
762 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 5, OCTOBER 2019

Solving Incremental Optimization Problems
via Cooperative Coevolution

Ran Cheng , Mohammad Nabi Omidvar , Member, IEEE, Amir H. Gandomi, Senior Member, IEEE,

Bernhard Sendhoff, Senior Member, IEEE, Stefan Menzel, and Xin Yao , Fellow, IEEE

Abstract—Engineering designs can involve multiple stages,
where at each stage, the design models are incrementally modified
and optimized. In contrast to traditional dynamic optimization
problems, where the changes are caused by some objective fac-
tors, the changes in such incremental optimization problems
(IOPs) are usually caused by the modifications made by the deci-
sion makers during the design process. While existing work in the
literature is mainly focused on traditional dynamic optimization,
little research has been dedicated to solving such IOPs. In this
paper, we study how to adopt cooperative coevolution to effi-
ciently solve a specific type of IOPs, namely, those with increasing
decision variables. First, we present a benchmark function gen-
erator on the basis of some basic formulations of IOPs with
increasing decision variables and exploitable modular structure.

Manuscript received October 13, 2017; revised February 28, 2018 and
August 10, 2018; accepted November 19, 2018. Date of publication
November 27, 2018; date of current version October 1, 2019. This work
was supported in part by the National Key Research and Development
Program of China under Grant 2017YFC0804003, in part by EPSRC under
Grant EP/J017515/1 and Grant EP/P005578/1, in part by the Program
for Guangdong Introducing Innovative and Enterpreneurial Teams under
Grant 2017ZT07X386, in part by the Shenzhen Peacock Plan under Grant
KQTD2016112514355531, in part by the Science and Technology Innovation
Committee Foundation of Shenzhen under Grant ZDSYS201703031748284,
and in part by the Program for University Key Laboratory of Guangdong
Province under Grant 2017KSYS008. The work of X. Yao was supported
in part by the Royal Society Wolfson Research Merit Award and in part by
Honda Research Institute Europe. (Ran Cheng and Mohammad Nabi Omidvar
contributed equally to this work.) (Corresponding author: Xin Yao.)

R. Cheng is with the Shenzhen Key Laboratory of Computational
Intelligence, University Key Laboratory of Evolving Intelligent Systems of
Guangdong Province, Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China
(e-mail: ranchengcn@gmail.com).

M. N. Omidvar is with the Center of Excellence for Research
in Computational Intelligence and Applications, School of Computer
Science, University of Birmingham, Birmingham B15 2TT, U.K. (e-mail:
m.omidvar@cs.bham.ac.uk).

A. H. Gandomi is with the Faculty of Engineering & Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia,
and also with the School of Business, Stevens Institute of Technology,
Hoboken, NJ 07010 USA (e-mail: gandomi@uts.edu.au).

B. Sendhoff and S. Menzel are with the Honda Research Institute Europe
GmbH, Offenbach 63073, Germany (e-mail: bernhard.sendhoff@honda-ri.de;
stefan.menzel@honda-ri.de).

X. Yao is with the Shenzhen Key Laboratory of Computational Intelligence,
University Key Laboratory of Evolving Intelligent Systems of Guangdong
Province, Department of Computer Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, China, and also
with the Center of Excellence for Research in Computational Intelligence
and Applications, School of Computer Science, University of Birmingham,
Birmingham B15 2TT, U.K. (e-mail: xiny@sustc.edu.cn).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org provided by the author. This PDF file contains
supplementary experimental results. This material is 223 KB in size.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2018.2883599

Then, we propose a contribution-based cooperative coevolution-
ary framework coupled with an incremental grouping method for
dealing with them. On one hand, the benchmark function gener-
ator is capable of generating various benchmark functions with
various characteristics. On the other hand, the proposed frame-
work is promising in solving such problems in terms of both
optimization accuracy and computational efficiency. In addition,
the proposed method is further assessed using a real-world appli-
cation, i.e., the design optimization of a stepped cantilever beam.

Index Terms—Cooperative coevolution (CC), experience-based
optimization, incremental optimization problem (IOP), variable
grouping.

I. INTRODUCTION

OPTIMIZATION problems are widely seen in var-
ious areas of science and engineering. Some of

the optimization problems have static objective functions,
whereas the others have dynamic objective functions chang-
ing over time, known as the dynamic optimization problems
(DOPs) [1]. Generally speaking, the changes in DOPs may
affect the objective functions, the decision variables, or the
constraints, where the reasons causing such changes can be
attributed to the variance of available resources, the arrival of
new jobs, the environmental changes, etc. [2]. For such DOPs,
a widely accepted assumption is that they must be solved
online as time goes by [3]. In other words, since the changes
are caused by some objective factors, there are often some
hard constraints in computational time for each optimization
period.

While the changes in traditional DOPs are caused by some
objective factors, there exist another kind of optimization prob-
lems with dynamic changes made by the decision maker via
incremental modifications. In general, the incremental modifi-
cations can be the addition/removal of decision variables from
the objective function or the available constraints. For exam-
ple, in truss topology optimization, the truss structures can
be incrementally optimized by adding nodes and bars into
the truss structure [4]; in aerodynamic shape optimization,
the aerodynamic shape can be incrementally optimized by
adding design parameters into the simulation system [5], [6].
Such problems are incrementally modified by adding deci-
sion variables. For simplicity, we denote such problems as the
incremental optimization problems (IOPs) hereafter.

As illustrated in Fig. 1, solving an IOP often involves two
iterative steps: 1) optimization and 2) modification, where the
decision maker incrementally modifies the objective function

1089-778X c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9410-8263
https://orcid.org/0000-0003-1944-4624
https://orcid.org/0000-0001-8837-4442

CHENG et al.: SOLVING IOPs VIA CC 763

Fig. 1. Illustration to the optimization process of an IOP with increasing
decision variables.

by adding more decision variables. At each design stage, the
objective function is optimized and its result is given back
to the decision maker. Subsequently, the decision maker may
change the design by modifying the objective function on the
basis of the optimization results. This incremental optimization
process continues until the decision maker is satisfied with the
final solution.

Broadly speaking, the IOPs can be seen as a special type
of the time-linkage problems (DTPs), where the future behav-
ior of a system is influenced by the decision made at each
time stage [7], [8]. When solving DTPs, a problem solver is
expected to take the problem changes into account and make
corresponding predictions [9]. In practice, however, it is dif-
ficult to make such predictions due to the black-box nature
of the problem. Even worse, an algorithm can be deceived
to make wrong predictions causing it to perform worse than
the case, where no predictor is used [10]. Particularly, the
modifications in IOPs are not likely to be predictable as they
are made by the decision makers according to personal pref-
erences, which makes existing prediction-based approaches
ineffective in solving IOPs.

To solve an IOP, a Naive approach is to iteratively
rerun the optimizer once the objective function is modified.
However, performing such iterative reoptimizations can be
time-consuming, especially when the function evaluations are
computationally expensive [11]. Therefore, it is of particular
interest to investigate ways of optimizing IOPs efficiently by
saving redundant reoptimizations. Since the objective func-
tion of an IOP is incrementally developed over several stages,
intuitively, part of the results obtained at each stage should
be reusable in future optimization attempts. This is due to the
fact that incremental modifications may not completely change
the original objective function, and such a special property is
worth taking advantage of when solving IOPs.

From the experience-based optimization point of view [12],
the historical optimization results can be considered as use-
ful experience to guide the optimization of IOPs at a later
design stage. The key issue in experience-based optimization
is how to make use of historical information to guide future
optimization, either implicitly or explicitly. For example,
Sushil Louis borrowed the idea from the case-based reasoning,
where the previously obtained solutions are injected into the
search process to improve the performance on syntactically
similar problems [13]. This can be seen as an implicit way to
use historical information.

