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Abstract—The first cooperative co-evolutionary algorithm
(CCEA) was proposed by Potter and De Jong in 1994 and since
then many CCEAs have been proposed and successfully applied
to solving various complex optimization problems. In applying
CCEAs, the complex optimization problem is decomposed into
multiple subproblems, and each subproblem is solved with a
separate subpopulation, evolved by an individual evolutionary
algorithm (EA). Through cooperative co-evolution of multiple
EA subpopulations, a complete problem solution is acquired by
assembling the representative members from each subpopulation.
The underlying divide-and-conquer and collaboration mecha-
nisms enable CCEAs to tackle complex optimization problems
efficiently, and hence CCEAs have been attracting wide atten-
tion in the EA community. This paper presents a comprehensive
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survey of these CCEAs, covering problem decomposition, col-
laborator selection, individual fitness evaluation, subproblem
resource allocation, implementations, benchmark test problems,
control parameters, theoretical analyses, and applications. The
unsolved challenges and potential directions for their solutions
are discussed.

Index Terms—Cooperative co-evolutionary algorithm (CCEA),
evolutionary algorithm (EA), genetic algorithm (GA).

I. INTRODUCTION

COOPERATIVE co-evolution is inspired by the eco-
logical phenomenon of mutualism, wherein different

species live together in a mutually beneficial relationship [16].
Mutualistic transversals can be considered a form of “bio-
logical barter” [121]. The coexisting species benefit from
each other’s evolution through three kinds of ecological
interactions: 1) resource–resource interaction [121] (e.g., the
relationship between cows and the rumen bacteria [121]);
2) resource–service interaction [176], (e.g., pollination in
which pollen [food] are traded for dispersal [service]); and
3) service–service interaction [195] (e.g., the relationship
between anemone fish and sea anemones).

The first cooperative co-evolutionary algorithm (CCEA),
namely cooperative co-evolutionary genetic algorithm
(CCGA), was proposed by Potter and De Jong in 1994 [156],
and it evoked tremendous research interest by virtue of
its ability solving various kinds of optimization problems.
CCEAs are promising because they can decompose the
original problem into a set of lower-dimensional and tractable
subproblems, each of which can be solved in a separately
evolving subpopulation. The evaluation of each individual in a
subpopulation calls for cooperation with other subpopulations.
Complete solutions are obtained by assembling the represen-
tative members from each subpopulation. The fitness of an
individual in a subpopulation is evaluated in terms of that of
the complete solution(s) in which this individual participates.

The advantages of CCEA over the traditional evolution-
ary algorithm (EA) result mainly from its divide-and-conquer
decomposition strategy. The CCEA has mainly four advan-
tages. First, decomposition of the problem allows parallelism
to speed up the optimization process. Second, each subproblem
is solved with a separate subpopulation, which maintains good
solution diversity [27]. Third, decomposing a system into sub-
modules increases the robustness against the modules’ errors
and failures, and thus enhances the reusability in dynamic
environments [117]. Finally, the “curse of dimensionality,” i.e.,
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Fig. 1. (a) Numbers of yearly published articles with the term “cooperative
co-evolution” in the abstract, title, and/or keywords in ScienceDirect, IEEE
Xplore, Springer, and Google Scholar, from 1995 to 2017. (b) Yearly citations
of the Potter and De Jong’s paper [156] in Google Scholar.

the rapid deterioration in performance with increase in the
number of decision variables, can be alleviated to some extent,
if the problem is properly decomposed.

CCEAs have been successfully applied to a variety of
optimization problems across a broad range of real-world
application areas. The cooperative co-evolution framework has
been adopted in conjunction with many other meta-heuristic
algorithms. It thus injects vitality into the classic optimization
solutions. There has been a rapid growth in research of CCEAs
during the last two decades, as can be seen from the progres-
sive increase in the number of articles published yearly on
CCEAs and the yearly number of citations of Potter and De
Jong’s paper [156] (see Fig. 1).

This paper documents the recent advances in the studies on
CCEAs. Different from the earlier surveys [133], [151], [221],
this is a more comprehensive survey covering diverse top-
ics, such as problem decomposition, collaborator selection,
individual fitness evaluation, subproblem resource allocation,
implementations, benchmark test problems, control parame-
ters, theoretical analyses, and applications. This paper makes
broadly four contributions to the field.

1) This paper is the first attempt to modularize CCEAs into
five components, namely, problem decomposition, sub-
problem optimizer, collaboration selection, individual
fitness assignment, and computing resource allocation
of subproblem. The proposed modularization enables the
reader to better understand the algorithm.

2) The decomposition of problem and variable interaction
learning are first discussed here in six aspects, namely
static variable grouping, random variable grouping,
interaction learning-based variable grouping, domain
knowledge-based variable grouping, overlap and

hierarchy variable grouping, and hybrid variable
grouping.

3) The benchmark test problems, control parameters, patho-
logical issues, and real-world engineering applications
of CCEAs are reviewed in this survey for the first time.

4) New challenges and future directions for dealing with
them are provided.

The rest of this paper is organized as follows. Section II
introduces some basic notions and the CCGA. Section III
reviews the problem decomposition strategies and linkage
learning methods. Section IV presents the collaborator selec-
tion strategies among subproblems. Section V discusses the
approaches for individual fitness assignment and subproblem
resource allocation. Section VI reviews the implementation of
CCEAs. Section VII presents the benchmark test problems
and the theoretical analyses of CCEAs. Section VII discusses
the control parameters of CCEAs. Section VIII introduces the
pathological issues of CCEAs. Section IX highlights the appli-
cations of CCEAs. Finally, Section X sums up the conclusions
drawn from this paper and discusses possible directions for
dealing with future challenges. For the convenience of the
readers, the common notations and nomenclature, followed in
this paper, are provided below.

x = (x1, . . . , xn) n-dimensional decision vector.
� n-dimensional feasible decision space.
�xi Perturbation on xi.
�if (x) Fitness change, subject to a perturbation

on xi.
�i,jf (x) Fitness change by a perturbation on xi

and xj.
m Number of subcomponents.
N Subpopulation size.
n Number of decision variables.
Oi,j jth individual in the ith subpopulation.
s Number of variables in a subcomponent.
Context vector Complete problem solution composed of
b = (b1, . . . , bn) representative solutions from each sub-

population.
Subcomponent xi Subset of the decision variables x.
Subpopulation Population of individuals used to

optimize a subproblem.
Subproblem Problem optimizing a corresponding

subcomponent, i.e., optimizing the orig-
inal problem considering a subset of x
only.

II. BASIC NOTIONS AND CCGA

Before reviewing the CCEAs, the basic concepts of problem
separability and the first CCEA, i.e., CCGA, are introduced to
facilitate the understanding of CCEAs.

A. Fully Separable, Additively Separable, and
k-Nonseparable

In applying CCEAs, the solvability of an optimization
problem relates to the separability of this problem. Here the
definition of separability is differentiated in fully separable,
fully nonseparable, k-nonseparable, and additively separable.
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Fig. 2. (a) Fully nonseparable problem and (b) k-nonseparable (k = 2)
problem. A node is a decision variable and an edge indicates a variable
interaction.

Definition 1: An optimization problem f (x) : � → R is
fully separable [123], [230] if and only if

arg min
x1,...,xn

f (x) =
(

arg min
x1

f (x1, . . .), . . . , arg min
xn

f (. . . , xn)

)

where � is an n-dimensional decision space. Otherwise, f (x)

is called a nonseparable optimization problem.
According to Definition 1, a separable optimization problem

can be solved by optimizing each decision variable indepen-
dently [230]. Therefore, fully separable problems are easy to
be solved by CCEAs equipped with the divide-and-conquer
strategy.

Nonseparable optimization problems are more challenging
to CCEAs. A nonseparable function is called fully nonsep-
arable, if every two decision variables interact with each
other, as shown in Fig. 2(a). From fully separable to fully
nonseparable problems, there exist various partially separa-
ble problems, also called as k-nonseparable problems [33].
An optimization problem f (x) is called k-nonseparable, if at
the most k decision variables are interdependent [218]. For
example, a 2-nonseparable problem, with three independent
subcomponents, is shown in Fig. 2(b). Fewer k values indicate
that the problems are easier to solve.

Additively separable problems are a type of k-nonseparable
problems widely used in the literature to test CCEAs.

