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Abstract—Potable water distribution networks (WDNs) are
important infrastructures of modern cities. A good design of
the network can not only reduce the construction expenditure
but also provide reliable service. Nowadays, the scale of the
WDN of a city grows dramatically along with the city expan-
sion, which brings heavy pressure to its optimal design. In order
to solve the large-scale WDN optimization problem, a coop-
erative co-evolutionary algorithm is proposed in this paper.
First, an iterative trace-based decomposition method is spe-
cially designed by utilizing the information of water tracing
to divide a large-scale network into small subnetworks. Since
little domain knowledge is required, the decomposition method
has great adaptability to multiform networks. Meanwhile, dur-
ing optimization, the proposed algorithm can gradually refine
the decomposition to make it more accurate. Second, a new fit-
ness function is devised to handle the pressure constraint of the
problem. The function transforms the constraint into a part of the
objective to punish the infeasible solutions. Finally, a new suite of
benchmark networks are created with both balanced and imbal-
anced cases. Experimental results on a widely used real network
and the benchmark networks show that the proposed algorithm
is promising.
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evolutionary algorithm (EA), hydraulics, large-scale optimization,
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I. INTRODUCTION

POTABLE water distribution networks (WDNs) are essen-
tial components of the urban water infrastructure, which

are built to transfer potable water from sources to consumers.
Building new WDNs or rehabilitating existing networks is one
of the most pressing tasks faced by governments or service
suppliers, because the capital cost of these networks would
occupy a big proportion of government expenditures [1].
Meanwhile, the construction of a WDN is related with many
practical factors, such as the government standards, other
infrastructures, and topographies [2]. Thus, how to reduce the
capital cost while guaranteeing the quality of service (usually
defined by the tap water pressure, water age, chlorinity, etc.)
becomes a very challenging and practical problem.

If we take the design of WDNs as an optimization problem,
it can be defined as finding appropriate settings of water
network components (e.g., diameter of pipes) for a pregiven
network layout, so that the capital cost is minimized subject
to a number of hydraulic, physical, and standardized con-
straints (standardized constraints mean market or government
standards) [3]–[5]. The problem has been proven nondeter-
ministic polynomial-time hard (NP-hard) [6]. To solve this
problem, many methods have been proposed in the past few
decades. Roughly, they can be classified into two categories:
1) deterministic methods and 2) metaheuristic methods.
Among deterministic methods, linear programming (LP) and
its variants were first proposed in earlier time, attempting to
solve the problem with low computational burden [7], [8].
However, due to the nonlinear essence of the problem, LP
methods tend to fall into local optima easily [9]. Then, some
non LP (NLP) methods [10], [11] were proposed. But these
methods are still not effective enough to find the optimal
or near-optimal solutions, since the final solution generated
by an NLP method highly depends on the initial status of
the method. Considering that the variables in the problem
are essentially discrete, Samani and Mottaghi [4] proposed
an integer LP method which could change the solution
iteratively according to the hydraulic simulation. But the
optimality and convergence of the method are questioned,
particularly on large-scale networks [12]. Recently, methods
in the second category, i.e., metaheuristic algorithms, have
attracted a lot of attention in this domain as they are able
to handle different kinds of constraints easily, and locate
near-optimal solutions effectively. Both single-solution
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algorithms [13]–[15], such as simulated annealing (SA) [13],
tabu search (TS) [3], iterated local search [14], cellular
automata [15], and population-based algorithms [16]–[22],
such as genetic algorithm (GA) [16], [17], ant
colony optimization (ACO) [18], particle swarm
optimization (PSO) [19], and differential evolu-
tion (DE) [20]–[22], are widely investigated. These
metaheuristic methods have shown competitive performance
on small-scale networks which contain less than 200 pipes.

However, due to the acceleration of the process of urbaniza-
tion, cities in developing countries become larger and larger,
which also enlarges WDNs greatly. Taking Xiongan New
Area in China as an example, only the starting area of its
first developing stage is planned to be 100 square kilometers,
and a large number of buildings will be constructed [23]. To
build a municipal water supply network for the area, hundreds
even thousands of pipes must be included. However, studies
on large-scale optimization [24], [25] have shown that tradi-
tional metaheuristic algorithms like PSO, DE, are not capable
to solve problems with that large scale. Some researchers have
noticed this problem and come up with several decomposi-
tion methods which can partition a big network into small
pieces, but the partitioned subnetworks are often optimized
separately [21]. Thus, they can only get some partially best
solutions. In order to meet the realistic demand of large-
scale WDN optimization and to make up the aforementioned
deficiencies of existing works, in this paper we intend to pro-
pose a cooperative co-evolutionary algorithm (CCEA) named
WDNCC to solve the large-scale WDN optimization problem.

Rooted in the divide-and-conquer strategy, cooperative co-
evolutionary (CC) methods solve large-scale optimization
problems by decomposing them into a number of small-scale
subcomponents. After decomposition, the subcomponents are
handled by an equal number of cooperative optimizers [26].
A large-scale WDN can be seen as a semi-separable struc-
ture which highly fits to CC methods. Because we usually
divide a large-scale WDN into different district metering
areas (DMAs) by valves during WDN management [27].
Meanwhile, to guarantee the quantity and quality of water
supplement, generally there will be more than one water
source in a large-scale WDN, no matter which type the
sources are, reservoirs, tanks, or groundwater sources [21].
The division of DMAs and the independent sources provide
the realistic basis for the partition of CC. Furthermore, to
guarantee the reliability and safety of the whole network,
subnetworks in different DMAs will not be completely iso-
lated, which means they are still connected according to
some hydraulic rules. Thus, they cannot be optimized sep-
arately. In this regard, the co-evolutionary mechanism of
CC can ensure that the subcomponents are optimized in an
interactional way.

