110–1116.

[26] A. Song, W. N. Chen, P. T. Luo, Y. J. Gong, and J. Zhang, “Overlapped
cooperative coevolution for large scale optimization,” in Proc. IEEE Int.
Conf. Syst. Man Cybern., 2017, pp. 3689–3694.

[27] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, “Benchmark
functions for the CEC’2010 special session and competition on large-
scale global optimization,” Nat. Inspired Comput. Appl. Lab., Univ. Sci.
Technol. China, Hefei, China, Rep., 2009.

[28] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin, “Benchmark
functions for the CEC’2013 special session and competition on large-
scale global optimization,” School Comput. Sci. Inf. Technol., RMIT
Univ., Melbourne, VIC, Australia, Rep., 2013.

[29] Z. Yang, K. Tang, and X. Yao, “Differential evolution for high-
dimensional function optimization,” in Proc. IEEE Congr. Evol.
Comput., Singapore, 2007, pp. 3523–3530.

[30] M. Perc et al., “Statistical physics of human cooperation,” Phys. Rep.,
vol. 687, pp. 1–51, May 2017.

[31] Z. Wang et al., “Statistical physics of vaccination,” Phys. Rep., vol. 664,
no. 9, pp. 1–113, Dec. 2016.

[32] D. Helbing et al., “Saving human lives: What complexity science and
information systems can contribute,” J. Stat. Phys., vol. 158, no. 3,
pp. 735–781, Feb. 2015.

[33] M. Perc and A. Szolnoki, “Coevolutionary games—A mini review,”
Biosystems, vol. 99, no. 2, pp. 109–125, Feb. 2010.

[34] M. A. Potter and K. A. D. Jong, “A cooperative coevolutionary approach
to function optimization,” in Proc. Int. Conf. Parallel Problem Solving
Nat., 1994, pp. 249–257.

[35] F. V. D. Bergh and A. P. Engelbrecht, “A cooperative approach to par-
ticle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225–239, Jun. 2004.

[36] W. X. Chen, T. Wise, Z. Y. Yang, and K. Tang, “Large-scale global
optimization using cooperative coevolution with variable interaction
learning,” in Proc. Int. Conf. Parallel Problem Solving Nat. II, Kraków,
Poland, 2010, pp. 300–309.

[37] Y. Sun, M. Kirley, and S. K. Halgamuge, “Extended differential group-
ing for large scale global optimization with direct and indirect variable
interactions,” in Proc. Conf. Genet. Evol. Comput., Madrid, Spain, 2015,
pp. 313–320.

[38] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “A competitive
divide-and-conquer algorithm for unconstrained large-scale black-box
optimization,” ACM Trans. Math. Softw., vol. 42, no. 2, Jun. 2016,
Art. no. 13.

[39] M. N. Omidvar, M. Yang, Y. Mei, X. D. Li, and X. Yao, “DG2: A
faster and more accurate differential grouping for large-scale black-box
optimization,” IEEE Trans. Evol. Comput., vol. 21, no. 6, pp. 929–942,
Dec. 2017.

[40] Z. Y. Yang, K. Tang, and X. Yao, “Large scale evolutionary
optimization using cooperative coevolution,” Inf. Sci., vol. 178, no. 15,
pp. 2985–2999, Aug. 2008.

[41] X. D. Li and X. Yao, “Cooperatively coevolving particle swarms for
large scale optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 2,
pp. 210–224, Apr. 2012.

[42] Z. Y. Yang, K. Tang, and X. Yao, “Multilevel cooperative coevolu-
tion for large scale optimization,” in Proc. IEEE Congr. Evol. Comput.,
Hong Kong, 2008, pp. 1663–1670.

[43] M. N. Omidvar, X. D. Li, and X. Yao, “Smart use of computational
resources based on contribution for cooperative co-evolutionary algo-
rithms,” in Proc. Genet. Evol. Comput. Conf., Dublin, Ireland, 2011,
pp. 1115–1122.

[44] M. N. Omidvar, B. Kazimipour, X. D. Li, and X. Yao, “CBCC3—A
contribution-based cooperative co-evolutionary algorithm with improved
exploration/exploitation balance,” in Proc. IEEE Congr. Evol. Comput.,
Vancouver, BC, Canada, 2016, pp. 3541–3548.