Definition 2: A problem f (x) is additively separable if it
can be formulated in the following form [32], [35], [68], [123],
[181], [206]:

f (x) =
m∑

i=1

fi(xi) (1)

where x1,. . . ,xm are disjoint subcomponents of x, and m is the
number of subcomponents. Each component problem fi(·) is
an optimization problem, depending on the part of the decision
variables. An additively separable problem is fully separable if
each of x1,. . . ,xm contains only one decision variable. An addi-
tively separable problem is relatively easy to solve for CCEAs,
because its variable interactions are easily identifiable [123].

B. CCGA

CCGA is the first CCEA proposed by Potter
and De Jong [156]. In CCGA, an optimization problem
of n variables is first decomposed into n 1-D subproblems.
Each subproblem is then optimized by a separate population-
based genetic algorithm (GA). A complete solution of the
original problem is obtained by combining the representative
solutions from each subproblem. The fitness of an individual
in a particular subpopulation is estimated by the quality of
the complete solution(s) in which the individual participates.

Fig. 3. Collaborator selection and individual fitness assignment in CCGA-1.

CCGA solves the subproblems in a round-Robin fashion, i.e.,
they are assigned the same computing resources.

Algorithm 1 outlines the procedure of CCGA. In step 1,
1-D decomposition is used to divide the original problem.
The subpopulations and the context vector, i.e., a complete
problem solution composed of the best individuals from each
subpopulation, are randomly initialized in step 2. In step 3,
each subcomponent is optimized in a round-Robin fashion,
with a standard GA. Particularly, an offspring subpopulation
is generated in step 3.1, with evolutionary operators for each
subproblem. In step 3.2, the fitness of the jth offspring in
the ith subpopulation, denoted as Oi,j, is estimated, using two
schemes that result in two versions, namely CCGA-1 and
CCGA-2, respectively. CCGA-1 evaluates the fitness of Oi,j

by calculating the fitness of the context vector with the corre-
sponding part replaced by Oi,j in Fig. 3. CCGA-2 evaluates the
fitness of Oi,j twice by combining it with the context vector
and a solution vector that randomly selects individuals from
the subpopulations. The better of the two resultant vectors is
adopted as the final fitness of Oi,j. Step 3.3 updates the context
vector. Finally, step 3.4 constructs new subpopulations based
on both parent and offspring subpopulations using survival-of-
the-fittest selection. For the sake of simplicity, the sizes of all
subpopulations are kept the same.

To illustrate the problem decomposition and individual fit-
ness evaluation in CCGA-1, a clearly toy example is provided
in Fig. 3. Given an optimization problem f (x1, x2, x3) =
x1+ x2+ x3, the decision vector is decomposed into three 1-D
subcomponents {x1}, {x2}, and {x3}, each of which is evolved
in a subpopulation. In each generation, the context vector b
is formed by selecting the best individuals from each subpop-
ulation. Given b = (0.1, 0.2, 0.3) in this example, the fitness
of a new individual in the first subpopulation, e.g., x1 = 0.0,
is evaluated by calculating f (x1 = 0.0, b2 = 0.2, b3 = 0.3).

CCGA statically decomposes the n-dimensional
optimization problem into n 1-dimensional subproblems
and the problem decomposition is fixed during the pro-
cess of evolution. In the case of fully separable problems,
this decomposition scheme offers significant advantages
over classic GA [156], because CCGA reduces the search
space from n-dimension to n 1-dimension. However, it
fails to solve the nonseparable problems in which tight
interactions exist among decision variables [156]. It is to
be noted that real-world optimization problems are often
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Algorithm 1 Procedure of CCGA

Require: n: the number of variables; N: the subpopulation size.
Ensure: b = (b1, ..., bn) and fb: current optimal solution and its fitness found by the algorithm.

Step 1 Problem decomposition: n-dimensional decision vector is divided into n 1-dimensional subcomponents {x1}, {x2}, ..., {xn}.
Step 2 Randomly initialize and evaluate subpopulations and the context vector b

Randomly initialize b and set fb = f (b).
For i = 1 to n do % initialize the i-th subpopulation

2.1 Randomly initialize the i-th subpopulation Pi. % Pi = {Pi,1, ..., Pi,N}
2.2 Individual fitness assignment: Evaluate the fitness of each individual in the i-th subpopulation Pi

fPi,j ← f (b1, ..., bi−1, Pi,j, bi+1, ..., bn), j = 1, ..., N.
End of For

Step 3 Evolution
While stopping criterion is not met do

For i = 1 to n do % optimize the i-th subpopulation/subcomponent
3.1 Generate an offspring subpopulation: Oi ← GeneticOperators(Pi).
3.2 Individual fitness assignment: Evaluate the fitness of each individual in offspring subpopulation Oi:

fOi,j ← f (b1, ..., bi−1, Oi,j, bi+1, ..., bn), j = 1, ..., N.
If CCGA-2 is used

froi,j = f (r1, ..., ri−1, Oi,j, ri+1, ..., rn), j = 1, ..., N. % rk is a randomly selected individual from the k-th subpopulation
If froi,j < fOi,j , then fOi,j = froi,j .

End of If
3.3 Update the context vector: b

For j = 1 to N do
If fOi,j < fb, then bi = Oi,j, fb = fOi,j .

End of for
3.4 Select the next parent subpopulation: Pi ← Select(Pi, Oi)

End For
End of While

nonseparable [74], [107], [219], and they needs more research
efforts to improve CCGA.

III. PROBLEM DECOMPOSITION AND VARIABLE

INTERACTION LEARNING

One important issue in CCEAs is the decomposition of
decision vector regarding variable interactions. Ideally, the
decomposition should be performed based on the variable
interactions, so as to minimize the interactions between the
subcomponents [123]. If the interacting variables are not
grouped into the same subcomponent, CCEAs tend to be
trapped in a pseudo-minimum [11], which is not the local
minimum of the original problem but a local minimum intro-
duced by incorrect problem decomposition (see Appendix B
of the supplementary material for more details).

To deal with this issue, many variable grouping strate-
gies have been proposed, including static variable grouping,
random variable grouping, linkage learning-based variable
grouping, overlap and hierarchical variable grouping, domain
knowledge-based variable grouping, and their hybrids.

A. Static Variable Grouping

Static variable grouping methods do not rely on any system-
atic or intelligent procedure to discover the interdependence
of the variables. Instead, it preliminarily decomposes a high-
dimensional decision vector into a set of low-dimensional
subcomponents, and fixes the variable grouping during the
process of optimization.

Potter and De Jong [156] first suggested decomposing an
n-dimensional problem into n 1-dimensional subproblems,
each of which is optimized by a separated GA. This strategy

(a) (b)

Fig. 4. (a) Sequential decomposition and (b) random decomposition of
n-dimensional problem into m s-dimensional subproblems, where i1, . . . , in
is a permutation of the arrangement 1, . . . , n.

TABLE I
SUMMARY OF STUDIES ON STATIC GROUPING IN CCEAS

6

3

has proved successful on fully separable optimization prob-
lems [92], [156], but not on nonseparable optimization prob-
lems. To solve this issue, Bergh and Engelbrecht [11] decom-
posed an n-dimensional decision vector into m s-dimensional
subcomponents, as shown in Fig. 4(a), where n = m ∗ s. They
showed that the decomposition method performs better than
1-D decomposition on many benchmark problems. In [173],
a group of static decompositions were designed to create new
individuals by a random eligible combination of gene blocks.
Cao et al. [24] introduced a static decomposition based on a
sequential sliding window for large-scale optimization prob-
lems, in which the number of variables n is great than or equal
to 1000. The static decomposition methods introduced in this
section are summarized in Table I.
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B. Random Variable Grouping

The main problem of static variable grouping is that if two
interacting variables are placed in different groups, then there
is no chance for them to be in the same group anymore.
Random variable grouping or random grouping (RG) relieves
the drawback of static grouping by randomly selecting deci-
sion variables for each subcomponent. The subcomponent size
in RG strategy can be fixed or dynamically altered.

1) RG With Fixed Subcomponent Size: This strategy fixes
the number of subcomponents m and randomly selects s exclu-
sive variables for each subcomponent in every co-evolution
cycle1 [230] as shown in Fig. 4(b), where n = m∗ s. The pur-
pose of RG is to increase the probability of putting interacting
variables in the same subcomponent.