Hitherto, many scholars have devoted themselves to the
research of CC methodology. Both multipopulation paradigm
and mono-population paradigm are well studied [28]–[33].
However, most of the works which specially study the decom-
position methods focus on continuous functions [28]–[30].
Since these functions are usually unconstrained, the decom-
position methods proposed for them cannot be directly used

Fig. 1. Anytown network.

in real-world applications. Thus, for real-world applications,
scholars generally need to devise some other appropriate
decomposition methods [32]–[36]. To apply CC to the large-
scale WDN optimization problem, an effective decomposition
method is also required. With the assistance of EPANET which
is a well-known WDN simulation tool [37], we propose an
iterative trace-based decomposition method to divide a large-
scale WDN into subnetworks in this paper. This is a key
innovation of WDNCC. Meanwhile, there are many constraints
in the problem, and most of them can be satisfied by utiliz-
ing EPANET except one, the minimum pressure constraint. To
handle the minimum pressure constraint, the objective func-
tion of WDNCC is specially designed with a penalty function.
The applied evolutionary algorithm (EA) in WDNCC is the
self-adaptive DE with neighborhood search (SaNSDE) [38].

To show the effectiveness of WDNCC, a series of
benchmark networks are generated with different scales.
Experiments on the benchmark networks and an established
network show that WDNCC is promising in tackling large-
scale WDN optimization problems.

The rest of this paper is organized as follows. In Section II,
the WDN optimization problem is formally described. Then,
Section III introduces some previous researches about the
WDN optimization. The WDNCC algorithm is shown in
Section IV. Experiments are conducted in Section V. Finally,
Section VI draws the conclusion.

II. WATER DISTRIBUTION NETWORK

In the first place, a small-scale instance, Anytown
network [39], is shown in Fig. 1 to facilitate the explanation
of WDN. The Anytown network has one reservoir and one
pump station serving as the main water source. Two tanks are
set in the city for auxiliary supplement. Each junction repre-
sents a consumer. Links between junctions are pipes which
are the variables of the problem. Assuming that the demands
of all consumers are known in advance, the goal of the
WDN optimization is to reduce the constructing expenditure
by selecting an appropriate type for each pipe, while satisfying
all consumers’ demands and the hydraulic constraints.

All related notations which will be used are listed in Table I.
Formally, suppose there are Nn nodes including all sources and
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TABLE I
NOTATIONS ABOUT THE WDN OPTIMIZATION PROBLEM

junctions, Np pipes, and Nt different types of pipes available.
The problem is defined as follows [1], [4]:

min f (C) =
Np∑
i=1

li · u(θi) (1)

s.t. θi ∈ {ζ1, . . . , ζNt}, i = 1, . . . , Np (2)

Qext
i +

Nn∑
j=1

Qin
j,i = Qn

i +
Nn∑

k=1

Qout
i,k , i = 1, . . . , Nn (3)

{∑
i∈P �Hi = Hs − He, P ∈ SP

�Hi = Hs
i − He

i , i = 1, . . . , Np
(4)

Hi,min ≤ Hi ≤ Hi,max, i = 1, . . . , Nn (5)

where C = {θ1, . . . , θNp} represents the problem, li represents
the length of the ith pipe, u(θi) represents the unit price of the
ith pipe with type θi, {ζ1, . . . , ζNt} are the Nt commercially
available pipe types, Qext

i is the velocity of external inflow
water of the ith node, Qin

j,i is the velocity of incoming water
from node j to i, Qn

i denotes the water consumption velocity
of the ith node, Qout

i,k denotes the velocity of outgoing water
from node i to k, �Hi is the head loss in the ith pipe, P is
one path in the network consisting of a series of successive
pipes, SP is a complete set of P, Hs and He are the pressure
head at the start node and the end node of P, respectively,
[actually which point is taken as the start or the end will not
affect the validity of (4)], Hs

i and He
i are the pressure head at

the start node and the end node of the ith pipe, Hi is the actual
pressure head provided by the network, Hi,min and Hi,max are
the minimum and maximum pressure constraints, respectively.

The mass conservation law (3) implies that, for a specific
node, the velocity of incoming water should be equal to its
consumption velocity plus the outgoing velocity. If there is
no external incoming water (e.g., purified rainwater), Qext is
equal to 0. Also, if the jth node or the kth node is not directly
connected to the ith node, Qin

j,i or Qout
i,k is equal to 0. The energy

conservation law (4) indicates that the head losses accumulated
along a path should be equal to the difference between the head
of the start node and the head of the end node. The head loss
of each pipe can be roughly calculated by the Hazen–Williams
formula

�Hi = α
(Qi)

β li
(Ci)

β(Di)
γ

, i = 1, . . . , Np (6)

where Qi, Di, and Ci are the water flow rate, diameter, and
Hazen–Williams roughness coefficient of the ith pipe, respec-
tively. α, β, and γ are three empirical parameters which are
commonly set as 10.667, 1.852, and 4.871. Regarding (5),
usually the minimum head requirement Hi,min is defined by
the government (e.g., in China, it is set to 28 m according
to the national standard file GB50282-98) and the maximum
head requirement Hi,max is usually not defined except for some
special occasions.

Furthermore, in this paper, both the multiple-loading
paradigm with different demand patterns, also known as the
extended-period paradigm, and the single-loading paradigm,
also known as the steady-state paradigm, are considered. In
the former case, the water demand of a consumer may change
over time and different consumers have different patterns [40].
Thus, we actually simulate the behavior of a water network
in an extended period. Cutting the period into T pieces, the
ith consumer’s demand can be defined by a sequence of water
consumption velocities

Qn
i = {

Qn
i,1, Qn

i,2, . . . , Qn
i,T

}
. (7)

In the single-loading paradigm, each consumer requires a fixed
amount of water.

III. RELATED WORK

In this section, some metaheuristic algorithms and the way
in which they handle the constraints are introduced.

Da Conceição Cunha and Sousa [13] used the SA algorithm
to solve the WDN design problem. The hydraulic network
equations [constraints (3) and (4)] are solved by a Newton
search method during the execution of the algorithm. However,
there is not an efficient way to handle the constraint of user
requirements (5). If the current solution is infeasible, the algo-
rithm would replace the solution by randomly selecting one of
its neighbors. Thus, the search is nondirectional if the initial
solution is infeasible.

Afterward, Cunha and Ribeiro [3] proposed a TS method
which incorporated a simulator to handle the hydraulic con-
straints. To satisfy the consumers’ requirements, they always
initialize the solution by setting all pipes to the type of
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the largest diameter. This initialization method may greatly
degrade the search ability of the algorithm. Consequently, the
algorithm is easy to be trapped into the same local optima.