In IOPs, the dependence between the newly added deci-
sion variables and the previous ones, namely, the variable
interactions, can be important information to guide future
optimization. Despite that information, such as variables’
interaction pattern is not known a priori, fortunately, the
variable interaction techniques allow us to explicitly extract
valuable structural information about a black-box problem
and turn it into a gray-box one [14], [15]. Therefore, in this
paper, we propose to solve the IOPs via cooperative coevolu-
tion (CC) [16], where the variable interaction information is
considered as the experience acquired during the incremental
optimization process.

The CC framework was initially proposed to decompose
the decision vector of an optimization problem into a group
of smaller components, thus breaking the original optimization
problem into a set of simpler ones. Since the decision vector of
a given problem can be partially nonseparable due to variable
interactions, a major challenge of using the CC framework is to
find a proper decomposition. One classic method is known as
the random grouping [17]–[19], where the decision variables
are randomly grouped into different groups, and thus the vari-
able interactions are taken into consideration implicitly. By
contrast, the other way is to detect the variable interactions
in an explicit manner and form the groups accordingly. As
a representative method of such, differential grouping (DG)
(as well as its variants) can identify the nonseparable (i.e.,
interacting) components with high accuracy [20], [21]. As
reported in the recent [22], such CC algorithms are promising
in solving partially separable problems.

By adopting the CC framework coupled with variable
grouping, we propose to incrementally detect the interactions
between the incremental modifications and the objective func-
tion of an IOP, such that the decision variables of an IOP can
be incrementally grouped and optimized. To be specific, the
main contributions of this paper are as follows.

1) Basic formulations of generic IOPs are presented. A
generic IOP is defined as a single-objective optimization
problem (SOP) with several design stages, where at
each stage, the objective function is incrementally modi-
fied by introducing additional decision variables into the
objective function. To describe the incremental modifi-
cations in IOPs, we present three different modification
types by considering the interactions between added
decision variables and those in the original problem.

2) A benchmark generator for IOPs is developed. In order
to represent different modification types in IOPs using
benchmark functions, we propose a method based on the
Givens rotation for controlling the variable interactions.
On the basis of the proposed benchmark generator, we
further instantiate seven representative benchmark func-
tions, which not only cover different modification types
but also have various properties in terms of separability
and modality.

3) A contribution-based CC (CBCC) [23] framework is
proposed for solving IOPs. The proposed CBCC frame-
work automatically detects the interactions between the
newly added decision variables and those in the origi-
nal problem, thus determining which decision variables

764 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 5, OCTOBER 2019

of the modified problem should remain unchanged and
which should be reoptimized. By considering the contri-
butions of the modified parts and the unchanged parts,
the CBCC framework adaptively allocates the com-
putational resources [i.e., fitness evaluations (FEs)] to
improve the optimization efficiency.

The remainder of this paper is organized as follows.
Section II covers the required background, including the fun-
damental concepts relating to variable interaction, and brief
introductions to CC and variable grouping. Section III presents
the basic formulation of IOPs together with a benchmark
function generator. Section IV elaborates a CBCC frame-
work for solving IOPs, and an incremental grouping (IG)
algorithm for variable interaction analysis and problem decom-
position. Section V presents the experimental results, where
several representative benchmark functions are generated using
the proposed generator, and the proposed CBCC method is
assessed and compared with other representative algorithms on
the benchmark functions as well as a real-world engineering
problem. Finally, this paper is concluded in Section VI.

II. BACKGROUND

An IOP can be referred to as an SOP involving multiple
design stages, where there are incremental decision variables
added to the objective function at each stage. Without loss of
generality, an SOP1 can be defined as

arg min
x

f (x)

s.t. x ∈ X (1)

where X ⊂ R
D is the decision space and x =

(x1, x2, . . . , xD)� ∈ X is the decision vector, and D is the
number of decision variables.

In traditional single-objective optimization, a decision vec-
tor can be optimized as a whole if the dimension is not
large, but when it comes to large-scale optimization which
can involve hundreds or even thousands of decision variables,
the decision vector is usually decomposed into a set of com-
ponents to break a large-scale problem into a set of simpler
subproblems [24], [25]. Since such variable grouping tech-
niques can be also applied to solving IOPs, this section will
present some related background knowledge, including the
variable separability as well as CC.

A. Variable Interaction

A decision variable xi is known as separable iff

arg min
x

f (x) =
(

arg min
xi

f (x), arg min
∀xj,j �=i

f (x)

)
(2)

which means that there does not exist any other decision
variable interacting with xi.

Based on the definition of separability, a problem f (x) is
known as fully separable iff

arg min
x

f (x) =
(

arg min
x1

f (x1, . . .), . . . , arg min
xD

f (. . . , xD)

)
(3)

1This paper only considers minimization problems with box constraints.

Algorithm 1: (x�, f �) = CC(f)
1 /*Main Framework of CC*/
2 P← randomized initial population;
3 c← randomized initial context vector;
4 //grouping stage
5 G = Grouping(f);
6 //optimization stage
7 while Termination Condition is Not Satisfied do
8 for κ = 1 to |G| do
9 (P, c) = Optimizer(P, c,Gκ);

10 x� = c ; f � = f (x�);
11 return (x�, f �);

where there does not exist any interaction between any pair
of decision variables in x. By contrast, a problem f (x) is
known as fully nonseparable if every pair of decision variables
interact with each other.

However, if only part of the decision variables are separable
while the others are nonseparable, the problem is known as
partially nonseparable

arg min
x

f (x) =
(

arg min
x1

f (x1, . . .), . . . , arg min
xm

f (. . . , xm)

)
(4)

where x1, . . . , xm are disjoint subvectors of x, and 2 ≤ m ≤ D.
A problem is partially additively separable if

f (x) =
m∑

i=1

fi(xi) (5)

where xi are mutually exclusive decision vectors of fi, and m
is the number of independent components.

B. Cooperative Coevolution

As shown in Algorithm 1, the main framework of CC con-
sists of two main stages: 1) the grouping stage and 2) the
optimization stage. In the grouping stage, the whole decision
vector is decomposed into several components. At the group-
ing stage, the decision variables are divided into a number of
variable groups, where the grouping information is stored in G.
Ideally, each decision variable should only interact with other
decision variables inside the same group, but not with those
in any other group. Such groups are also known as the non-
separable (or interacting) groups. In order to determine the
nonseparable groups, Omidvar et al. [20] proposed the DG
method on the basis of the following theorem.

Theorem 1: Let f (x) be an additively separable function.
∀a, b1 �= b2, δ ∈ R, δ �= 0, if the following condition holds:

�δ,xp

[
f
]
(x)|xp=a,xq=b1 �= �δ,xp

[
f
]
(x)|xp=a,xq=b2 (6)

then xp and xq are nonseparable, where

�δ,xp

[
f
]
(x) = f

(
. . . , xp + δ, . . .

)− f
(
. . . , xp, . . .

)
(7)

refers to the forward difference of f with respect to variable
xp with interval δ.

The quantities in (6) are real-valued numbers; therefore, the
equality check cannot be evaluated exactly over the floating-
point number field on computer systems. Consequently, the

CHENG et al.: SOLVING IOPs VIA CC 765

equality check needs to be converted to an inequality check
by introducing a sensitivity parameter: |�(1) − �(2)| > ε, to
check if two variables are interacting. Here, �(1) and �(2)

denote the left and right hand side of (6), respectively. In the
absence of representation and roundoff errors, ε can be the-
oretically set to zero; however, this is not usually the case
and the optimal value of ε is often a nonzero positive num-
ber. This parameterization makes DG sensitive to choices of ε

whose optimal value may vary from function to function and
difficult to tune by practitioners. To alleviate this problem,
Omidvar et al. [21] proposed DG2, a parameter-free version
of version of DG, which automatically sets ε by estimating
the bounds on the computational roundoff errors to maximize
the accuracy of variable interaction detection.