Yang et al. [229] proposed the first RG strategy in coopera-
tive co-evolution with differential evolution (DECC-I), where
RG was shown to outperform static variable grouping, espe-
cially on nonseparable problems. Later, they improved the
algorithm by introducing adaptive weighting strategy [230]
and proposed DECC-G, which outperforms the standard dif-
ferential evolution (DE) and DE with static variable grouping.
Li and Yao [82] applied RG with fixed subcomponent size
in particle swarm optimization (PSO)-based cooperative co-
evolution [125].

The advantage of RG strategy over static grouping strategy
lies in the fact that the probability of assigning two interacting
variables to the same subcomponent is relatively high, for at
least two cycles [230]. Whereas, if the number of interacting
variables is large, the probability of putting them together in
the same subcomponent, for at least one cycle, is still very
low [125].

2) RG With Dynamic Subcomponent Size: A common
drawback of static variable grouping and RG with a fixed
subcomponent size and static variable grouping is that prior
knowledge of problem structure is required for the correct
setting of subcomponent size s. A small s suits separable prob-
lems, whereas a large s increases the probability of retaining
interacting variables in a group if the problems are nonsep-
arable [197]. A dynamic strategy is therefore desirable for
tuning s [83].

Yang et al. [229] proposed a dynamic RG strategy in
DECC-II, by randomly tuning s in a predefined range, in
each co-evolution cycle. A self-adaptive strategy was also
introduced to set s in a multilevel cooperative co-evolution
algorithm (MLCC) [231]. The probability of selecting s, from
a set S = {s1, s2, . . . , st}, is calculated based on its recent
performance in improving the context vector b. Multiple tra-
jectory search (MTS) [200] uses a strategy with a set of
predefined group sizes S = {1, n/4}. A value function method
and a softmax selection rule in [128] were adopted to choose
the subcomponent size. A few studies [83], [125], [126] first
used a fixed s to optimize the problem until no fitness improve-
ment can be achieved and then chose a new group size from
S = {s1, . . . , st} uniformly. The number of variables in each
subcomponent s is gradually reduced during the optimization

1A co-evolution cycle refers to one iteration of the While loop in step 3 of
Algorithm 1.

TABLE II
SUMMARY OF STUDIES ON RG IN CCEAS

49

process [149]. CCFA [196] and CCAS [198], [199] simulta-
neously adapt the subcomponent size and the corresponding
subpopulation size based on their recent performance in
improving the context vector b. Heuristic adjustment based
on domain knowledge is also applicable to adjustment of the
subcomponent size [63]. The summary of the studies on RG
is presented in Table II.

C. Variable Grouping Based on Interaction Learning

Static variable grouping and random variable grouping
have two defects: 1) the user must predefine the size(s) of
the subcomponents {s1, . . . , st} (t = 1 for static grouping)
and 2) once the group size is chosen, the decision vari-
ables get equally divided into a set of subcomponents, which
is usually an unreasonable assumption. It is favorable that
the variable grouping strategy can automatically determine
the number of subcomponents and their corresponding sizes.
Ideally, the subcomponents should be formed, based on vari-
able interaction, so that no interactions take place between
subcomponents [104], [123].

Variable interactions describe the structure of a problem.
If the algorithm can learn the problem structure and decom-
pose the problem accordingly, the difficulty in solving the
problem can be reduced significantly [232]. Many approaches
have been proposed to detect variable interactions, which
are mainly based on perturbation, statistical model, dis-
tribution model, approximate model, and linkage adapta-
tion [31], [123], [203], [232].

1) Perturbation: In this approach, the interaction is cap-
tured by perturbing decision variables and measuring the
change in the fitness caused by the perturbations. The straight-
forward measurements of the fitness changes are defined as
follows:

�if (x) = f
(
. . . , xi +�xi, . . . , xj, . . .

)− f (. . . , xi, . . . , xj, . . .)

�jf (x) = f
(
. . . , xi, . . . , xj +�xj, . . .

)− f
(
. . . , xi, . . . , xj, . . .

)
�i,jf (x) = f

(
. . . , xi +�xi, . . . , xj +�xj, . . .

)
− f

(
. . . , xi, . . . , xj, . . .

)
where �if (x), �jf (x), and �i,jf (x) are the changes in fitness,
caused by a perturbation on the ith variable, the jth variable,
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(a) (b)

Fig. 5. (a) Example of interaction degree of variables. (b) Variable group-
ing where each variable is assigned two variable interactions, with maximal
degrees.

and both variables, respectively. Whether or not the two vari-
ables interact with each other can be detected based on �if (x),
�jf (x), and �i,jf (x).

Linkage identification by nonlinearity check (LINC) [113]
uses bitwise perturbations to capture nonlinear linkages
between xi and xj, if there exists a solution x in the current
population, such that

�if (x)+�jf (x) �= �i,jf (x). (2)

Equation (2) implies that �if (x) is dependent on the value
of xj. Linkage identification with nonmonotonicity detec-
tion (LIMD) [112] checks the violation of monotonic-
ity conditions, i.e., 0 < �if (x),�jf (x) < �i,jf (x), to
detect variable interaction. The works [110], [111] gen-
eralized the variable interaction conditions in LINC and
LIMD to measure the degree of interaction. Each vari-
able xi interacts with other k variables having maximal
interaction degrees, and the variables with dense interac-
tions are grouped together [110], [111]. Interaction degree
between every two decision variables can be estimated as
follows:

�i,j =
∣∣�if (x)+�jf (x)−�i,jf (x)

∣∣. (3)

An example of interaction degree of variables based on (3)
is shown in Fig. 5, where each variable is assigned two inter-
actions with maximal degrees. The interacting variables are
then grouped into {x1, x2, x3} and {x4, x5, x6}.

The aforementioned methods were proposed for binary
optimization problem. For continuous optimization, only a
limited number of techniques are available. Two continuous
variables are considered interdependent, if a new candidate
solution achieves better fitness by changing both variables
simultaneously than by changing one individually [217], i.e.,

∃�xi,�xj, s.t. �i,jf (x) < �if (x)|x=b

and �i,jf (x) < �jf (x)|x=b (4)

where b is the context vector.
Cooperative co-evolution with variable interaction learn-

ing (CCVIL) [30] considers two variables xi and xj

interdependent if

∃x = (x1, . . . , xn) ∈ �,�xi,�xj

s.t. �if (x) > 0 and �i,jf (x)−�jf (x) < 0. (5)

Equation (5) is equivalent to the original definition in [30]
by subtracting f (· · · , xi, . . . , xj, . . .) on both sides. It is trivial

to prove the following equivalent form:

∃x = (x1, . . . , xn) ∈ �,�xi,�xj

s.t. �if (x) · (�i,jf (x)−�jf (x)
)

< 0. (6)

Equation (5) is widely used for both single-objective
and multiobjective optimization [98], [209]. Based on (5),
Sun et al. [183] introduced a statistical method to calculate the
interaction probability as P{�if (x) · (�i,jf (x)−�jf (x)) < 0}.

LINC for real-coded GA (LINC-R) [193] advances two con-
tinuous variables interacting with each other, if the change
in fitness, caused by a perturbation on one variable, is
independent of the value of the other variable, i.e.,

∀x = (x1, . . . , xn) ∈ �,�xi �= 0,�xj �= 0

s.t. �if (x)+�jf (x) �= �i,jf (x). (7)

Unlike (2) developed for binary-coded EA, (7) is designed for
real-coded EA and x ∈ �. Xu et al. [227] used (7) to uncover
the interaction relationship between a decision variable and
the environment variable for dynamic optimization.

Differential grouping (DG) method [123] provides a the-
oretical derivation of using (7) to recognize the interacting
variables of additively separable problems. To reduce the
number of function evaluations, DG does not check indirect
variable interactions. Both direct and indirect variable inter-
actions are considered simultaneously in the extended DG
(XDG) [184]. An example of direct and indirect interactions is
shown in Fig. 6(a), where x1 has a direct variable interaction
with x2, and x1 indirectly interacts with x5 via x2, x3, x4.
To detect all variable interactions, the global DG [104] and
DG2 [129] improve DG by considering all pair-wise interac-
tions at the cost of O(n2) function evaluations on separable
optimization problems [61]. Hu et al. [61] used a fixed num-
ber of function evaluations to recognize whether one variable
is separable from others. Particularly, a modified version of
(7) was used to capture the nonseparable relationship between
one variable and a group of variables.