In the past decade, population-based metaheuristics received
more attention in this domain. GAs are one of the
most popular algorithms that have been investigated [17].
Simpson et al. [41] first applied a canonical GA method
to optimize a very small network. A penalty function was
designed to punish infeasible solutions which could not satisfy
the minimum head constraint. If the constraint was violated, an
extra value which was equal to the maximum pressure deficit
multiplied by a penalty factor would be added to the objective
value. The latest related work which used a GA was proposed
by Bi et al. [16]. They focused on proposing a new initial-
ization method by using heuristic domain knowledge. Which
GA variant was applied and how they treated the constraints
were not specified. But in order to make a fair comparison,
they still used Simpson’s GA method.

Suribabu and Neelakantan [42] combined a PSO algorithm
with EPANET, developing a tool called PSONET. Infeasible
solutions in PSONET are also punished by adding a big num-
ber which is larger than the largest cost of the network to
their objective values. Montalvo et al. [19] also utilized PSO
in their work. The only difference between their algorithm
and PSONET is the penalty function, which is designed as
the sum of all pressure deficits. Recently, another PSO vari-
ant called developed swarm optimizer (DSO) was proposed,
which had shown competitive performance on small-scale
networks [43].

After PSO, Suribabu [44] later tried a DE algorithm to solve
the WDN optimization problem which also achieved good
results. The way in which they handled the pressure constraint
was inherited from [42]. Zheng et al. [22] proposed a self-
adaptive DE (SADE) algorithm which could adaptively change
the parameters of the algorithm. Meanwhile, they used the con-
straint tournament selection strategy which was proposed by
Deb [45] to compare solutions. This strategy contains three
rules: 1) infeasible solutions are always worse than feasible
solutions; 2) between two feasible solutions, the one who gets
better objective value is preferred; and 3) between two infeasi-
ble solutions, the one with lower degree of constraint violation
is better.

Soon after, Zheng et al. [46] came up with another approach
based on ACO, called adaptive convergence-trajectory con-
trolled ant colony optimization (ACOCTC). Since both feasible
and infeasible solutions are used to update pheromone values,
a penalty function method is used instead of the constraint
tournament selection. The penalty is defined as the maximum
pressure deficit. Zecchin et al. [18] compared five different
ACO variants on WDN problems and found that the elitist-
rank ant system (ASrank) and the max–min ant system were
better than the others.

A special case is the approach proposed by
Zheng et al. [21], in which a two-stage DE (TSDE) method
is used to optimize multisource WDNs. In the method,
a WDN is partitioned into several subnetworks in advance.
Then, during the first stage of optimization, the subnetworks
are optimized separately. Afterward, the whole network is

handled according to the result obtained in the first stage.
The defect of the proposed decomposition method is that it
only fits some simple single-loading networks, where pumps
or valves do not exist. Meanwhile, since the subnetworks are
optimized separately during the first stage, the TSDE may
perform poorly on closely linked networks.

Besides the aforementioned algorithms, some other meta-
heuristic algorithms have been also investigated [47]–[50].
Observing the methods used to handle the constraints, we can
find that generally the hydraulic constraints are solved by sim-
ulation tools, and the penalty function method is applied to
handle the minimum pressure constraint. However, the penalty
functions in most algorithms are imperfect.

1) Some of them set a fixed big number as penalty. In
such a case, the violation degree of the constraints is
ignored. Consequently, the infeasible solutions cannot
be compared with each other.

2) Some of them set the penalty as the maximum pressure
deficit of a node or the sum of pressure deficits of all
nodes. In this case, infeasible solutions with small degree
of violation may be considered better than some feasible
solutions. If the minimum pressure constraint is viewed
as a hard constraint, this situation is not acceptable.
Aiming at these defects, we intend to propose a novel
fitness function in WDNCC.

IV. COOPERATIVE CO-EVOLUTION FOR WATER

DISTRIBUTION NETWORK OPTIMIZATION

The first CCEA proposed by Potter and De Jong [51] was
originally applied to optimize low-dimensional functions. Due
to the extraordinary scalability of CC, many people have pro-
moted its usage on large-scale problems [34], [52]. This is one
of the reasons why we adopt CC in this paper. In this section,
WDNCC is described in detail. The trace-based decomposi-
tion is shown in the first place. Then, the utilized EA, i.e.,
SaNSDE, and the fitness function are introduced, respectively.
Finally, the WDNCC framework is shown by integrating these
components together.

A. Trace-Based Decomposition

Good decomposition is a prerequisite for the success of
a CCEA. The principle of decomposition is to put interac-
tional variables into the same group and divide independent
variables into different groups [28]. Although there are already
some decomposition methods proposed for large-scale contin-
uous functions like differential grouping [28], [29], usually
these decomposition methods cannot be directly applied to
WDN optimization problems due to two reasons.

1) These methods need massive times of simulations to cal-
culate the relationships between every pair of variables.
This process is extremely inefficient.

2) These methods rely on plenty of hypothetic solu-
tions which may be infeasible for WDN optimization
problem, and simulations on these infeasible solutions
are meaningless. For WDN optimization problems, with
the help of relevant domain knowledge, we can make an
accurate enough decomposition by conducting a small
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Algorithm 1 Trace-Based Decomposition
Input: one feasible solution θ f , node demand Qn = {Qn

i |1 ≤ i ≤ Nn},
number of water source No.
Output: pipe partition PP = {ppi|1 ≤ i ≤ Np}.
1 Set the values of the pipes according to θ f ;
2 flow1→Np = {0}; //flow velocity of each pipe
3 for i = 1 to T do
4 run the hydraulic simulation of time slice i;
5 for j = 1 to Np do
6 get the flow velocity of the jth pipe fvj;
7 flowj = flowj + fvj;
8 end for
9 end for
10 quantity1→Np,1→No = {{0}}; //quantity of water from every

source to every node
11 for i = 1 to No do
12 for j = 1 to T do
13 run the trace simulation of source i in time slice j;
14 for k = 1 to Nn do
15 get the percentage of water quantity pwqk,i from

source i to node k;
16 quantityk,i = quantityk,i + pwqk,i · Qn

k,j;
17 end for
18 end for
19 end for
20 for i = 1 to Nn do
21 nodeBelongi = arg max

1≤j≤No
(quantityi,j);

22 end for
23 for i = 1 to Np do
24 get the two node s and e linked by the ith pipe;
25 if flowi > 0 then
26 ppi = nodeBelonge;
27 else
28 ppi = nodeBelongs;
29 end if-else
30 end for
31 return PP

number of simulations or even without conducting any
simulation.