Using the variable grouping information, at the optimization
stage, the decision variables in each nonseparable group
(i.e., Gκ) are iteratively optimized in a coevolutionary manner,
where the optimizer can be any derivative-free single-objective
optimization algorithm. Here, the assumption is that the
objective function is fixed, and the decomposition is valid
throughout the optimization process. However, this is not the
case with IOPs, which results in a total failure of classic
CC with the existing decomposition methods. In this paper,
we propose a modified version of DG, termed the IG, which
checks the variable interaction pattern of the decision variables
added at two neighboring stages during an incremental design
and optimization process. This allows for a more informed
optimization of the modified problem based on the solutions
obtained prior to any modification of the objective function.

III. PROBLEM DEFINITION

A. Basic Formulations

An IOP can be formulated as a special SOP with T number
of design stages

F =
(

f 1
(

x1
)
, . . . , f t(xt), . . . , f T(xT)) (8)

where t = 1, . . . , T , and xt = (x1, x2, . . . , xdt)� ∈ R
dt

is the
decision vector having a size of dt at design stage t. At each
stage t ≥ 2, since the objective function is modified by adding
more decision variables, the size of xt is increased as follows:

dt = dt−1 +�dt (9)

where �dt is the number of added decision variables at design
stage t.

As xt is generated by adding more decision variables into
xt−1, the objective function f t is also modified on the basis
of f t−1. In practice, since different modifications can result
in different interactions between the added decision variables
[denoted as �xt = (xdt−1+1, xdt−1+2, . . . , xdt)�] and the orig-
inal decision variables xt−1, we consider the following three
scenarios as possible modifications.

1) Modification Type I: �xt do not interact with xt−1. In
this scenario, since none of the decision variables in �xt

interacts with those in xt−1, the incremental decision
vector �xt can be optimized independently.

2) Modification Type II: �xt partially interacts with xt−1. In
this scenario, only some of the decision variables in �xt

interact with those in xt−1 and the rest are independent.
3) Modification Type II: �xt fully interact with xt−1. In this

scenario, since each decision variable in �xt interacts
with at least one decision variable in xt−1, �xt has to
be optimized together with part of xt−1 inside the same
variable groups.

Based on the above formulations, we further present how
to design benchmark functions for IOPs in the next section.

B. Benchmark Function Generator

In benchmark function designs of SOPs, variable interaction
(refer to Section II-A) is one of the most important charac-
teristics to be taken into consideration. As suggested by the
benchmark design principles in [25], while the separable func-
tions can be simply generated by weighted aggregations of
separable base functions (e.g., the Sphere function), the non-
separable functions should be generated by rotating the fitness
landscapes of some special base functions (e.g., the Elliptic
function).

Moreover, since the separability properties are also closely
related to variable interactions, in order to cover the three
different modification types presented above, we adopt the
following benchmark function generator:

F =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f 1
(
x1
) = g

(
R1
(
x1 − o1

))
...

f t
(
xt
) = g

(
Rt
(
xt − ot

))
...

f T
(
xT
) = g

(
RT
(
xT − oT

))
(10)

where g is the base function scalable to the number of decision
variables, ot is the shift vector determining the location of the
global optimum of the variables added at stage t, and Rt is a
rotation matrix that causes variable interaction.

As an important property of IOPs, the objective function
f t (t ≥ 2) at each design stage is modified on the basis of
its previous version f t−1. To reflect such a property, both ot

and Rt can be incrementally modified using iterative functions.
These modifications are such that the location of the current
optimal solution stays the same while the interaction pattern
of the variables may change. Therefore, ot can be iteratively
modified as

ot =
[

ot−1

�ot

]
(11)

where t = 1, . . . , T , �ot ∈ R
dt

is the optimal position of
the added decision variables. It is worth noting that in this
paper we do not change the position of the global optimum
over time. Neither the benchmark nor the proposed frame-
work limit the study of moving optima within an incremental
optimization context. It is indeed possible to use the proposed
framework for such a purpose; however, tracking optima is
a matter of component optimizer rather than the framework
itself. Therefore, to keep the focus of this paper on the effect
of adding variables on problem structure, we limit this paper to

766 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 5, OCTOBER 2019

Fig. 2. Illustrative example of the Givens rotation, where G12 =
G(1, 2, [π/4]) and G23 = G(2, 3, [π/4]) are two rotation matrices generated
using (12) with D = 3.

problems with fixed optima. It should be noted that this does
not necessarily mean a static landscape. Indeed the rotation of
the landscape and the partial interaction of the newly added
decision variables with the previous ones change the fitness
of the previously obtained solutions. The focus of this paper
is to detect and respond to such changes rather than tracking
optima.

In order to generate the rotation matrix Rt which determines
the variable interactions, there are several basic requirements
to be satisfied. First, as a rotation matrix, Rt must always be
an orthogonal matrix with dt column vectors. Second, as the
number of dt increases [refer to (9)], the size of Rt should also
increase correspondingly. Third, considering the three modifi-
cation types presented in Section III-A, Rt must be generated
by considering the variable interaction between any pair of
decision variables. To this end, we propose a method based
on the Givens rotation [26] for the incremental modifications
of Rt.

Given two decision variables xi and xj, the xi-xj plane can be
rotated by an angle of θ using the rotation matrix generated as

G(i, j, θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos θ · · · − sin θ · · · 0
...

...
. . .

...
...

0 · · · sin θ · · · cos θ · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D×D

(12)

where cos θ and sin θ are at the intersections of the ith and
jth rows and columns of an D-dimensional identity matrix.
As illustrated in Fig. 2, the Givens rotation is used to rotate
the plane containing any two coordinate axes (i.e., decision
variables).

Now that the Givens rotation allows us to rotate the plane
containing any pair of coordinate axes, we can control the
variable interactions by generating the rotation matrix corre-
spondingly. Since the definition of IOPs mandates an increase

in the dimensionality of the decision vector xt, the rota-
tion matrix Rt−1 must be extended by adding �dt additional
dimensions so that its dimension conforms with that of xt

Rt
0 =

[
Rt−1 0

0 �It

]
(13)

where �It is a �dt-dimensional identity matrix, such that the
original variable interactions reflected by Rt−1 stay unchanged.
Then, we perform a series of Givens rotations on Rt

0 to
generate the new rotation matrix Rt

Rt =
∏

p∈P t,q∈Qt

G
(
p, q, θp,q

)× Rt
0 (14)

where P t and Qt contain the indices of each pair of interacting
decision variables, and the interaction degree is controlled by
the rotation angle θp,q. In this way, Rt can be incrementally
modified by specifying P t, Qt, and θp,q at each design stage
t. To cover the three different modification types mentioned
before, and to control the extent to which the new decision
variables and the previous ones interact, the sets P t and Qt

should be specified as follows:

P t ⊂
{

dt−1 + 1, dt−1 + 2, . . . , dt
}

(15)

and

Qt ⊂
{

1, 2, . . . , dt−1
}

(16)

with

|P t| = |Qt| = rt ×�dt (17)

where r ∈ [0, 1] is a parameter controlling the ratio of the
new decision variables added at stage t that interact with the
previous ones.

Using the generators above, the benchmark functions can
be instantiated by specifying the following tuple:(

T, d1,�dt, g, θp,q, rt
)

(18)

where d1 and �dt are the initial dimensionality and incremen-
tal dimensionality as defined in (9), g is the base function as
defined in (10), θp,q is the rotation angle as defined in (14), and
rt is the interaction ratio as defined in (17). In Section V, we
will instantiate some benchmark functions using the proposed
generator.