The two quantitative measures defined in (5) and (7), suffer
from inaccurate prediction when the number of samples or the
number of function evaluations is limited [123]. Combining
these two measures could be a better option. Interaction
learning method based on perturbation is a recent and open
direction.

Most of the variable grouping strategies need no extra
function evaluations, excepting the perturbation-based variable
grouping strategy. The worst case requires O(n2) more func-
tion evaluations for most perturbation-based variable grouping
strategies [61], [104], [123], [129], [183], [184], [193], [227],
and O(n) for CCVIL [30] (see Appendix C of the supplemen-
tary material for more details).

The experimental studies in [30], [123], and [217] showed
that perturbation-based variable grouping could perform better
than static grouping and random variable grouping on large-
scale optimization problems.

2) Statistical Model: In the interaction learning based on
statistic model, all variables and the objective function(s) are



MA et al.: SURVEY ON CCEAs 427

considered as random variables. Statistical analysis on vari-
ables and/or objective function(s) are performed first and then
the variables are grouped, based on the following metrics.

1) Variables dependency measure based on Pearson cor-
relation coefficient (PCC) [159], [172], [205], [209],
entropic epistasis [164], mutual information [182], etc.

2) Correction between variable and objective functions,
including the cumulative PCC between them [161] and
the maximal information coefficient between xj and
∂f (x)/∂xi [185].

3) The distribution of variable values, including the mean
of variable values [126], the variance of variable val-
ues [90], [213], and the Kullback–Leibler distance
between the bivariate joint distribution and the univariate
distribution [232].

The superiorities of statistic model-based strategies over
static grouping and random variable grouping on some specific
problems have been shown in [90], [126], and [185].

3) Distribution Model: In distribution model, the set of
promising solutions is first used to estimate the variable dis-
tributions and variable interactions, and then to generate new
candidate solutions, based on the learned variable distributions
and variable interactions [143]. Estimation of distribution algo-
rithm (EDA) [109] is one most widely used representative
of such methods. The simplest way in EDA is to consider
each variable independently. This is the basic principle of
univariate marginal distribution algorithm [109], the compact
GA [57], and the population-based incremental learning algo-
rithm (PBIL) [9]. However, these algorithms might not suit
well to nonseparable problems.

Earlier attempts to solve nonseparable problems were based
on pairwise interactions, e.g., the bivariate marginal dis-
tribution algorithm [144], the incremental algorithm using
dependency trees to estimate the distribution [10], and the
population-based MIMIC algorithm based on simple chain dis-
tributions [14]. Such methods are used to detect important
building blocks of two variables and to prevent disruption in
reproduction. Yet, they cannot handle complex nonseparable
problems with high order interactions in which most decision
variables interact with each other [145].

Factorized distribution algorithm (FDA) [108], [235] was
proposed to deal with higher order interactions using a con-
ditional distribution based on problem decomposition. FDA
performs well on additively decomposable problems, but it
relies on prior knowledge of problem structure and factoriza-
tion with expensive computational cost. Bayesian optimization
algorithm (BOA) is another solution introduced in [143] to dis-
cover higher order interactions using Bayesian networks with
relatively expensive computational cost.

Considering linkage in a probability distribution manner,
EDAs tend to ignore building blocks having a relatively low
fitness contribution [203]. They might perform poorly on
complex optimization problems [143].

4) Approximate Model: Many real-world optimization
problems demand expensive physical simulation or compu-
tational cost to evaluate the candidate solutions. Efficient
surrogate model is necessary to approximate the evaluation
of the original objective function. For example, the fitness

evaluation of a large-scale continuous optimization problem
is converted to the evaluation of a simpler partially separable
problem in [162]. The high dimensional model representa-
tion (HDMR) [79] uses an approximately quantitative model
to capture the input–output system behavior of the objective
function. As multiple input variables can affect the output
independently and collectively, the model output f (x) can be
denoted as a sum of hierarchically correlated functions on the
input variables

f (x) = f0 +
∑

i

fi(xi)+
∑

1≤i<j≤n

fij
(
xi, xj

)

+
∑

1≤i<j<k≤n

fijk
(
xi, xj, xk

)+ · · · + f12...n(x1, x2, . . . , xn)

where the 0-order component problem f0 is a constant reflect-
ing the average response to f (x), the 1-order component
problem fi(xi) represents the independent contribution of each
single variable xi to f (x), the 2-order component problem
fij(xi, xj) indicates the cooperative contribution of two vari-
ables xi and xj to f (x), and the rest may be deduced by analogy.
The item f12...n(x1, . . . , xn) represents the residual n-order cor-
related contribution of n input variables to f (x). Two variables
are considered nonseparable if they have a cooperative effect
on the approximated second-order HDMR model [100].

5) Linkage Adaption: Linkage adaption methods
use specially designed evolution operators, representa-
tions, and mechanisms, to divide variables into groups.
Schaffer and Morishima [163] attached a punctuation flag
to each gene in the individual chromosome to indicate the
crossover point. The genes between two adjacent crossover
points are combined into the same group. Levenick [78]
extended [163] by introducing additional bits to indicate
the probability of choosing a position as a crossover point.
Smith and Fogarty [174] presented the linkage evolving
genetic operator (LEGO) to adjust the variable grouping in
an adaptive way. They imposed two Boolean flags to each
gene to indicate which of the neighbors, left neighbor or
right neighbor, it interacts with on the chromosome. The
interacting neighboring genes are then considered as part of
the same group.

The CCEAs using variable grouping, based on interaction
learning, are summarized in Table III.

D. Variable Grouping Based on Domain Knowledge

If prior domain knowledge is available, it is natural to exert
it to learn the variable interactions. Before CCEAs kick in to
solve specific real-world problems, domain knowledge can be
harnessed to reduce the complexity of the problems. For exam-
ple, the local property of reactive power and voltage relation
were applied to divide a power system into several relatively
interindependent subsystems in [85]. The conflicting proba-
bility of two flights was used in [53] to learn the variable
interaction in solving flight conflicting avoidance problem.
The proposed grouping strategy was shown to perform bet-
ter than delta values-based, splitting-in-half, and dependency
identification grouping strategies on flight conflicting avoid-
ance problem. Multidepot vehicle routing problem can be
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TABLE III
SUMMARY OF VARIABLE GROUPING BASED ON INTERACTION

LEARNING IN CCEAS

[114]
[113]
[110, 100]

[217]

[183]

[209]
[98]

[193]

[227]
[123]
[184]

[104]
[129]

[205]

[159, 172, 209]
[232]

[182]
[161]

[185]
[117]

[213]

[126]

[109]
[207]

[144]

[108, 235]
[143]

[117]

[162]
[100]

[163]

[174]

decomposed into multiple subproblems, based on the near-
est neighbor relationship between the depot and the customer
node [120]. In [89], [215], and [216], variable interactions
were detected based on arithmetic operations (+, −, ∗,
and /) and the composite operations of six basic elementary
functions.

E. Overlap and Hierarchy Variable Grouping

Fully nonseparable problems, in which every two variables
interact with each other, pose big challenges to the classical
CCEAs [24]. Overlap variable grouping, as shown in Fig. 6(a),
can be a potential solution to these problems, if the following
three issues are properly addressed.

1) How to design an efficient variable grouping to minimize
the interactions among subcomponents [180]?

2) How to construct the composite n-dimensional solution
for individual evaluation [49], [50]?

(a) (b)

Fig. 6. (a) Example of overlap variable grouping. (b) Example of hierarchy
variable interactions.

3) What kind of information can be exchanged among sub-
components, in the case two subcomponents share the
same variable(s) [183], as shown in Fig. 6?

Goh et al. [49], [50] suggested assigning each variable to
multiple subcomponents, each of which contains more than
one variable. The subcomponent competes with each other in
representing the shared variables. A subcomponent is designed
to contain variable xi and other variables that interact with xi to
a degree no less than a given threshold [183]. The composite
solution, composed of the best solution of the ith subpopula-
tion on xi, competes with the current global best solution for
information exchange. Factored EA [180] introduces a num-
ber of overlap grouping strategies, including random overlap
grouping, neighbor overlap grouping, centered overlap group-
ing, parents overlap grouping, loci overlap grouping, Markov
grouping, and Clique grouping.