To divide a large-scale WDN with multiple sources into sub-
networks, a natural thought is putting congeneric nodes whose
water comes from the same source into the same group, and
dividing nodes which belong to different sources into different
groups. Some methods tried to use the value of friction slope
to specify the ownership between consumer nodes and sources
without conducting any simulation [21]. However, since differ-
ent sources have different water supply capacities and pumps
would also affect the water supplement, the minimum fric-
tion slope method sometimes may be not accurate. Thus, in
this paper, we propose an iterative trace-based decomposi-
tion method which uses a few times of simulations based on
EPANET to check the real trace of water, finding the real water
source for each node.

It should be noted that the variable in WDN optimization is
pipe rather than node. However, before dividing pipes, nodes
should be divided at first, since EPANET only provides the
source tracing function for nodes. Based on the results of
node partition, we can divide the pipes into different groups.
Before showing the trace-based decomposition method, three
principles are stated at first.

1) If the water consumed by a node comes from only one
source, the node definitely belongs to that source.

Fig. 2. Trace-based decomposition.

2) If the water consumed by a node comes from multiple
sources, it belongs to the source which provides more
water to it.

3) Pipes should take charge of the nodes that they can
affect. It means that a pipe belongs to the source which
its downstream node belongs to.

Based on these three rules, the pseudo code of the trace-based
decomposition method is shown in Algorithm 1.

To begin with, all pipes are initialized according to a given
feasible solution (line 1). Then a series of hydraulic simu-
lations are conducted to judge the flow direction of every
pipe and to make preparation for the following trace simu-
lations (lines 2–9). Denoting the start node and the end node
of the ith pipe as s and e, respectively, if the water flows
from s to e, fvi > 0; otherwise fvi < 0. Thus, the variable
flow1→Np (line 2) actually records a general flow direction
of each pipe by accumulating the velocity in each time slice.
Afterward, the quantity of water that each source has pro-
vided to each consumer is calculated by conducting a series
of trace simulations (lines 10–19). Since the trace simula-
tion only provides the proportion value, the total demand of
each time slice needs to be multiplied to get the real quan-
tity (lines 15 and 16). Based on the quantity data and the
former two principles, all nodes are divided into different
groups (lines 20–22). Finally, the pipe partition is executed.
All pipes are classified in line with their downstream nodes
(lines 23–30).

An example is shown in Fig. 2 to illustrate the trace-based
decomposition method. There are two reservoirs, R1 and R2,
and four consumers {a, b, c, d}, linked by six pipes which are
ordered from 1 to 6. First, the hydraulic simulation is made.
We can find that the flow direction of pipe 2 is from a to b,
and the flow direction of the pipe 6 is from c to d. It means
that only the water from R2 cannot satisfy the requirements
of b and d. Some water flows from R1 to b and d to support
them. Nevertheless, the trace simulation shows that most of the
water consumed by b and d still comes from R2. Thus, b and
d are grouped with R2, meanwhile a and c are grouped with
R1. According to the result of node partition, pipe 1 and 4 are
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partitioned into a group, pipe 2, 3, 5, and 6 are partitioned
into the other group.

B. SaNSDE

The optimizer used in WDNCC is SaNSDE, which is a vari-
ant of DE. Given a population which contains M individuals
{x1, x, . . . , xM}, and an Np-dimensional problem, SaNSDE can
be summarized by the following three steps.

1) Mutation: For each solution, the mutant vector is gen-
erated by

vi =
{

xa + Fi · (xb − xc), if r1 < p
xi + Fi · (xbest − xi) + Fi · (xa − xb), otherwise

(8)

where a, b, c ∈ [1, M] are random and mutually dif-
ferent integers. Also they are different from i. r1 is
a uniform random number generated within (0, 1). p is
a self-adaptive parameter. It is initially set to 0.5. After
evaluating all offspring, the number of offspring which
is generated by the former mutation strategy of (8) and
successfully reserved is recorded as ns1. The success
number corresponding to the latter mutation strategy is
recorded as ns2. The numbers of failed offspring of the
two mutation strategies are recorded as nf 1 and nf 2,
respectively. During every 50 generations, these four
values accumulate. After that, p is recalculated as

p = ns1 · (ns2 + nf2)

ns2 · (ns1 + nf1) + ns1 · (ns2 + nf2)
. (9)

Once p is updated, ns1, ns2, nf 1, and nf 2 will be reset
to 0. Fi in (8) is a real factor calculated by

Fi =
{

N(0.5, 0.3), if r2 ≤ p
C(0, 1), otherwise

(10)

where N(0.5, 0.3) is a normal distribution, and C(0, 1)
is a Cauchy distribution. r2 is another uniform random
number within (0, 1).

2) Crossover: The value of each dimension of the newly-
generated solution is determined by

ui(j) =
{

vi(j), if r3 ≤ CRi or j = jrand
xi(j), otherwise

(11)

where j ∈ [1, Np].r3 is a uniform random number within
(0, 1). jrand is randomly chosen to ensure that ui does
not replicate xi. CRi is calculated by

CRi = Ni(CRm, 0.1). (12)

CRm is initially set to 0.5. During each generation,
the CR values associated with the individuals which
successfully enter the next generation are recorded in
an array CRrec. After every 25 generations, CRm is
recalculated by

CRm =
|CRrec|∑

k=1

wk · CRrec(k) (13)

wk = �frec(k)/

⎛
⎝|�frec|∑

k=1

�frec(k)

⎞
⎠ (14)

where �frec is the improvement on fitness value.