IV. METHOD

The prime challenge of solving IOPs is the efficient han-
dling of incremental modifications. A Naive approach to
dealing with such incremental modifications is to treat the
modified problem at each design stage as a completely new
one and opt for its reoptimization. However, this can dis-
card any useful information contained within the previously
obtained solutions to a previous design formulation. It is clear
that the extent to which the previous solutions can be useful
for the next formulation is dependent on the type of incremen-
tal modifications it entails. As was mentioned in the previous
section, variable interaction is an important factor determining
how the optimal value of each decision variable may change

CHENG et al.: SOLVING IOPs VIA CC 767

through the addition of new variables. Indeed, in this context, it
is precisely the variable interaction pattern of the newly added
design variables with the previous ones that cause the change.
The aim of this section is to propose a method for exploit-
ing variable interaction information for an efficient handling
of incremental modifications.

In the absence of variable interaction information, it is dif-
ficult to devise an efficient strategy to deal with incremental
modifications. The new variables are either completely inde-
pendent of the previous ones, or interact with the previous
ones in a partial or full manner (see Section III). In a white-
box problem full variable interaction pattern might be known;
however, the complexity of the problem or lack of an alge-
braic form for the objective function can turn the problem
into a black-box one. Variable interaction analysis allows us
to extract valuable structural information about the problem
and turn it into gray-box optimization [14], [15]. For this pur-
pose, we propose a modified DG2 [21], termed the IG method,
to suit IOPs. Further details about variable interaction analysis
are given later in this section.

Once the variable interaction structure is inferred, it is
natural to opt for a framework that facilitates the incorporation
of such structural information. One such framework is CC [16]
which allows an optimization problem to be broken down into
its constituent components and be optimized cooperatively in
a round-Robin fashion. This property is of great importance
for solving IOPs. CC not only allows us to preserve previous
solutions obtained for an earlier design, but also allows for a
seamless transition to the next design stage by treating new
design variables as a new component. The round-Robin coor-
dination policy of CC allows the new and old components to
be optimized collaboratively.

A major drawback of traditional CC for solving IOPs, how-
ever, is its suboptimal component selection policy (i.e., the
round-robin strategy). This policy distributes the computa-
tional resources equally among components wasting a con-
siderable amount of resources when components have nonuni-
form contributions toward improving the overall solution qual-
ity [27]. Although the issue of imbalance has been studied in
the general context of single objective optimization [28]–[31],
its effect is more pronounced when dealing with IOPs due to
their unique features:

1) Nonuniform Dimensionality of Components: In IOPs, the
decision variables added at each design stage can be
treated as a separate component. It is not uncommon to
have a different number of decision variables added at
each design stage. The variable interaction analysis may
also result in components with different sizes depending
on the underlying interaction pattern.

2) Dynamics of the Optimization Process, and Discrepancy
Among Convergence Behavior of Components: First, due
to the incremental nature of the design process in IOPs,
the decision variables added at earlier design stages
are often optimized longer. Depending on their vari-
able interaction pattern, some of the decision variables
belonging to earlier design stages may converge to their
optima not requiring further optimization, thus leading to
marginal contribution to the convergence of the objective

Algorithm 2: Gt = IG(f t,Gt−1, dt−1, dt)

1 /*Pseudo Code of IG*/
2 �← an uninitialized dt × dt interaction matrix;
3 initialize 	t

ij, ∀i, j ∈ {1, . . . , dt−1} using Gt−1;

4 	ij = 1, ∀i, j ∈ {dt−1 + 1, . . . , dt};
5 for i = dt−1 + 1 to dt do
6 for j = 1 to dt−1 do
7 	t

ij = InteractionDetection(f t, i, j);

8 Gt = ConnectedComponents(�);
9 return Gt;

function at later design stages. Second, the newly added
decision variables often have the highest contribution,
especially at the beginning of a design stage. Third,
previously converged variables may interact with the
ones added upon reformulation, which requires further
optimization, thus leading to a transition from low to
high contribution.

CBCC [23], [32] is an improved CC framework whose
component selection policy is based on the contribution of
components toward improving the overall solution quality,
which makes CBCC a good fit for solving IOPs. It is clear
that CBCC requires an estimation for the contribution of each
component, but due to the nature of the problem, the actual
contribution of each component is not directly observable.
For a partially separable problem, it is possible to obtain a
reliable estimation for the contribution of a component by
recording its improvement after a round of optimization while
keeping all other components constant. As was mentioned
previously, in this paper we convert a black-box problem into
a gray-box problem by means of variable interaction analysis,
which allows us to minimize the intercomponent dependence
to obtain an accurate estimation of contributions.

The decomposition strategy that we devise in this paper is
to analyze the interaction of the decision variables added at
design stage t with respect to the previous components formed
by gradual analysis of the objective function at all previous
design stages, i.e., 1, . . . , t − 1.

Algorithm 2 contains the details of the proposed IG method
used in this paper to decompose IOPs. The algorithm takes as
input f t which is the objective function at design stage t, Gt−1

the previous decomposition used at stage t−1, and the dimen-
sionality of the objective function at design stages t− 1 and t
(i.e., dt−1 and dt, respectively). In other words, the purpose of
this procedure is to analyze the variable interaction relation-
ship of the decision variables ({dt−1+1, . . . , dt}) with respect
to all previous decision variables ({1, . . . , dt−1}) belonging to
f t−1 and change the problem decomposition accordingly.

To be specific, Algorithm 2 works by constructing a binary
variable interaction matrix � which is then processed as an
adjacency matrix to form all the independent variable compo-
nents. First, � is initialized to represent Gt−1 which contains
the decomposition prior to the design change. More specifi-
cally, 	ij is set to one if the ith and the jth decision variables
belong to the same component in Gt−1, and zero otherwise.

768 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 5, OCTOBER 2019

If Gt−1 is an empty set, then all entries of � will be set to
zero. On line 4, the entries of � that belong to the newly
added decision variables are all set to one due to the non-
separability assumption mentioned previously. Then, in the
nested loops, the interaction of all newly added decision
variables ({dt−1 + 1, . . . , dt}) is checked against all previous
decision variables ({1, . . . , dt−1}). This is done using the
InteractionDetection function, which returns one if
an interaction is detected and zero otherwise. The mechanism
used in InteractionDetection is directly borrowed
from the DG2 method [21], which is based on the DG theorem
(Theorem 1). Finally, the connected components are detected
and returned by taking � as an adjacency matrix and pro-
cessed using ConnectedComponents which is a classic
graph partitioning algorithm [33].

Algorithm 2 differs from its predecessor, namely, the DG2
method, in two major ways. First, it works progressively dur-
ing the course of optimization and is invoked every time the
problem formulation is changed by the inclusion of new deci-
sion variables to the objective function. Second, instead of
performing a full pair-wise analysis of the decision variables,
it only analyzes the new decision variables with respect to
the previous ones, which makes it faster than DG2. To be
exact, for transitions t ∈ {2, . . . , T}, Algorithm 2 requires
�dt(dt−1 + 1) evaluations whenever the design is changed
by adding �dt new decision variables to the objective func-
tion. Additionally, it requires d1 extra evaluations for the first
transition (t = 1→ t = 2).

As mentioned previously, the IG method denoted by
Algorithm 2 is invoked repeatedly within the CBCC frame-
work at the beginning of each new design stage to find how
the newly added decision variables interact with the previous
ones, such that the results obtained from the previous stages
can be reused in the new stage. In this paper, we modify the
framework in [32] as our proposed CBCC framework for solv-
ing IOPs, where the details are given in Algorithm 3. The
proposed CBCC framework differs from its original version
in the following ways. First, all its components (i.e., Gt, Pt,
ct, �t) are modified to be extendable to suit IOPs. Second,
the component selection policy of the proposed algorithm is
improved to maintain a better exploration/exploitation balance.
Third, the use of pe is modified such that when it is set to 1 it
acts like canonical CC and when set to 0 it becomes a greedy
algorithm. Finally, the IG method is iteratively invoked dur-
ing the incremental optimization process. To be specific, the
proposed CBCC framework takes as input the objective func-
tion F following the notation used in (8) and the parameter pe

which determines the extent to which the algorithm optimizes
the most contributing component in a greedy manner (exploita-
tion) or allows all components to get a chance to update their
contribution (exploration).