The interactions of the variables could be more complex in
a hierarchical structure [101], [232], as shown in Fig. 6(b). To
deal with such problems, Yu et al. [232] proposed to decom-
pose the problems properly at each level, such that the EA
can effectively represent variable grouping in a lower level as
an input variable of an upper-level and mix subsolutions. The
upper level subproblems partly adjust the evolution process of
its lower level subproblems [101], [102]. Bonson et al. [15]
and Lichodzijewski and Heywood [87] presented reviews of
task decomposition and diversity maintenance for the evo-
lution of complex systems in genetic programming (GP).
Zheng and Chen [241] adopted a hierarchical cooperative
approach to decompose the original target problem into sev-
eral low-dimensional subcomponents and then used PSO to
solve the main problem and the subproblems.

F. Hybrid Variable Grouping

The combination of the above-mentioned variable grouping
strategies could be an more effective way to solve vari-
able decomposition problems. For example, MTS [200], [201]
combines 1-D static decomposition with a random variable
grouping. The dependency detection for distribution, derived
from fitness differences (D5) [194], [204], integrates a bit-
wise perturbation method with a probabilistic distribution
model. A combination of RG, min-variance grouping, and
max-variance grouping was proposed in [90]. Using hybrid
grouping methods has been shown to perform better than
using the counterpart member grouping strategies individually
in some specific problems.

CCEAs based on the last three decomposition strategies,
i.e., variable grouping based on domain knowledge, overlap
and hierarchy variable grouping, and hybrid variable grouping,
are summarized in Table IV.
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TABLE IV
SUMMARY OF VARIABLE GROUPING BASED ON DOMAIN KNOWLEDGE,

OVERLAP AND HIERARCHY VARIABLE GROUPING, AND HYBRID

VARIABLE GROUPING IN CCEAS

[215],
[216]

[120]

[183]

[180]

[232]
[110, 102]

[200, 201]
[194, 204]

IV. COLLABORATOR SELECTION STRATEGIES OF CCEA

In addition to the problem decomposition, the collabo-
ration method among subproblems is also a key issue of
CCEAs [169]. The fitness evaluation of each subpopulation
individual requires the collaboration of other subpopulations
as shown in Algorithm 1. The way the representative members
are selected from other subpopulations to form the com-
plete solution(s) plays an important role in the performance
of CCEAs. The existing collaborator selection strategies in
CCEAs mainly consider two factors.

1) Collaborator selection pressure, i.e., the greedy degree
in choosing a representative member from a subpopu-
lation to form the complete solution(s) of the original
problem [223].

2) Collaborator pool size, i.e., the number of the com-
plete problem solutions used to evaluate the fitness of
an individual in a particular subpopulation [223].

The collaborator selection strategies, either individual-
centric or population-centric [150], [151], are widely used to
solve single objective optimization problems (SOPs) and/or
multiobjective optimization problems (MOPs).

A. Collaborator Selection Strategies for SOPs

The existing collaborator selection strategies for SOPs
construct single or multiple complete problem solutions to
estimate the fitness of a subpopulation individual.

1) Collaborator Selection for Single Complete Solution:
Many collaborator selection strategies were proposed in the lit-
erature to construct a single complete solution, including single
best collaborator selection, single worst collaborator selec-
tion, random collaborator selection, elite collaborator selec-
tion, roulette/tournament-based collaborator selection, linked
collaborator selection, and neighborhood-based collaborator
selection.

Single best collaborator selection strategy [83], [123], [156],
[230] is one of the most widely used strategies in CCEAs. In

this strategy, the fitness of the jth individual Oi,j in the ith sub-
population is evaluated by f (b1, . . . , bi−1, Oi,j, bi+1, . . . , bn)

where bi is the best individual from the ith subpopulation, i.e.,
the complete solution is the context vector with the ith compo-
nent replaced by Oi,j [see Fig. 7(a)]. During the evolution of
CCEAs, the context vector b = (b1, . . . , bn) is iteratively opti-
mized, as in the block coordinate descent (BCD) methods [12],
[13], [160], [202] used in mathematical programming. This
strategy is particularly suitable for optimizing fully separable
problems, but not for nonseparable problems [156]. It may
also result in Nash equilibria and local optima within large
basins of attraction [86], [137].

Single worst collaborator selection, the opposite of single
best collaborator selection, combines the worst individuals
of the subpopulations in the estimation of the individual fit-
ness [223] as shown in Fig. 7(b). This strategy offers an
alternative solution, but it usually is not the optimal one.

Random collaborator selection randomly selects individu-
als from the subpopulations to form the complete problem
solution [223] as shown in Fig. 7(d). For example, the
works [96], [138] randomly shuffle the individuals of each
subpopulation and then select the ith individual to form
the complete solution for fitness evaluation. Random col-
laborator selection does well in maintaining the diver-
sity of a subpopulation and preventing premature con-
vergence [96], [120], [156], [188]. It outperforms the sin-
gle best collaborator selection in dynamic optimization
with a fast-changing environment, but its randomness can
also slow down the local convergence of CCEAs [8].
Comparison studies of the first three strategies were conducted
in [96], [152], and [223].

Elite collaborator selection strategy chooses the K best indi-
viduals from each subpopulation to form the collaborator pool
and then randomly selects individuals from the pool to con-
struct a complete solution [47], as shown in Fig. 7(c). It is
equivalent to the single best collaborator selection strategy if K
is set to one, and to random collaborator selection if K equals
to the subpopulation size. CCEAs can start with a large K to
enable a more diverse search and then gradually reduce K to
perform a greedier search in the later phase. A comparison of
single best, elite, best+random, and best+elite collaboration
selection strategies is available in [188].

Roulette/tournament-based collaborator selection chooses
representative cooperators from each subpopulation based on
roulette or tournament mechanism to form the complete solu-
tion [120], [177]. Experimental studies in [1] and [179]
showed that roulette-based collaborator selection performs
better than single best and random collaborator selection
strategies on low-epistasis optimization problems.

Linked collaborator selection [98], [165] combines the
linked individuals in all subpopulations as shown in Fig. 7(e).
This can relieve the suffering of co-evolution systems from
oscillatory phenomenon, caused by the variance of collabo-
rator in the evaluation environment [1]. Linked collaborator
selection performs superiorly in optimization problems with
high epistasis [1].

Neighborhood-based collaborator selection composes the
complete solution of a subpopulation individual with its
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Fig. 7. Collaborator selection strategy for SOPs. (a) Single best collaborator selection. (b) Worst collaborator selection. (c) Elite collaborator selection.
(d) Random collaborator selection. (e) Linked collaborator selection. (f) Neighborhood-based collaborator selection. Solid squares are individuals of the first
subpopulation undergoing evaluation. White squares are collaborators selected from other subpopulations.

corresponding neighbors from other subpopulations [98]. For
example, in Fig. 7(f), considering three neighbors for the
evaluation of the fitness of Oi,j, the collaborator in the kth
subpopulation can be Ok,j−1, Ok,j, or Ok,j+1, where k �= i.

2) Collaborator Selection of Multiple Complete Solutions:
The collaborator selection strategies can also construct
multiple complete solutions to evaluate the fitness of a sub-
population individual. The representative strategies include
complete collaborator selection, archive-based collaborator
selection, and hybrid collaborator selection.

In complete collaborator selection strategy, each indi-
vidual in a subpopulation is evaluated by combining it
with all candidate combinations from other subpopula-
tions [135], [137], [141]. If there are m subpopulations, and
each subpopulation contains N individuals, then Nm−1 fitness
evaluations are required to evaluate the fitness of an individ-
ual in a subpopulation. The best fitness value of the Nm−1

complete solutions is assigned to the individual. Complete col-
laborator selection can guarantee the convergence to the global
optima, if the subpopulation size is large enough [141].

Archive-based collaborator selection was proposed in the
Pareto dominance2 based CCEA (pCCEA) [19]. In each gen-
eration, pCCEA evaluates each individual in a subpopulation
with all individuals in the nondominated archive, i.e., Na com-
plete solutions are generated where Na is the size of the
nondominated archive in the subpopulation. The problem of
pCCEA is that Na tends to increase infinitely as the algorithm
evolves. This issue is solved in iCCEA [138] by record-
ing the “informative” collaborators, i.e., the individuals that
can change the relative ranks of two individuals in the other
subpopulation. The studies [168]–[170] put forward a shar-
ing reference archive with a fixed size for all cooperating
subpopulations.