Algorithm 2 WDNCC Framework
Input: problem C = {θ1, . . . . . . , θNp}
Output: solution gbest

1 decompose the problem into Ns groups using θmax;
2 for i = 1 to Ns do
3 initialize the ith populations Si;
4 end for
5 rc = 0; rstart = false;
6 for i = 1 to MAXROUND do
7 if rc % RI == 0 && gbest is feasible
8 re-decomposition using gbest;
9 re-assemble solutions;
10 rstart = true;
11 end if
12 if rstart == true
13 rc++
14 end if
15 for j = 1 to Ns do
16 evolve the jth population Sj;
17 calculate fitness values using gbest;
18 update bestj of Sj;
19 update the j-th part of gbest;
20 end for
21 end for
22 return the gbest;

3) Selection: Finally, the offspring is generated
according to

x∗
i =

{
ui, if f (ui) ≤ f (xi)

xi, otherwise
(15)

x∗
i is the offspring of xi (assume the problem is

minimization problem).
Although the variables of WDN optimization problems are

discrete, they are essentially ordinal rather than categorical.
Thus, to apply SaNSDE which is a continuous optimizer to
the WDN optimization problem, we just need to turn the pipe
type into numbers. In this paper, the pipe types are ordered
from 1 to Nt according to their diameters (both ascending
order and descending order are feasible). With respect to the
continuous values in the algorithm, they are operated normally
in continuous way during the execution of the algorithm. When
conducting a simulation, they will be directly rounded down to
the nearest integers to represent the pipe types. Although the
EA applied in WDNCC is SaNSDE, without loss of generality,
any EA which has been proved effective on small-scale WDN
optimization problems can be employed as the optimizer.

C. Fitness Design

As mentioned earlier, the WDN optimization problem is
essentially a constrained problem. Among the three con-
straints, (3)–(5), the former two can be handled by the
simulation tool EPANET. The last one, i.e., the minimum
pressure constraint, should be handled by the optimization
algorithm. Thus, in this paper, “infeasible solution” is used to
describe a solution which cannot satisfy the minimum pres-
sure constraint. To handle the minimum pressure constraint,
we use the penalty function method in WDNCC.

For a constrained problem, since infeasible solutions are
always worse than feasible solutions, we can define the penalty
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as a primary objective in order to find feasible solutions. Then
the original objective, i.e., the expenditure, can be taken as the
secondary objective which only works when comparing two
feasible solutions. Inspired by the work [53] which studied the
vehicle routing problem with also two different objectives, the
fitness F(θ) of a solution θ in WDNCC is defined as follows:

F(θ) = f (θ)/f (θmax) + P(θ) (16)

where

θmax = {θi = Nt|1 ≤ i ≤ Np}, (17)⎧⎨
⎩

P(θ) = ∑T
i=1

∑Nn
j=1 ϕ(i, j) + ϕ(i, j) · (

Hj,min − Hj,i
)

ϕ(i, j) =
{

1, if Hj,min > Hj,i

0, otherwise.
(18)

As we can see from (16), a solution’s fitness consists of two
parts, the objective part f (θ)/f (θmax) and the penalty part P(θ).
If a solution is feasible, the penalty part will be equal to 0.
Since the objective part is always divided by the objective
value of θmax whose pipes are all set to the most expensive
type, the objective part will be always less than or equal to 1.
(The most expensive type usually has the biggest diameter.)
Adding these two parts together, the fitness value of a feasible
solution will be always less than or equal to 1. If a solution
is infeasible, there will be at least a node whose real head is
lower than the threshold value, i.e., Hj,min > Hj,i. According
to (18), the penalty part of the solution’s fitness will be larger
than 1. Still the objective part is less than 1. (Here, the objec-
tive parts of infeasible solutions will never be equal to 1,
because the solution θmax must be feasible, otherwise feasible
solutions do not exist.) Adding these two parts together, for
an infeasible solution, its fitness value will be always larger
than 1. The single-loading paradigm can be seen as a spe-
cial case of the multiple-loading paradigm, where T in (18) is
equal to 1.

D. Architecture

The architecture of WDNCC is shown in Algorithm 2 in
the form of pseudo code. For a WDN optimization problem
which contains Np pipes C = {θ1, . . . . . . , θNp}, WDNCC first
divides it into Ns subcomponents (line 1) according to the
solution θmax, represented as

C = C1

⋃
C2

⋃
. . .

⋃
CNs (19)

s.t. ∀i ∈ [1, Ns], Ci �= ∅ (20)

∀i, j ∈ [1, Ns] ∧ i �= j, Ci

⋂
Cj = ∅. (21)

The trace-based decomposition method used in WDNCC
always needs a feasible solution. The first decomposition is
made based on θmax, since it is the only feasible solution
guaranteed before optimization. From (19) to (21), we can
see that Np pipes are divided into Ns groups. After the first
decomposition, Ns populations {S1, S2, . . . , SNs} are initialized
corresponding to Ns groups, and Ns optimizers will be ini-
tialized too (lines 2–4). Each population Sj maintains a best
subsolution it has ever found, denoted as bestj. The whole

Fig. 3. Reassemble solutions. The whole problem C consists of five vari-
ables {θ1, θ2, θ3, θ4, θ5}. It is divided into two subcomponents C1 and C2.
Before redecomposition, C1 = {θ1, θ2, θ4}, C2 = {θ3, θ5}. After redecom-
position, C1 = {θ1, θ2}, C2 = {θ3, θ4, θ5}. Solution reassembling is realized
by extracting the values of θ4 from S1, and assembling them with solutions
of S2.

algorithm maintains a global best solution, denoted as gbest

gbest = best1
⋃

best2
⋃

. . .
⋃

bestNs. (22)

Here, the union symbol is used to represent the concatenation
among subsolutions. When the algorithm finds a feasible solu-
tion for the first time, the redecomposition procedure will be
activated. For every RI iterations, WDNCC will redecompose
the problem based on gbest (lines 7–14). Thus, the decom-
position in WDNCC is actually an iterative process. After
redecomposition, all subsolutions in all populations should be
reassembled. To keep the algorithm simple, we directly split
and assemble these subsolutions according to their indices. An
example is shown in Fig. 3. Initially, the problem is divided
into two subcomponents, C1 = {θ1, θ2, θ4}, C2 = {θ3, θ5}.
Correspondingly there are two populations, and both have
two individuals, S1 = {x1, x2}, S2 = {y1, y2}. After redecom-
position, the classification of θ4 changes. Then, we directly
extract the values x1,4 and x2,4 from S1, and assemble them
with y1 and y2 in S2.