On lines 2–7 of Algorithm 3, the framework is initialized.
Similar to Algorithm 2, Gt on line 3 is a set of sets defining
how the problem should be decomposed. In the first design
stage (t = 1), the objective function (f 1) is assumed to be
fully nonseparable; therefore, the only component that the
algorithm begins with is {1, . . . , d1}, where d1 is the dimen-
sionality of f 1. The vector �t records the latest contribution

Algorithm 3: (x�, f �) = CBCC(F, pe)

1 /*Main Framework of the proposed CBCC*/
2 t = 1;
3 Gt = {{1, . . . , dt}};
4 Pt ← randomized initial population;
5 ct ← randomized initial context vector;
6 �t ← component contributions initialized to ∞;
7 f t

c = f t(ct);
8 while the termination criteria is not reached do
9 κ = ComponentSelector(�t);

10 while κ is the best component according to �t do
11 //optimization
12 (Pt, ct) = Optimizer(Pt, ct,Gt

κ);
13 //contribution calculation
14 f t

p = f t
c; f t

c = f t(ct); �κ = f t
p − f t

c;
15 if rand() < pe then
16 �i = ∞, ∀i ∈ {1, . . . , |G|}
17 //new design stage
18 if F has switched to a new design stage then
19 t = t + 1;
20 Gt = IG(f t,Gt−1, dt−1, dt);
21 Pt ← extending Pt−1 to match dt;
22 ct ← extending ct−1 to match dt;
23 �t ← extending �t−1 to match |Gt|;

24 x� ← ct ; f � ← f t(x�);
25 return (x�, f �);

of all components to the convergence of f t at each design
stage. Therefore, the size of �t is equal to the cardinality of
Gt. As can be seen, the contributions are initialized to infin-
ity to guarantee that all components are optimized at least
once. It is clear that the contributions will be updated in the
main loop (lines 8–23) whenever a component is selected for
optimization.

The CBCC framework works by finding the component
with the largest contribution (κ). This is done using the
ComponentSelector function which simply returns the
index of the component with maximum contribution value to
the convergence of f t according to �t. The selected com-
ponent is optimized while its contribution is larger than
all other components (line 10). The Optimizer function
is any optimizer of choice which optimizes the component
κ for a certain number of iterations. Once the component
κ is optimized, its contribution is updated and set to the
magnitude of improvement before and after optimization
(lines 12–14). This exploitation strategy is broken with prob-
ability pe to give all components a chance to be opti-
mized, which is done by setting the contribution of all
components to ∞.

Whenever the IOP is switched to a new design stage, the IG
function is invoked to analyze the relationship between the new
decision variables and the previous ones. Correspondingly, the
dimensionality of Pt, ct, and �t are updated to match the
dimensionality of f t and the most recent number of compo-
nents. It is clear that the new decision variables added to
each candidate solution are initialized within the respective
bounds for each dimension, and the new decision variables

CHENG et al.: SOLVING IOPs VIA CC 769

on the context vector are also initialized in a similar man-
ner. Finally, the dimensionality of �t is changed to match
the new cardinality of Gt while preserving the contribution
of previous components and initializing the new ones to ∞.
The above procedure is repeated until the design process of
the given IOP is finalized and the termination criteria are
reached.

V. EXPERIMENTAL STUDY

In this section, we will conduct a series of experiments
to assess the performance of the proposed CBCC frame-
work for solving IOPs. First, we will instantiate some test
functions using the benchmark function generator proposed
in Section III-B. Second, we will perform some empirical
comparisons using the instances of the benchmark functions.
Finally, the proposed CBCC framework is further assessed
using a real-world application, i.e., the design optimization of
a stepped cantilever beam.

A. Benchmark Functions

As summarized in Table S-I in the supplementary mate-
rial, we have instantiated seven benchmark functions using
the benchmark generator as given in Section III-B. The four
base functions are selected among the most commonly used
ones in benchmark function designs [25], [34], [35]. More
importantly, all of the four functions are originally separa-
ble but become nonseparable after landscape rotations [36],
which meets the requirement as mentioned in Section III-B.
For simplicity, the rotation angles θp,q are all randomized
within (0, [π/2]), and the number of design phases T is set
to 3 for all instances. The benchmark functions presented
in Table S-I in the supplementary material cover the three
modification types described in Section III-A, each exhibiting
various modality and separability features. In what follows,
we explain how these functions fit into the three modification
types.

1) Modification Type I: For IOPs with modification type I
(e.g., F1 and F2), the incremental modifications will not affect
the variable interactions in the original problem. In this case,
the optimum of the original problem is fully reusable at the
new design stage. To be specific, we consider the following
two scenarios.

1) Fig. 3(a) shows a case, where the new decision vari-
ables added at the latest design stage do not interact with
each other or with any of the variables from previous
stages. This means that each variable can be optimized
independently.

2) Fig. 3(b) shows a case, where the decision variables
added at the latest stage are fully nonseparable, while
having no interaction with any of the variables from
previous stages. This means that the new variables
can be treated as a nonseparable component and be
optimized independently of the other variables.

2) Modification Type II: For IOPs with modification type II
(e.g., F1 to F6), the incremental modifications will partially
affect the variable interactions in the original problem. In this
case, the optimum of the original problem is only partially

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Variable interactions of IOPs with different modification types.
Different design stages are marked by the dashed lines. (a) Modification
type I (F1). (b) Modification type I (F2). (c) Modification type II (F3).
(d) Modification type II (F4). (e) Modification type II (F5 or F6).
(f) Modification type III (F7).

reusable at the new design stage. To be specific, we consider
the following three scenarios.

1) As shown in Fig. 3(c), the problem is initialized with
a relatively large number of decision variables but
modified with small increments.

2) As shown in Fig. 3(d), the problem is initialized with
a relatively small number of decision variables, but
modified with big increments.

3) As shown in Fig. 3(e), the problem is initialized and
modified with even scales.

3) Modification Type III: As shown in Fig. 3(f), for IOPs
with modification type III (e.g., F7), the incremental modifi-
cations will completely change the variable interactions in the
original problem. In this case, the problem is fully changed
and thus has to be completely reoptimized.

770 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 5, OCTOBER 2019

B. Empirical Comparisons

Using the benchmark functions as given in the previous
section, this section presents some empirical comparisons to
demonstrate the effectiveness of the proposed CBCC method.
To begin with, we first introduce the methods in comparison.
Then, the empirical comparisons mainly consist of two parts.
First, we assess the general performance of CBCC on the
benchmark functions given a specific number of FEs as
the termination condition. Second, we further investigate the
convergence speed of CBCC by setting specific accuracy
levels.

1) Methods in Comparison: In addition to the proposed
CBCC method, we use three other methods to conduct the
empirical comparisons, including the original CC method, an
incremental method, and a Naive method.

1) The CC Method: The classic CC framework as given
by Algorithm 1 is adopted, where each incremental
component is considered as an independent variable
group. Here, all components are optimized equally in
a round-Robin fashion.

2) The Incremental (INC) Method: Each incremental com-
ponent is optimized completely independently. Once the
problem is modified, the method automatically switches
to the new optimization stage and merely focuses on the
newly added component.

3) The Naive Method: As indicated by its name, this
method simply treats the modified problem as a new one
and performs a complete reoptimization of the modified
problem.