Hybrid collaborator selection combines multiple collabora-
tor selection strategies to form complete problem solutions.
For example, the best+random collaborator selection is a

2Each subpopulation individual is evaluated with different context vectors
in a single-objective optimization. An individual Oi,j dominates another one
Oi,k if and only if each fitness of Oi,j using a unique context vector is better
than the corresponding fitness of Oi,k .

hybrid of single best collaborator selection and random collab-
orator selection proposed in [147], [156], and [238]. The first
complete solution in best+random collaborator selection com-
bines an individual in a subpopulation with the best individuals
of other subpopulations, and the remaining complete solu-
tions successively combine the individual in a subpopulation
with randomly selected individuals from other subpopula-
tions [51], [62], [138], [147], [238]. Best+elite collaborator
selection hybridizes the single best collaborator selection and
the elite collaborator selection [188]. Two complete solutions
are generated, i.e., the first one combines the individual in a
subpopulation with the best individuals from other subpop-
ulations, and the second one combines the individual with
randomly selected elite individuals from other subpopulations.
The better of the two completed solutions is reserved.

CCEAs can also benefit from a time-dependent/adaptive
collaborator selection strategy by decreasing the number of
collaborators over time. For example, in [136], ten complete
solutions are used for the first five evolution generations to bet-
ter explore the joint search space, and two complete solutions
for the rest of the generations to speed up the convergence.
Further to this, adaptive number of collaborators was intro-
duced in [140] considering population diversity and operator
success rate. Reviews and comparison studies of collaborator
selection strategies are provided in [135] and [223].

B. Collaborator Selection Strategies for MOPs

Some of the previously described strategies for SOPs, like
single best collaboration selection [186]–[188], best+random
collaborator selection [73], [238], elite collaborator selec-
tion [188], roulette/tournament-based collaborator selec-
tion [44], [118], and linked collaborator selection [98] are
applicable to MOPs too. Apart from these strategies, this
section introduces three specialized strategies for MOPs.

The first strategy is a stochastic approach in which multiple
nondominated solutions are randomly selected as the rep-
resentative collaborators of subpopulations [3], [64], [239].
If multiple complete solutions are generated, the nondom-
inated one among these is used to estimate the fitness
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TABLE V
SUMMARY OF STUDIES ON COLLABORATOR SELECTION

STRATEGIES IN CCEAS

[188],
[156], [123]

[223]
[138],

[96, 152, 223]
[188],
[1, 177],

[120, 179]

[47]

[98]

[137]
[138]

[138][156],

[136, 140]

[238]

[227]

[239],
[240]

[168]
[188], [147]

[170]

[165]
[141],

of subpopulation individuals [227]. The second method is
a preference-based approach. The nondominated individual,
which can be the knee point [52], the solution of best hyper-
volume value [5], the Nash equilibrium individual [4], or
the solution of the better crowding distance [239], [240],
is chosen from each subpopulation as the representative to
form a complete solution. The selected nondominated indi-
vidual (the representative member of subpopulation) usually
has the best diversity and convergence (more details are pro-
vided in Appendix D of the supplementary material). The
third method, a competition-based approach, was proposed
in [49] and [50] to select the representative subpopulation
individual for cooperation. Each subpopulation competes with
other subpopulations to represent the shared variables and the
better subpopulation is given a higher probability.

A summary of the collaborator selection strategies is
presented in Table V.

V. INDIVIDUAL FITNESS ASSIGNMENT AND

SUBPROBLEM RESOURCE ALLOCATION

Individual fitness assignment and subproblem resource allo-
cation are closely related to the collaborator selection strate-
gies. The individual in a subpopulation serves as an essential
component of the complete solution of the original problem.
How to evaluate the fitness of an individual and how to rea-
sonably allocate the computational resource for subproblems
are two key issues to be solved in the design of efficient
CCEAs [124], [127], [222]. This section reviews the exist-
ing methods of individual fitness assignment and subproblem
resource allocation in CCEAs.

A. Individual Fitness Assignment

The fitness of a subpopulation individual can be estimated
based on how well the individual cooperates with other sub-
populations to form the complete solutions [156]. The common
strategies of individual fitness assignment are based on one
or multiple complete problem solutions. Constructing a com-
plete problem solution to estimate the fitness of an individual
in a subpopulation has a strong bias in the evolutionary pro-
cess [17], [139], [140], [221]. An alternative is to enroll the
individual in multiple complete solutions. The fitness values
of these complete solutions can be aggregated into a sin-
gle value to evaluate the fitness of the individual [150]. The
aggregation can take the best [102], [156], [168], the aver-
age [107], the worse [223], the biasing technique introduced
by Panait et al. [141], [142], or the tournament selection of
the winner [223]. Wiegand et al. [223] provided a comparative
study of these methods.

Other measures are also available for individual fit-
ness assignment in CCEAs. For example, Pareto dominance
techniques were used to assign a fitness to an individ-
ual in [19], [41], [69], and [168]. To save the computational
resource, the fitness inheritance method [55], [56] uses
a weighted average of parent individuals’ fitness to esti-
mate the fitness of some offspring individuals. The fitness
of an individual in CCEAs can be estimated by niching
methods in order to maintain the diversity of subpopula-
tions [49], [64], [187], [239].

Heuristic estimation methods were studied in training a neu-
ral network with CCEAs [74], [107], [219]. For example,
a heuristic estimation method introduced in [74] and [219]
uses the weights of the neurons (individuals) to estimate their
contribution/fitness. The neuron fitness can also be evaluated
simply on the basis of the average fitness of the good networks
in which the neuron participates [107], credit sharing along
orthogonal dimensions [74], or weighted voting of network
outputs [15].

B. Computational Resource Allocation of Subproblems

As fitness evaluation consumes most of the computational
resources in CCEAs, reasonable computational resource allo-
cation3 for different subproblems should be ensured [127].
Round-Robin strategy, proposed in CCGA, is the most widely
used way to assign the same amount of computational resource
to each subproblem. The studies [54], [124], [199] proposed
improved strategies considering the imbalanced contributions
of subproblems. It is reasonable to invest more efforts in
solving more influential subproblems [124].

The existing computational resource allocation methods for
subproblems are mainly based on random strategy, the long-
term contribution of subproblem, a recent contribution of
subproblem, and different subpopulation sizes.

In random strategy [220], the computational resource allo-
cated to a subproblem is based on the number of tags
associated with the subproblem. The binary tags are mutated
in the evolution process.

3The number of fitness evaluations used to evolve a subpopulation before
switching to other subproblems.
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The method based on long-term contribution estimates the
credit of a subproblem by its accumulated improvement in
solving the original problem. Two contribution-based coop-
erative co-evolutionary (CBCC) algorithms, i.e., CBCC1 and
CBCC2, were proposed in [127]. They both optimize each
subproblem with the same computational resource in the
exploration phase. In the exploitation phase, CBCC1 optimizes
the most contributing subproblem just one more time, whereas
CBCC2 continuously optimizes the most contributing subprob-
lem until it cannot be improved anymore. A sensitive analysis
of CBCCs is available in [72].

The computational resource of subproblems can also be
allocated based on their recent improvements [122], [127],
[197]. For instance, CBCC3 [122], unlike CBCC1 and
CBCC2, optimizes only the most contributing subproblem in
the current exploitation phase. Cooperative coevolution with
adaptive optimizer iterations [197] evolves each subproblem
with computational overhead proportional to its recent con-
tribution. CCFR [228] estimates the recent contribution of a
subproblem, based on its average contribution value in the last
two generations. In [158], the area under the curve measure
was used to calculate the recent contribution of a subproblem
and a dynamic multiarmed bandit was used to choose the most
promising subproblem.

Different subproblems can use different subpopulation
sizes lending to different fitness evaluations. To evaluate the
performance of a CCEA, the effects of the subpopulation
size and the number of subproblems were studied in [199].
In [153], the performance of CCEA was investigated with
different subpopulation sizes on oneRidge and twoRidges
problems.

The methods of individual fitness assignment and subprob-
lem resource assignment are summarized in Table VI.

VI. IMPLEMENTATION OF CCEAS

The common issues of the cooperation co-evolution
paradigm design have been discussed in the previous sections.
This section explores how CCEAs can be implemented with
different meta-heuristic algorithms and parallelism.