In each iteration, the populations evolve successively and
update gbest one by one (lines 15–20). Specifically, in the ith
iteration, the jth optimizer first operates on its population Sj.
The fitness value of each individual x in Sj is evaluated

g(x) = F
(

x
⋃

besti−1
j

)
(23)

where

besti−1
j = gbest − besti−1

j

= besti1
⋃

. . .
⋃

bestij−1

⋃
besti−1

j+1

⋃
. . .

⋃
besti−1

Ns .

(24)

Since x is a subsolution which only has the values of the
pipes belonging to Cj, its fitness value has to be evaluated
by combining it with the pipes in other subcomponents. The
values of other pipes come from gbest. Then bestij is updated as

bestij = arg min
x∈Sj

g(x). (25)
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Afterward, gbest is updated according to bestij

gbest = besti1
⋃

. . .
⋃

bestij
⋃

besti−1
j+1 . . .

⋃
besti−1

Ns .

(26)

When the jth population finishes these procedures, the j + 1th
optimizer starts working. Finally, after MAXROUND itera-
tions of optimization, the whole algorithm stops and returns
the best solution gbest.

V. EXPERIMENTS

In this section, the proposed WDNCC is tested on sev-
eral networks with different scales. Both multiple-loading and
single-loading schemes are considered. The scale of a network
is defined by the number of pipes. First, a series of test
cases are generated and introduced in detail. Second, the rede-
composition interval RI is investigated for the single-loading
cases. Third, we compare WDNCC with some other methods
on the single-loading and multiple-loading cases to check its
performance. Finally, the partitions on multiple-loading cases
are also shown to discuss the rationality of the redecompo-
sition strategy. Furthermore, to show that the advantage of
WDNCC does not merely come from SaNSDE, a comparison
between WDNCC and the pure SaNSDE is made. In addition,
the efficiency of WDNCC is also demonstrated by checking
the execution time. However, due to the page limit, the com-
parison between WDNCC and SaNSDE, and the experiment
of execution time are shown in the supplemental material.

To demonstrate the effectiveness of WDNCC, several rep-
resentative methods which were proposed to solve WDN
optimization problems are compared. The first one is the PSO
algorithm [19], which has shown similar performance with
some GA methods and ACO methods. The second one is
the SADE algorithm [22], which is effective on large-scale
networks. The third one is the DSO algorithm [43], which was
recently proposed and showed competitive performance to the
SADE algorithm on small-scale cases. The final one is a two-
stage algorithm which was specifically designed for networks
with multiple sources [21], and it also used the divide-and-
conquer strategy. Since the standard DE was applied in the
algorithm, we call it TSDE in the following experiments.

According to the study in [19] and [22], setting the popula-
tion size of the algorithm approximately equal to the scale of
the problem is appropriate. In the applied test cases, the num-
ber of pipes is about 100 times of the number of sources. Thus,
if we set aside the network structure and the water supplying
capacity of each source, after decomposition, each subcompo-
nent contains roughly 100 pipes. Hence, the population size of
WDNCC is set to 100 for each subcomponent of the network.
For the former three compared algorithms, PSO, DSO, and
SADE, the population size is set equal to the node number of
the network. As to TSDE, the authors customized the popula-
tion size for each network even each subnetwork in their work.
However, they did not give instructions about how to decide
the population size. Thus, for TSDE, according to the study
in [19] and [22] and the population size set in [21], we give
a simple strategy that the population size of the first stage is
set equal to the number of the nodes of the subnetworks, while

TABLE II
PARAMETER SETTINGS OF THE COMPARED ALGORITHMS

the population size of the second stage is set to the half of
the node number of the whole network due to the limit of the
number of fitness evaluations (FEs). Other parameters in the
algorithms are directly inherited from their original settings,
which are shown in Table II.

A. Benchmark Description

Although there are already several real WDNs which have
been widely used as benchmarks in previous studies, most of
these test cases are not generated following a unified standard.
Moreover, lots of the well-known networks were proposed
decades ago, whose scales were too small to simulate current
real cases. Also, as mentioned in [1], it would be beneficial to
design benchmarks factoring in different levels of complexities
and scales for pure algorithmic developers. Thus, to conduct
a systematic experiment, a series of artificial WDNs following
the same construction method are generated. Since our main
purpose is to test the proposed approach rather than building
a real network of any real city, only the very necessary com-
ponents, such as pipes, pumps, reservoirs, and consumers are
included in the artificial networks.

To create a WDN, first, a certain number of nodes are gener-
ated within a circle region which represent consumers. Then
we connect these nodes by nonintersecting pipes which are
the variables of the problem. Usually, besides the necessary
pipes which link all nodes to ensure that the network is fully
connected, there will be some auxiliary pipes to improve the
reliability of the network. Thus, in the artificial networks, the
number of pipes is roughly 1.1 times of the node number.
Reservoirs are generated on the edge of the circle region,
linked with the nearest nodes by pumps. Enough pumps are
provided so that the solution θmax is always feasible. Through
adjusting the number of pumps connected to each reser-
voir, we can endow different supplying capacities to different
reservoirs. Totally 20 instances are generated. Half of them
are balanced networks, in which the reservoirs are endowed
with almost the same supplying capacity. The other half are
imbalanced, in which reservoirs are endowed with different
supplying capacities. For multiple-loading cases, totally five
demand patterns are considered. Each pattern contains six time
slices, and each consumer is assigned to a pattern randomly.
For single-loading cases, the patterns are removed. The details
about the generated benchmark are shown in Table III. The
structures of the smallest size 200, the middle size 400, and
the biggest size 600 are shown in Fig. 4. The other networks
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Fig. 4. WDN structures. (a) 200. (b) 400. (c) 600. (d) Balerma.