In order to deal with the incrementally increased scales of
IOPs, the decision vectors in each method are also incremen-
tally increased. The component optimizer used by all methods
mentioned above is SaNSDE [37]. For fair comparisons, the
random seed of the random generator in SaNDE is set to
the same value in each method, such that SaNDE performs
the same stochastic behaviors. The population size of SaNDE
is set to 50, and it is run for 50 iterations on any component
upon selection. In practice, any other problem-specific opti-
mizer is also applicable. For example, if the problem exhibits
other forms of dynamism, such as moving optima, dynamic
optimization algorithms capable of tracking optima, such as
multipopulation methods [1], can be used as the component
optimizer. For the proposed CBCC method, the parameter pe
is set to 0.2 in all the experiments, and the sensitivity analy-
sis of pe can be found in Section S-II in the supplementary
material.

2) General Performance: To assess the general
performance of the proposed CBCC method, we con-
duct some empirical comparisons with the CC method, the
INC method, and the Naive method on the seven benchmark
functions (F1 to F7). To obtain statistical results, each method
is run for 31 independent times on each test function. For each
run, we use a maximum number of 5000D FEs as the final
termination condition and assume that the decision-maker
will make modifications on the given IOP once a number
of 5000dt FEs is reached at each stage. In this way, a fixed
number of FEs is used by each method at each stage, and
thus guaranteeing the fairness of the comparisons.

TABLE I
STATISTICAL RESULTS OF OPTIMIZATION ERRORS OBTAINED BY THE

CBCC, CC, INCREMENTAL (INC), AND NAIVE METHODS ON THE

BENCHMARK TEST FUNCTIONS. MEDIANS BASED ON 31 INDEPENDENT

RUNS. BEST MEDIAN RESULTS ARE HIGHLIGHTED

Table I2 contains the experimental results for assessing the
performance of CBCC in comparison with the three methods
mentioned above. At the initial stage (i.e., Stage 1), the four
methods have obtained exactly the same results on each test
function. This is due to the fact that we have set the ran-
dom seed of the random generator to the same value for the
SaNSDE optimizer adopted in each method. However, as the
test functions are incrementally modified at later stages (i.e.,
Stage 2 and Stage 3), the proposed CBCC method shows
significantly better general performance than the other three
methods.

For F1 and F2, the proposed CBCC outperforms the CC and
Naive methods, but is outperformed by the INC method. In
this scenario, the decision variables in each incremental com-
ponent can be naturally optimized independently, while the IG
in CBCC will spend some extra function evaluations on vari-
able interaction detections, thus reducing the total FEs used
for optimization. By contrast, the INC method directly con-
siders each incremental component to be independent, which
is coincidentally consistent with the ideal grouping.

Given the fact that both CC and INC methods adopt the
same grouping strategy, an interesting observation is that the
INC method still significantly outperforms the CC method.
On problems with modification type I (F1 and F2), the incre-
mental components are of equal importance; therefore, the
strategy adopted by INC is the most efficient due to an over-
all even allocation of FEs upon termination of the algorithm.
CC, however, gives an equal chance to all components avail-
able at stage t, which results in an uneven resource allocation
with a bias toward giving more resources to components
belonging to earlier design stages. This observation can be
further confirmed by Fig. 4, where the CC method iteratively
switches between the three incremental components, but the
INC method merely focuses on the incremental component at
each stage.

2A complete table containing other descriptive statistics is given in
Table S-III in the supplementary material.

CHENG et al.: SOLVING IOPs VIA CC 771

(a)

(b)

Fig. 4. Components selected by CC and INC to undergo optimization at
different stages of the incremental design process.

For F3 to F6, the proposed CBCC method significantly out-
performs the other three methods. The advantages of CBCC
mainly lie in two aspects. First, CBCC performs incremental
variable grouping to determine if the newly added decision
variables interact with the previous ones, such that the non-
separable variable groups can be optimized in a cooperative
manner. Second, CBCC performs adaptive allocation of the
FEs to different nonseparable variable groups, such that the
decision variables making more contributions to the conver-
gence of the objective function (e.g., the newly added decision
variables at each stage) will have a higher priority to be opti-
mized. By contrast, none of the other three methods is able to
handle the incremental modifications in F3 to F6 properly.

Finally, for the fully nonseparable function F7, the INC
method is significantly outperformed by the other three meth-
ods. It is interesting to see that the performance of the INC
method on F7 is exactly opposite to its performance on
F1 and F2. This is due to the fact that the INC method
consistently considers each incremental component to be inde-
pendent, while F7 happens to be a fully nonseparable function.
In fact, regardless of the variable interactions between the
incremental components, the CC and INC methods always
adopt the same grouping strategies on all of the seven test
functions as demonstrated in Fig. 4. This indicates that the CC
and INC methods lack robustness or generality when applied
to different problems.

By contrast, as evidenced by Fig. 5, the proposed CBCC
method shows robust performance on various types of prob-
lems by adaptively grouping the decision variables and allocat-
ing the FEs. To be specific, for fully separable problems, the
CBCC method uniformly allocates the FEs to the optimization
of three variable groups [Fig. 5(a)]; for problems with a
large initial component and small incremental components,
the CBCC method mainly focuses on the first variable group
[Fig. 5(b)]; for problems with a small initial component
and large incremental components, the CBCC method mainly
focuses on the second and third variable groups [Fig. 5(c)];
and for fully nonseparable problems [Fig. 5(d)], CBCC’s
performance is similar to that of the Naive method. It should
be noted that CBCC has an advantage over the Naive method
even on a fully nonseparable problem because it does not

TABLE II
ACCURACY LEVELS FOR TEST FUNCTIONS F1 TO F7

completely reinitialize the solutions obtained prior to a change,
while the Naive method completely reoptimizes the problem
after a change. This is also evident from Table I. Finally, the
convergence profiles in Fig. S-1 in the supplementary material
also indicate the robust performance of CBCC on various test
functions.

It should be noted that CBCC uses the IG method presented
in the previous section. Since the focus of this paper is on ana-
lyzing the effect of an incremental design process, we limited
this paper to IG which analyzes the interaction of the newly
added decision variables with respect to the previous ones from
an earlier stage. One could easily opt to analyze the internal
structure of a component at the expense of some additional
computational cost. However, finding the optimal decomposi-
tion of a component is beyond the scope of this paper. For the
sake of completeness, we included some preliminary results in
the supplementary material to compare the two strategies. The
results in Table S-IV in the supplementary material suggest
that the two strategies perform statistically similar on small-
to medium-scale problems with IG having a slight advantage.
Given the computational advantage of IG over DG, we expect
the gap to become wider on large-scale problems. In what
follows, we will investigate the convergence speed of CBCC
by conducting additional experiments.

3) Convergence Speed: In practice, the decision-maker
may not make incremental modifications to an IOP until the
optimization results are satisfactory at a certain design stage.
Therefore, the convergence speed (in terms of FEs) can be an
important criterion when solving IOPs. In order to assess the
convergence speed of the proposed CBCC method, we conduct
additional experiments as given next.

First, we define some accuracy levels for each test function
as listed in Table II. We assume that, during the optimization
process, it is automatically switched to the next stage once
the accuracy level is reached. We still run each method for
31 independent times and record the success rate (SR) and
computational cost with respect to the accuracy levels. In order
to guarantee that there is sufficient FEs for each method to
reach the accuracy levels, we set the maximum number of
FEs to 50 000dt (ten times as large as what was used in the
previous experiment) for each stage. If the maximum number
of FEs is exceeded, the optimization process will automatically
switch to the next stage.

As demonstrated by the results summarized in Table III,
CBCC generally achieves the best overall performance in
terms of convergence speed. At Stage 1, all four methods
obtained the same results due to the same random seed used in
the SaNSDE optimizer. At Stage 2 and Stage 3, the advantage
of CBCC start to emerge, resulting in a high SR and a lower
computational cost. An interesting observation is that INC is
also outperformed by CBCC on the multimodal function F2 in
terms of the SR. This is due to the fact that CBCC has a good

772 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 5, OCTOBER 2019

(a)

(c)

(b)

(d)

Fig. 5. Components selected by CBCC to undergo optimization at different stages of the incremental design process. (a) F1. (b) F3. (c) F4. (d) F7.