A. CCEAs Implemented in Different Meta-Heuristic
Algorithms

The main motivation to integrate cooperation co-evolution
into meta-heuristic algorithms is to improve their performance
by adopting the divide-and-conquer strategy. Most CCEAs
are based on GA [28], [38], [49], [156], [188], [193],
PSO [11], [50], [83], [180], [183], [186], DE [5], [30],
[98], [123], [171], [230], GP [1], [15], [39], [87], [118],
[175], evolution strategy [89], [90], [104], [120], artificial
bee colony [80], [132], ant colony optimization (ACO) [37],
[208], competitive co-evolution [26], [49], [50], artifi-
cial immune system [93], surrogate-assisted search [48],
[130], [185], and memetic algorithm [24], [103]. Among
them, DE and PSO are the two most widely used meta-
heuristic algorithms for implementing CCEAs and bet-
ter suit for continuous optimization [5], [11], [123], [186].
ACO base CCEAs are good at solving combinatorial

TABLE VI
SUMMARY OF STUDIES ON INDIVIDUAL FITNESS EVALUATION AND

COMPUTATIONAL RESOURCE ASSIGNMENT OF

SUBPROBLEMS IN CCEAS

[136, 156, 188]

[107]

[223]
[223]

[239]

[19, 168, 170]

[74, 219]

[74, 219]

[72, 127]

[122, 228]
[158]

[99]

[220]

[199]

optimization problems [37], [208]. Cooperation co-evolution
with surrogate-assisted search is well-suited for expensive
optimization [48], [130]. GP-based CCEAs, using a differ-
ent representation from the general CCEAs, are developed to
facilitate task decomposition under decision making tasks [15],
[87], [175]. Memetic algorithms and hybrid methods are
accomplished in taking advantages of different component
methods to solve large-scale optimization [123], [191].

CCEAs and the conventional EAs can complement well
with each other. CCEAs are easily trapped into suboptimal
solution on fully nonseparable problems. Blending a CCEA
with different meta-heuristic algorithms can avoid the prema-
ture convergence problem of CCEAs [26], [34]. More details
of the CCEA implementations introduced in this section can
be found in Appendix G of the supplementary material.

B. Parallel Implementation of CCEAs

It is known that the computational cost of evolutionary
optimization increases is proportional to the size and complex-
ity of the problem. Fortunately, the population-based search
and divide-and-conquer strategy make CCEAs particularly
suitable for parallel computing. For example, in [85], the
optimal reactive power flow problem was decomposed into
five subproblems based on the domain knowledge and solved
by a three-level parallel computing topology on a PC-cluster.
A parallel co-evolutionary immune PSO algorithm, based on
GPU (G-PCIPSO) [94], was developed for permanent mag-
net synchronous machines problem. A parallel MOCCGA was
implemented in [73]. In a distributed CCEA (DCCEA) [188],
subpopulations are divided into groups based on the number
of core processors available in each computer. Each core pro-
cessor maintains its own representatives and archive, and the
offspring solutions are generated through collaboration within
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the same core processor. A parallel CCEA was proposed
for multiobjective optimization in [38], where unidimensional
decomposition and a cooperation strategy based on random
nondominated solution were used. Another parallel CCEA was
introduced in [212] to learn the ranking in Web search. Parallel
CCEAs were also proposed to solve vehicle routing problems
in [120]. A summary of the studies on the existing paral-
lel CCEAs is presented in Table XXV of the supplementary
material.

VII. BENCHMARK TEST PROBLEMS, THEORETICAL

ANALYSES, AND CONTROL PARAMETERS OF CCEAS

For a systematic comparison and evaluation of different
CCEAs, it is beneficial to introduce benchmark functions of
various features and different levels of difficulty, theoretical
analyses, and the settings of control parameters.

A. Benchmark Test Problems

The earliest benchmark test functions of CCEAs are con-
tinuous functions, including Rastrigin, Schwefel, Griewangk,
and Ackley problems [156]. To simplify the theoreti-
cal analyses of CCEAs and to test the CCEAs, pseudo-
Boolean problems f : {0, 1}n → R, including OneMax,
LeadingOnes, LeadingOnesBlocks (LOB), concatenated LOB
(CLOB), Trap, and (m,s)-separable problems were intro-
duced in [67]. In [139], the maximum of two quadratics
problem was put forward to study the relative overgeneral-
ization pathology of CCEAs. Multirobot systems [51], game
theory [18], [148], [151], and NK-landscape problem [154]
were also suggested in the benchmarks of CCEAs. Many
challenging test problems, especially large-scale optimization
problems, have also been proposed in special sessions and
competitions of well-known evolutionary computation confer-
ences [81], [190], [191] (see Appendix A of the supplementary
material for more details).

B. Theoretical Analyses on CCEAs

The majority of CCEA-versus-EA comparisons were exper-
imentally validated in [154], [221], and [224]. However, the-
oretical analyses on CCEAs are more favorable to understand
the underlying behavior of the algorithms.

Many theoretical analyses of CCEAs were done on pseudo-
Boolean problems, f : {0, 1}n → R because it is more intuitive
to see the effects of the genetic operators based on binary rep-
resentation [221]. The algorithm performance of a CCEA can
be theoretically analyzed based on the expected optimization
time [221], i.e., the number of function evaluations spent by
the CCEA on average before achieving the global optimum
for the first time. As shown in [65], the expected optimization
time of cooperative co-evolutionary (1 + 1) EA is O(nlogn)

on OneMax problem and �(n) on LeadingOnes problem. It is
much less than the expected optimization time of (1+1) EA on
the CLOB problem. Nevertheless, cooperative co-evolutionary
(1+ 1) EA fails to find the global optimum of Trap problem
with a probability 1 − 2−�(n) [66]. Besides, the expected
optimization time of cooperative co-evolutionary (1+1) EA is
more than that of (1+ 1) EA on (k, l)-separable optimization

problem [67]. The work [166] presents a novel framework to
demonstrate that some classes of CCEAs do have free lunches,
based on a weak preference relation.

The theoretical analyses of CCEAs also have gained sig-
nificant research achievements on continuous optimization.
Under some regularity conditions, Bezdek et al. [12] proved
that the BCD algorithm can converge to a local minimum
with linear complexity. Tseng [202] showed that the BCD
algorithm can reach a stationary point and the coordinate-
wise minimum point without oscillation. A randomized BCD
method [160] was demonstrated to get a ε-accurate solu-
tion with the minimum probability of 1 − p using at most
O([m/ε] log [1/p]) iterations. The work in [13] verified the
global convergence of two BCD variants. Omidvar et al. [123]
provided a theoretical foundation for identifying interacting
variables on additively separable optimization problems. The
FDA with truncation selection was proven to converge globally
on additively decomposable optimization problems in [236].
Further, Zhang and Mühlenbein [237] proved that the FDA
with proportional selection converges globally.

C. Control Parameters of CCEAs

The key parameters that control the performance of CCEAs
are the number of subcomponents, subpopulation size, and
computation resource allocation.

The setting of the number of subcomponents is usually
dependent on problem and the type of variable grouping strat-
egy used. In static variable grouping [11], [154] and random
variable grouping [200], [230], the number of subcompo-
nents is fixed in advance, whereas in other strategies, it could
be implicitly controlled by other parameters. For example,
in interaction learning-based variable grouping strategies, the
number of subcomponents is decided by the number of inter-
actions in LIEM [203], the number of neighbors in loci-based
overlap grouping [180], the threshold of variable interaction
in LINC-R [193], and DECC-DG [123], the threshold of PCC
in CCEA-AVP [159], and the threshold of directed variable
interaction in MEE [185].

Using different subpopulation sizes for different sub-
problems is relatively less investigated. The representa-
tive works include [54], [153], and [199]. Particularly, the
works [153], [199] study the effects of the size of subpop-
ulations and the number of subproblems on the performance
of CCEAs. The work [54] suggested three rules to adjust the
subpopulation size adaptively.

The representative parameters to configure reasonable allo-
cation of computational resource for subproblems include the
number of fitness evaluations [72], [127], [199], the con-
trol parameter U in CCFR [228], and the balance factor in
multiarmed bandit selection [158].