TABLE III
INFORMATION ABOUT THE ARTIFICIAL WDNS

have similar structures. Based on the domain knowledge, the
number and the scale of loops in a network are two impor-
tant indicators of the complexity [1]. Observing Fig. 4, we can
find that the artificial networks contain many loops with dif-
ferent scales, so that the complexity of the problem is ensured.
In addition, the minimum pressure constraint is set to 16 m
according to the Chinese city standard.

Regarding the pipe type, two kinds of pipes are widely
used in the municipal water supply system: 1) polyethylene
pipes and 2) ductile cast iron pipes. We investigated their mar-
ket prices and manufacturing standards, adopting 12 types of
polyethylene pipes and 14 types of ductile cast iron pipes into
the experiment. Information about pipes is shown in Table IV.

Besides the networks we designed, a real and widely used
WDN, i.e., the Balerma network, is adopted [54]. The struc-
ture of Balerma is also shown in Fig. 4. Comparing the artifi-
cial networks generated in this paper and the Balerma network,
we can find that the artificial networks are more complex.
According to Fig. 4(b) and (d), although 400-B-S and the

TABLE IV
INFORMATION ABOUT THE PIPE TYPES

Balerma network have similar scale, 400-B-S obviously has
more loops, and the links among subnetworks are connected
more closely.

B. Redecomposition for Single-Loading Cases

First, we discuss the performance of the redecomposi-
tion strategy on single-loading cases. Two questions, whether
the redecomposition strategy is effective and how much the
redecomposition interval RI should be, are investigated.

To answer the first question, WDNCC is applied to the
Balerma network, and we keep track of the decomposition
status to see whether the redecomposition strategy has refined
the partitions of the network. The number of generations
MAXROUND is set to 2000. The redecomposition interval
RI is set to 200. Experimental results are shown in Fig. 5. In
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Fig. 5. Decomposition of the Balerma network. Decomposition generated by the (a) max solution and (b) first feasible solution. (c) Final decomposition.

Fig. 6. Ideal decomposition of the Balerma network. FRN means four-
reservoir network.

total, three decomposition results generated in different stages
of WDNCC are shown: the first decomposition generated by
θmax, the decomposition generated by the first found feasi-
ble solution, and the final decomposition. The decomposition
given in [21] is shown in Fig. 6 as reference.

Observing the three figures in Fig. 5, we can find the decom-
position of the network is becoming more and more precise
along with the progressing of WDNCC. Compared with the
ideal node decomposition shown in Fig. 6, in Fig. 5(a), the
first decomposition is far away from accurate that one of
the partitions owns only one pipe. However, the partitions
in the final decomposition shown in Fig. 5(c) are extremely
similar to the partitions in Fig. 6. Such a result shows that
the redecomposition strategy is able to generate accurate
partitions.

To answer the second question, how much the redecomposi-
tion interval RI should be, we choose three networks, 400-B-S
and 400-I-S, and the Balerma network as test cases. RI is set
to four different values {50, 100, 200, 400}. Other settings are
kept unchanged. WDNCC is executed 20 times under each RI

TABLE V
COMPARISON AMONG DIFFERENT RI VALUES

setting. The median and the standard deviation values of the
results are shown in Table V. Also the Wilcoxon rank sum
test is conducted to see whether there is a value which is sig-
nificantly better than others. Observing the results of 400-B-S
and 400-I-S, we can find that these four RI values have similar
performance. This fact implies that WDNCC is actually not
sensitive to the parameter RI on these two instances. However,
in order to select a rational value, checking the median values,
we take 100 as an applicable choice for the artificial networks.
As for the Balerma network, although the value 400 gets the
best performance on each measurement index, we can still see
that except for 50, WDNCC performs similarly under the other
three RI values. But 400 is absolutely a rational choice for the
Balerma network.

Overall, the experiment shows that WDNCC is not quite
sensitive to the parameter RI especially when the subnetworks
are closely linked. As shown in Fig. 5(b) and (c), the difference
between the decomposition generated by the first feasible solu-
tion and the final decomposition is little. In most cases, such
small changes will not affect the optimization too much which
means WDNCC has the ability to solve the problem when the
decomposition is not that accurate. However, if the redecom-
position process is executed too frequently, the individuals in
different populations will be reassembled frequently. That will
badly affect the optimization process just as the results on the
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Fig. 7. Median values of fitness of the five algorithms on single-loading cases. (a) On balanced cases. (b) On imbalanced cases. The black dotted line is the
feasible reference line which represents the fitness value 1. The area above the reference line represents the infeasible zone. The area below represents the
feasible zone.

Balerma network. Thus, for real applications, we recommend
that RI should be at least 100.

C. Performance on Single-Loading Cases

To show the effectiveness of WDNCC on single-loading
cases, we compare it with the four aforementioned algorithms.
The FEs is given as 2000·Nn. The Balerma network is treated
as a network of scale 400. Each algorithm is executed 20 times
on each test case to get the statistic information, i.e., the
median, the mean, and the standard deviation values. Also the
Wilcoxon rank sum test is made to show whether WDNCC
is significantly better than the other four methods. Numerical
results are shown in Table VI. Furthermore, the median val-
ues are shown in Fig. 7 to demonstrate how the algorithms’
performances are affected by the network scale.

Generally, except the 200-B-S network on which WDNCC
performs similarly to TSDE, WDNCC is significantly bet-
ter than the other four algorithms on the rest of test cases.
Specifically, we can see that PSO is the worst among the
five algorithms. Only on 200-I-S and Balerma, it has found
feasible solutions. Although DSO is better than PSO, it still
cannot find feasible solutions. TSDE and SADE have their
own advantages, respectively. The results show that SADE
can always find feasible solutions although the fitness values
are very good. TSDE is able to find feasible solutions when
the scale of the network is smaller than or equal to 400, and
on some cases it performs better than SADE. But when the
scale is larger, its ability degrades. As to WDNCC, on all
test cases, it is capable to find feasible solutions. Meanwhile,
the objective values are usually the best among the five algo-
rithms, which means WDNCC is truly effective in optimizing
large-scale WDNs with single-loading paradigm.