[45] M. Yang et al., “Efficient resource allocation in cooperative co-evolution
for large-scale global optimization,” IEEE Trans. Evol. Comput., vol. 21,
no. 4, pp. 493–505, Aug. 2017.

[46] J. Q. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Trans. Evol. Comput., vol. 13,
no. 5, pp. 945–958, Oct. 2009.

[47] A. Ranganathan, “The Levenberg–Marquardt algorithm,” Tuts. LM
Algorithm, vol. 11, no. 1, pp. 101–110, 2004.

[48] J. M. Gablonsky and C. T. Kelley, “A locally-biased form of the
DIRECT algorithm,” J. Glob. Optim., vol. 21, no. 1, pp. 27–37,
Sep. 2001.

[49] B. Kazimipour, X. D. Li, and A. K. Qin, “Effects of population
initialization on differential evolution for large scale optimization,”
in Proc. IEEE Congr. Evol. Comput., Beijing, China, 2014,
pp. 2404–2411.

948 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

Xin-Yuan Zhang (S’14) received the B.S. degree
from Sun Yat-sen University, Guangzhou, China,
in 2014, where he is currently pursuing the Ph.D.
degree.

Since 2017, he has been a Research Assistant
with the South China University of Technology,
Guangzhou. His current research interests include
evolutionary computation algorithms, swarm intel-
ligence algorithms, large-scale optimization their
applications in real-world problems, and smart grid.

Yue-Jiao Gong (S’10–M’15) received the B.S. and
Ph.D. degrees in computer science from Sun Yat-sen
University, Guangzhou, China, in 2010 and 2014,
respectively.

From 2015 to 2016, she was a Post-Doctoral
Research Fellow with the Department of Computer
and Information Science, University of Macau,
Macau, China. She is currently a Professor with the
School of Computer Science and Engineering, South
China University of Technology, Guangzhou. Her
current research interests include evolutionary com-

putation, swarm intelligence and their applications to intelligent transportation
scheduling. She has published over 70 papers, including over 20 IEEE
TRANSACTIONS papers in the above areas.

Ying Lin (M’13) received the Ph.D. degree in
computer science from Sun Yat-sen University,
Guangzhou, China, in 2012.

She is currently an Assistant Professor with the
Department of Psychology, Sun Yat-sen University.
Her current research interests include computational
intelligence and its applications in psychometrics
and neuroimaging.

Jie Zhang (M’99) received the master’s degree
in computer science from the China University of
Mining and Technology, Xuzhou, China, in 1999.

She is currently an Associate Professor with the
Beijing University of Chemical Technology, Beijing,
China. Her current research interests include for-
mal verification, and PHM for power and embedded
system design.

Ms. Zhang is a member of the Chinese Institute
of Electronics Embedded Expert Committee.

Sam Kwong (F’13) received the B.S. degree in
electrical engineering from the State University of
New York at Buffalo, Buffalo, NY, USA, in 1983,
the M.S. degree in electrical engineering from the
University of Waterloo, Waterloo, ON, Canada, in
1985, and the Ph.D. degree from the University of
Hagen, Hagen, Germany, in 1996.

From 1985 to 1987, he was a Diagnostic
Engineer with Control Data Canada, Mississauga,
ON, Canada. He joined Bell Northern Research,
Ottawa, ON, Canada, as a Scientific Staff Member.

In 1990, he became a Lecturer with the Department of Electronic Engineering,
City University of Hong Kong, Hong Kong, where he is currently a Professor
with the Department of Computer Science. His current research interests
include video and image coding and evolutionary algorithms.

Jun Zhang (M’02–SM’08–F’17) received the Ph.D.
degree from the City University of Hong Kong,
Hong Kong, in 2002.

He is currently a Changjiang Chair Professor with
the School of Computer Science and Engineering,
South China University of Technology, Guangzhou,
China. His current research interests include compu-
tational intelligence, cloud computing, data mining,
and power electronic circuits. He has published over
200 technical papers in the above area.

Dr. Zhang was a recipient of the China National
Funds for Distinguished Young Scientists from the National Natural Science
Foundation of China in 2011 and the First-Grade Award in Natural Science
Research from the Ministry of Education, China, in 2009. He is cur-
rently an Associate Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION, the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,
and the IEEE TRANSACTIONS ON CYBERNETICS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