TABLE III
MEAN RESULTS OF THE SR AND COMPUTATIONAL COST OF THE CBCC,
CC, INCREMENTAL (INC), AND NAIVE METHODS ON THE BENCHMARK

TEST FUNCTIONS. BEST RESULTS ARE HIGHLIGHTED

chance to escape from local optima when switching between
different variable groups, while INC is unable to improve the
solution quality once trapped in local optima, even if a large
number of FEs are given. As further evidenced by Fig. 6,
CBCC shows clear advantages over the other three methods
on the difficult multimodal functions F2, F4, F6, and F7 by
reaching the designated accuracy levels with fewer evaluations.
By contrast, the four methods show similar convergence speed
on unimodal functions, such as F1, F3, and F5. This indi-
cates the better potential of CBCC in dealing with complicated
problems with limited computational costs.

C. Design Optimization of Stepped Cantilever Beam

In this section, we investigate the efficacy of the proposed
algorithm on a structural engineering problem. The case
study is about the design of a stepped cantilever beam [38],
which has applications in aeronautical engineering for rotor
shaft design, in mechanical engineering for designing robot
arms, and in civil engineering for beam design. The objective

Fig. 6. Average computational costs needed by each method to reach the
predefined accuracy levels at the end of the final optimization stage (Stage 3).

Fig. 7. Schematic of the stepped beam design problem with circular sections.

is to minimize the weight of the beam such that it is capable
of bearing a concentrated load at its end while satisfying a
set of mechanical constraints. The cantilever beam comprises
a set of segments each having a variable cross section area
defined by a radius (ri) and its length (li) (Fig. 7). This is a
scalable design problem whose granularity can be adjusted
by allowing the total number of segments to change in
an iterative design process. The objective function of this
problem is defined as follows:

min f (r, l) = ρ

n∑
i=1

liπr2
i (19)

where ρ is the density, li is the length of the ith segment,
and ri is the radius of the ith cross section area.

This problem must satisfy a series of stress constraints
such that the bending stress in each beam segment (σi) must

CHENG et al.: SOLVING IOPs VIA CC 773

(a) (b) (c)

Fig. 8. Variable interaction structures of the (a) 10-D, (b) 20-D, and (c) 30-D
cantilever beam problems.

be less than a predefined allowable stress (σa). Therefore,
the solutions should also satisfy the following n nonlinear
constraints:

gi(ri) = σi

σa
− 1 ≤ 0 (20)

where

σi = Miri

Ii
(21)

Mi = F(L+ (1− i)li) (22)

Ii = π
r4

i

4
(23)

and L is the total length of the beam, F the concentrated force
at its end, and Ii the moment of inertia of the ith segment.
To satisfy the stress constraints, we used a penalty function
approach to penalize the infeasible solutions.

In addition to the above, the physics of the problem also
mandates that the segments closer to the fixed end have a larger
cross section, i.e., r1 ≥ r2 ≥ · · · ≥ rn (see Fig. 7). This is due
to the fabrication condition and the fact that a more distant load
causes a larger bending stress. To satisfy this condition, the
objective is reformulated such that the radius of each segment,
with the exception of the first segment, is defined with respect
to its adjacent segment closer to the restraining wall

ri = r1

i−1∏
j=1

pj, for i ∈ {2, . . . , n} (24)

where 0 < r1 ≤ 30, and 0 < pj ≤ 1. For this particular
experiment, we set L = 500 (cm), σa = 14 000 (N/cm2), and
the concentrated force F = 50 000 (N). It is also custom-
ary in structural design to assume l1 = · · · = ln = (L/n).
Therefore, the final objective function will have the following
form f (r1, p1, . . . , pn−1).

To compare the performance of the algorithms, the can-
tilever beam problem is solved incrementally starting with ten
segments in the first design stage. The design is subsequently
refined by increasing the number of segments to 20 and 30 in
the second and the third stages, respectively. In other words,
d1 = 10, d2 = 20, and d3 = 30. The variable interaction anal-
ysis using DG2 shows that the cantilever beam has a partially
separable objective function with the first five variables having
interactions, while all other variables are detected to be sep-
arable (Fig. 8). Therefore, the final decomposition for CBCC
and CC is as follows G1 = {{1, . . . , 10}}, G2 = {{1, . . . , 10},
{11, . . . , 20}}, G3 = {{1, . . . , 10}, {11, . . . , 20}, {21, . . . , 30}}.
Similar to other experiments in this paper, the population size

TABLE IV
PERFORMANCE OF CBCC, CC, INC, AND NAIVE ALGORITHMS ON A

CANTILEVER BEAM WITH CIRCULAR CROSS SECTIONS

Fig. 9. Convergence profile of each method applied to the real-world
application problem.

is set to 50. To test if the compared methods are able to
perform fast convergence, the maximum number of objective
function evaluations is set to 500D, and the increments occur
at every 500dt evaluations.

The experimental results for the CBCC, CC, INC, and Naive
algorithms are given in Table IV. The results are based on
31 independent runs and the highlighted entries are statistically
significant using a series of Wilcoxon signed-rank tests with
Holm p-value correction based on a 95% confidence interval.
As can be seen, CBCC outperforms all other algorithms at the
end of the second and the third stages.

The table also contains the percentage of feasible solutions
for each algorithm. The cantilever beam problem has a very
small feasible region. A Monte Carlo simulation using 1e9
sample points results in only 318 feasible solutions to be sam-
pled randomly for a 10-D version of the problem. The number
of randomly sampled feasible solutions for the 20- and 30-D
cases drops to zero. The results in Table IV clearly shows
the benefit of using an incremental approach for solving such
highly constrained problem. As can be seen, all algorithms
have a 100% SR at the first stage. However, at the second and
third stages, the performance of INC and Naive algorithms

774 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 5, OCTOBER 2019

deteriorate significantly resulting in almost no feasible solu-
tion being found by the two algorithms. By contrast, CBCC
and CC have a 100% SR across all stages. Although INC also
optimizes the problem in an incremental manner, its greedy
nature does not allow the previous components to be optimized
after an increment.

As indicated by Fig. 9, CBCC and CC show similar con-
vergence speed; by contrast, INC and Naive completely fail
to converge at the second and third stages.

VI. CONCLUSION

In this paper, we have investigated how to efficiently solve a
specific type of IOPs with increasing decision variables. First,
we have represented some basic formulations of IOPs. Then,
on the basis of the basic formulations, we designed a bench-
mark function generator for generating benchmark functions
of IOPs. By taking the special property of IOPs, we have
proposed a CBCC method. As part of the CBCC method, an
IG method has also been proposed to deal with the incremental
modifications.

As experimental studies, we assessed both the benchmark
function generator and the proposed CBCC method. To cover
different types of incremental modifications as given in the
basic formulations of IOPs, we generated seven benchmark
functions using the proposed generator. Using the seven bench-
mark functions, we have also conducted some experimental
comparisons between the proposed CBCC method and three
other typical methods. Our experimental results have demon-
strated the robust performance of the proposed CBCC method.
Furthermore, the performance of the proposed CBCC method
has also been assessed on a real-world application.

As pointed out in the introduction, this paper falls into
the general scope of the experience-based optimization [12],
where the motivation is to use the experience acquired in
historical design stages to guide future optimization. As a
specific instance, we have considered the variable interaction
information as the important experience in solving IOPs, and
we have adopted the CC framework as the solver to make
use of such experiences. In the future, we would like to fur-
ther improve the efficiency of the proposed CBCC framework
and the IG method in terms of the cost of function evalu-
ations, which can be particularly meaningful when dealing
with computationally expensive IOPs. It is also worth not-
ing that the IOPs studied in this paper is just one of the many
possible scenarios, where incremental modifications are made.
Real-world problems could also involve incrementally added
constraints, and solving such problems may require specially
tailored constraint handling methods.