Also, Fig. 7 has demonstrated the great stability and scala-
bility of WDNCC. Although all five algorithms’ performances
degenerate along with the growth of the network scale, the
increase of the fitness of WDNCC is the smallest among them.
The reason is that, by dividing a large-scale network into
pieces, each optimizer in WDNCC actually faces a small-scale
network which is easier to optimize than the whole network.

Thus, the influence of the growth of network scale to WDNCC
is not as fierce as to other algorithms.

D. Performance on Multiple-Loading Cases

The performance of WDNCC on multiple-loading cases
is also checked by comparing it with the four algo-
rithms. Experimental settings are kept unchanged except that
ten independent runs are given to each algorithm rather than
20 because running a simulation on a multiple-loading network
spends much more time than on a single-loading network.
Numerical results are shown in Table VII. Also, median values
are shown in Fig. 8.

Observing the results, we can find that generally the per-
formances of the five algorithms on multiple-loading cases
are similar to their performances on single-loading cases.
Specifically, on 200-B-M, TSDE and WDNCC are well-
matched. For other instances, numerical results show that
WDNCC is always better. Regarding the other three algo-
rithms, PSO is still not capable to find feasible solutions
efficiently. DSO finally finds feasible solutions on the small-
est network, but it still cannot handle large-scale networks.
Although SADE shows valid and stable capability to find feasi-
ble solutions and to optimize the expenditure, its performance
is still worse than WDNCC.

Since in multiple-loading networks, the demand of each
node is multiplied with a coefficient which is in the range
(0, 1), the minimum pressure constraint is much easier to be
met than on the single-loading cases. Thus, we can find that
except the 600-I-M network, TSDE can find feasible solu-
tions on the other networks. However, the solutions it found
still cost more than the solutions found by WDNCC. Results
shown in Fig. 8 verify that WDNCC maintains good stability
and scalability on multiple-loading cases too.

Overall, the experimental results show that WDNCC is also
effective and efficient on the multiple-loading networks.

E. Redecomposition for Multiple-Loading Cases

Generally, a multiple-loading WDN is more difficult to be
partitioned precisely than a single-loading WDN, since in dif-
ferent time slices, the nodes require different amount of water.
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TABLE VI
RESULTS ON SINGLE-LOADING CASES

Fig. 8. Median values of fitness of the five algorithms on multiple-loading cases. (a) On balanced cases. (b) On imbalanced cases. The black dotted line is
the feasible reference line which represents the fitness value 1. The area above the reference line represents the infeasible zone. The area below represents
the feasible zone.

The water source of a node may also change in different
time slices. Therefore, for some multiple-loading WDNs, the-
oretically, the perfect partition does not exist. Based on such
a fact, here we do not arbitrarily discuss the accuracy of the
decomposition. The changing of the decomposition is shown
to demonstrate that the redecomposition strategy works well
on multiple-loading cases.

First, the 200-B-M network and the 200-I-M network are
used as the test cases. On 200-B-M, TSDE and WDNCC
are well-matched, but on 200-I-M, WDNCC performs bet-
ter. Thus, through comparing the decompositions generated
by these two methods, we hope to see the difference and
then discussing the accuracy. Still, the decomposition results
in three different stages of WDNCC are shown. The partitions
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Fig. 9. Decomposition of 200-B-M and 200-I-M. (a) First decomposition of WDNCC on 200-B-M. (b) Second decomposition of WDNCC on 200-B-M.
(c) Final decomposition of WDNCC on 200-B-M. (d) Decomposition of TSDE on 200-B-M. (e) First decomposition of WDNCC on 200-I-M. (f) Second
decomposition of WDNCC on 200-I-M. (g) Final decomposition of WDNCC on 200-I-M. (h) Decomposition of TSDE on 200-I-M.

TABLE VII
RESULTS ON MULTIPLE-LOADING CASES

generated by TSDE are also displayed as reference. Other
experimental settings are kept unchanged. Partitions are shown
in Fig. 9. It should be noted that the partitions generated by

TSDE are not ideal. They are displayed just to show the dif-
ference among partitions generated by the two methods. The
green pipes shown in Fig. 9(d) and (h) are links between
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subnetworks. In TSDE, they are not considered in the first
stage of optimization.

First, seeing Fig. 9(a)–(d), we can find that the decom-
position generated by WDNCC on 200-B-M is always the
same, and it is quite similar to the decomposition generated by
TSDE. Only on few links between the subnetworks, they differ
from each other. Combining the results shown in Table VII,
where they achieve similar performances on 200-B-M, we
can say that these two methods both get accurate enough
decomposition.

However, on 200-I-M, we can see significant change from
Fig. 9(e) to (g). First, it means that the redecomposition pro-
cess of WDNCC really functions well. Then, comparing these
three figures with Fig. 9(h), we can find that no one is similar
to the partitions generated by TSDE. Although, for the parti-
tions generated by WDNCC on 200-I-M, the red subnetwork
does own more nodes and links compared with 200-B-M, the
water trace results show that the difference between the water
supply capacities of the two reservoirs is not as big as shown
in Fig. 9(h). The results in Table VII on 200-I-M also indi-
cate that the decomposition generated by WDNCC is more
accurate.

VI. CONCLUSION

In this paper, we have proposed a novel approach called
WDNCC to handle the WDN optimization problem with
multiple sources. With the help of the simulation tool,
EPANET, an effective decomposition method is designed,
which needs little hydraulic domain knowledge. Experimental
results have proved the accuracy of the decomposition gen-
erated by WDNCC. Meanwhile, the cooperation of the
decomposition process and the optimization process makes
the algorithm efficient enough to find near-optimal solu-
tions. Experimental results on both single-loading cases and
multiple-loading cases have verified the effectiveness of
WDNCC. Besides, in this paper, we have designed a series
of large-scale WDNs which may fill the vacancy of the
benchmarks.

In future research, besides proposing more effective and effi-
cient algorithms, there are still some points which are worth
studying.

1) Considering different structures of the WDNs, more
decomposition methods should be designed specifically.
This is also a key point to promote the usage of EAs on
the problems with higher dimensionality.

2) Another big part of the urban water infrastructure
is wastewater network. Optimizing the networks of
wastewater is more challenging since pressure-free
networks are more difficult to design than pressured
networks.
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