VIII. PATHOLOGICAL ISSUES OF CCEAS

In CCEAs, individual fitness in a subpopulation is evaluated
based on collaborators. With incorrect problem decompo-
sition, individual fitness estimation in CCEAs could suffer
from pathological issues that are not encountered in tra-
ditional EAs [71], [221]. Typical issues among these are
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Red Queen effect, relative overspecialization, and the loss of
gradient [70], [221].

Red Queen effect is used to describe the phenomenon that
some subpopulation individuals that are worse than the others
could become better in the course of evaluation merely due
to the change of collaborators [42], [150], [221]. The evolu-
tionary change of two co-evolving subpopulations can be an
oscillatory process [70], [131].

The relative overgeneralization issue [140], [142], [224]
refers to propensity of CCEA to sample the collaborator at
the wider peaks, which may bias the search in favor of subop-
timal/robust/equilibrium solutions with a large attraction valley
rather than global optimal solution (an example is provided in
Appendix F of the supplementary material). Premature con-
vergence of CCEAs to robust/equilibrium solutions has to be
distinguished from the local convergence problems of nonco-
evolutionary algorithms [67], [134]. In dealing with this issue,
Bucci and Pollack [19] proposed a Pareto coevolution mecha-
nism to promote the discovery ability of subpopulations. The
method introduced in [152] generates several random com-
plete solutions and uses an optimistic reward scheme to bias
co-evolution towards globally optimal solutions. Panait [134]
demonstrated that this optimistic reward scheme can guaran-
tee convergence to a global optimum if the subpopulation
size and the number of collaborations are sufficiently large.
Panait et al. [138] reduced the number of evaluations by main-
taining an archive of informative collaborations. To prevent
convergence to equilibrium states, novelty search was inte-
grated with CCEAs by rewarding individuals that generate
novel collaborations in [51].

Gradient loss means that the diversity of the subpopula-
tions suddenly decreases such that the others search only a
static projection and not the full problem space [150], [225].
Gradient loss is caused by the flat fitness distribution of at least
one subpopulation, and this gives rise to genetic drift [214].
To deal with this issue, some locality constraints in selection
and collaborator interactions were suggested in [119], and spa-
tially distributed schemes to select interactions and parents
were introduced in [105] and [225].

IX. APPLICATIONS OF CCEAS

CCEAs have achieved a great success in the field of
optimization domain and attracted a lot of attention from
various science and engineering domains.

A. Applications of CCEAs on Continuous Optimization

To solve constrained optimization problems (COPs),
CCEAs have to deal with the infeasible individuals. Most
CCEAs deal with COPs based on penalty functions [58],
[234], cooperative subpopulations [88], multiobjective
optimization [43], Lagrangian multiplier method [46], [76],
and preference to feasible solutions over infeasible
solutions [2].

For dynamic optimization problems, the key requirement
for CCEAs is to maintain the population diversity with
efficient exploring ability in a dynamic environment. The
related methods are mainly based on increasing diversity after

TABLE VII
SUMMARY OF APPLICATIONS OF CCEAS TO REAL WORLD PROBLEMS

[101]
[226]

[211]
[94]

[132]
[97]

[233]

[157]
[210]

[192]
[146]

[219]

[175]

[115]

[212]

[177]

[132]
[242]

179

[103]
132

[178]139

a change [7], maintaining diversity throughout the whole
evolution [8], memory-based methods [49], prediction-based
methods [91], [227], and multipopulation methods [167].

Many CCEAs have been proposed to solve MOPs. Based
on how they evaluate the fitness of an individual, these
methods can be categorized into indicator-based method [5],
decomposition-based method [98], and Pareto domination-
based method [3], [49], [64], [73], [186], [188]. A different
classification method of CCEAs for MOPs can be found in [6].

B. Applications of CCEAs on Combinatorial Optimization

CCEAs are also widely used to solve combinato-
rial optimization problems, including traveling salesman
problem [9], vehicle routing problem [103], [120], cluster-
ing and classification problem [39], [60], [75], [80], job-shop
scheduling problem [118], resource scheduling of multiple
composite Web services [2], steelmaking-continuous cast-
ing scheduling [132], network optimization [53], bin-packing
problem [9], coloring problem [14], layout design [192],
supply chain design [28], checkerboard problem [10],
Rubiks Cube problem [175], and assembly line balancing
problem [84].

Owing to the space limit, detailed descriptions of the
CCEAs on the aforementioned applications are provided in
Appendix H of the supplementary material. A summary of
the typical engineering applications of CCEAs is provided in
Table VII.
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X. CONCLUSION AND POTENTIAL DIRECTIONS

With the growing complexity of real-world optimization
problems, CCEAs have received increasing attention for solv-
ing complex optimization problems. This paper attempts
to provide a comprehensive survey of CCEAs, covering
problem decomposition, collaborator selection, individual fit-
ness evaluation, subproblem resource allocation, implementa-
tions, benchmark test problems, control parameters, theoretical
analyses, and applications. The survey is expected to pro-
vide a general overview of the development of CCEAs and
insights into the design of the algorithms. Notwithstanding
the numerous publications that appeared on CCEAs in the last
two decades, many important problems remain unsolved and
new application areas of CCEAs keep continually emerging.
Possible directions for solving some important problems of
CCEAs are discussed below.

1) Problem Decomposition and Variable Linkage Learning:
a) In perturbation-based variable grouping, it takes

too many function evaluations O(n2) to detect
variable linkages using pairwise fashion. Only a
few efforts have been made to deal with this
issue [61]. A potential possibility is to develop a
fast interaction identification method for the non-
separable relationship between one variable and
a group of variables, or between two groups of
variables.

b) Most of the existing overlap and hierarchy vari-
able grouping are performed manually or based
on domain knowledge. How to design an intel-
ligent strategy for overlap and hierarchy variable
grouping still remains an open issue.

c) Although many variable grouping strategies have
been proposed, efficient variable grouping strate-
gies are still scarce, especially for combinatorial
optimization, dynamic optimization, and robust
optimization.

d) Quantitative analyses on the deterioration in the
performance of a CCEA under incorrect variable
grouping are required.

2) Cooperation Among Subproblems:
a) If interactions among subcomponents are

inevitable, then there is a lack of studies on
selecting the most suitable collaborator selection
strategy and individual fitness assignment for
different problems.

b) Adaptive/time-dependent collaborator selection has
not been well studied and it could be a candidate
solution to deal with the linkage learning errors
and pathological issues.

c) More studies should be devoted to designing new
collaborator selection strategies for MOPs.

3) Individual Fitness Assignment and Subproblem Resource
Allocation:

a) It is unclear as to when multiple fitness evaluations
should be used for single individual and which
individual deserves multiple fitness evaluations.

b) Not enough studies were carried out on the effects
of using different subpopulation sizes for different

subproblems. Using adaptive subpopulation size is
a potential candidate to assign the computation
resource reasonably.

4) Subproblem Optimizer:
a) LSGO problems with rotation transformation pose

a challenge for CCEAs. Integrating covariance
matrix adaptation-based mutations [89], [90], [104]
with CCEAs and approximating the coordinate
transformation [95] could be two promising solu-
tions.

b) Not much work was done on integrating adaptive
selection of multiple subproblem optimizers into
CCEAs.

5) BCD is a recent popular algorithm in mathematical pro-
gramming and is very similar to CCEAs. However, it
has not received the attention it deserves in the domain
of CCEAs. Borrowing theories and techniques of BCD
algorithms can help the development of CCEAs.

6) Theoretical analyses of CCEAs are still in their infancy.
For most of the real-world application problems, there
is no answer to “How long do CCEAs take to reach the
global optimum” and “How likely are the CCEAs to get
there?”

7) There is a lack of a clear mapping between problem
features and the best-suited CCEAs.

8) The practitioners specifically need to provide a good
understanding of what coevolution is good at, what it
is not, and why.

9) Most CCEAs are based on decomposition of decision
variables, but very few on decision space or objective
space decomposition.

10) Studies extending CCEAs to many-objective
optimization [23], [189] and multiobjective with
large-scale decision variables [3], [22], [98] are very
few.

11) There is a lack of CCEAs together with niching method.
12) Besides mutualism relationship, different species can

have competitive and exploitative relationships in nat-
ural ecosystems. An interesting direction would be to
model the coevolution of species having different types
of ecological relationships.

13) Evolutionary game theory (EGT) is a potential but less
studied tool to understand the dynamics of CCEAs in
the process of evolution [224]. Using EGT for CCEAs
is worth studying.
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