REFERENCES

[1] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic
optimization: A survey of the state of the art,” Swarm Evol. Comput.,
vol. 6, pp. 1–24, Oct. 2012.

[2] S. Yang, Y.-S. Ong, and Y. Jin, Eds., Evolutionary Computation
in Dynamic and Uncertain Environments (Studies in Computational
Intelligence), vol. 51. Heidelberg, Germany: Springer, 2007.

[3] P. Bosman, “Learning and anticipation in online dynamic optimization,”
in Evolutionary Computation in Dynamic and Uncertain Environments.
Heidelberg, Germany: Springer, 2007, pp. 129–152.

[4] I. Y. Kim and O. De Weck, “Variable chromosome length genetic
algorithm for progressive refinement in topology optimization,” Struct.
Multidiscipl. Optim., vol. 29, no. 6, pp. 445–456, 2005.

[5] M. Olhofer, Y. Jin, and B. Sendhoff, “Adaptive encoding for aerody-
namic shape optimization using evolution strategies,” in Proc. IEEE
Congr. Evol. Comput., vol. 1, 2001, pp. 576–583.

[6] Y. Jin, M. Olhofer, and B. Sendhoff, “On evolutionary optimization
of large problems using small populations,” in Proc. Int. Conf. Nat.
Comput., 2005, pp. 1145–1154.

[7] J. Branke and D. C. Mattfeld, “Anticipation and flexibility in dynamic
scheduling,” Int. J. Prod. Res., vol. 43, no. 15, pp. 3103–3129, 2005.

[8] T. T. Nguyen and X. Yao, “Dynamic time-linkage problems revisited,”
in Proc. Workshops Appl. Evol. Comput., 2009, pp. 735–744.

[9] P. A. N. Bosman, “Learning, anticipation and time-deception in evolu-
tionary online dynamic optimization,” in Proc. Annu. Workshop Genet.
Evol. Comput., 2005, pp. 39–47.

[10] T. T. Nguyen, Z. Yang, and S. Bonsall, “Dynamic time-linkage
problems—The challenges,” in Proc. IEEE RIVF Int. Conf. Comput.
Commun. Technol. Res. Innov. Vis. Future, 2012, pp. 1–6.

[11] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances
and future challenges,” Swarm Evol. Comput., vol. 1, no. 2, pp. 61–70,
2011.

[12] S. Liu, K. Tang, and X. Yao, “Experience-based optimization: A
coevolutionary approach,” CoRR, vol. abs/1703.09865, 2017. [Online].
Available: http://arxiv.org/abs/1703.09865

[13] S. J. Louis, “Case injected genetic algorithms for learning across
problems,” Eng. Optim., vol. 36, no. 2, pp. 237–247, 2004.

[14] L. D. Whitley, F. Chicano, and B. W. Goldman, “Gray box optimization
for Mk landscapes (NK landscapes and MAX-kSAT),” Evol. Comput.,
vol. 24, no. 3, pp. 491–519, 2016.

[15] R. Santana, “Gray-box optimization and factorized distribution algo-
rithms: Where two worlds collide,” arXiv preprint arXiv:1707.03093,
2017.

[16] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach
to function optimization,” in Proc. Int. Conf. Parallel Problem Solving
Nat., vol. 2, 1994, pp. 249–257.

[17] Z. Yang, K. Tang, and X. Yao, “Multilevel cooperative coevolution
for large scale optimization,” in Proc. IEEE Congr. Evol. Comput.,
Jun. 2008, pp. 1663–1670.

[18] M. N. Omidvar, X. Li, Z. Yang, and X. Yao, “Cooperative co-evolution
for large scale optimization through more frequent random grouping,”
in Proc. IEEE Congr. Evol. Comput., 2010, pp. 1754–1761.

[19] X. Li and X. Yao, “Cooperatively coevolving particle swarms for
large scale optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 2,
pp. 210–224, Apr. 2012.

[20] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution
with differential grouping for large scale optimization,” IEEE Trans.
Evol. Comput., vol. 18, no. 3, pp. 378–393, Jun. 2014.

[21] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao, “DG2: A
faster and more accurate differential grouping for large-scale black-box
optimization,” IEEE Trans. Evol. Comput., vol. 21, no. 63, pp. 929–942,
Dec. 2017.

[22] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “A competitive
divide-and-conquer algorithm for unconstrained large-scale black-box
optimization,” ACM Trans. Math. Softw. (TOMS), vol. 42, no. 2, p. 13,
2016.

[23] M. N. Omidvar, X. Li, and X. Yao, “Smart use of computational
resources based on contribution for cooperative co-evolutionary algo-
rithms,” in Proc. Genet. Evol. Comput. Conf., 2011, pp. 1115–1122.

[24] S. Mahdavi, M. E. Shiri, and S. Rahnamayan, “Metaheuristics in large-
scale global continues optimization: A survey,” Inf. Sci., vol. 295,
pp. 407–428, Feb. 2015.

[25] M. N. Omidvar, X. Li, and K. Tang, “Designing benchmark problems
for large-scale continuous optimization,” Inf. Sci., vol. 316, pp. 419–436,
Sep. 2015.

[26] E. Anderson, “Discontinuous plane rotations and the symmetric eigen-
value problem,” Dept. Comput. Sci., Univ. Tennessee, Knoxville, TN,
USA, Rep. CS-00-454, 2000.

[27] B. Kazimipour, M. N. Omidvar, X. Li, and A. K. Qin, “A sensitivity
analysis of contribution-based cooperative co-evolutionary algorithms,”
in Proc. IEEE Trans. Congr. Evol. Comput., 2015, pp. 417–424.

[28] M. Yang et al., “Efficient resource allocation in cooperative co-evolution
for large-scale global optimization,” IEEE Trans. Evol. Comput., vol. 21,
no. 4, pp. 493–505, Aug. 2017.

[29] S. Mahdavi, S. Rahnamayan, and M. E. Shiri, “Incremental cooperative
coevolution for large-scale global optimization,” Soft Comput., vol. 22,
no. 6, pp. 2045–2064, 2018.

CHENG et al.: SOLVING IOPs VIA CC 775

[30] S. Mahdavi, S. Rahnamayan, and M. E. Shiri, “Cooperative co-evolution
with sensitivity analysis-based budget assignment strategy for large-scale
global optimization,” Appl. Intell., vol. 47, no. 3, pp. 888–913, 2017.

[31] S. Mahdavi, S. Rahnamayan, and M. E. Shiri, “Multilevel framework
for large-scale global optimization,” Soft Comput., vol. 21, no. 14,
pp. 4111–4140, 2017.

[32] M. N. Omidvar, B. Kazimipour, X. Li, and X. Yao, “CBCC3—A
contribution-based cooperative co-evolutionary algorithm with improved
exploration/exploitation balance,” in Proc. IEEE Congr. Evol. Comput.
(CEC), 2016, pp. 3541–3548.

[33] J. E. Hopcroft and R. E. Tarjan, “Efficient algorithms for graph manip-
ulation,” Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA,
Rep. STAN-CS-71-207, 1971.

[34] P. N. Suganthan et al., “Problem definitions and evaluation criteria
for the CEC 2005 special session on real-parameter optimization,”
Kanpur Genet. Algorithms Lab., IIT Kanpur, Kanpur, Uttar Pradesh,
Rep. 2005005, 2005.

[35] C. Li, S. Yang, and D. A. Pelta, “Benchmark generator for the IEEE
WCCI-2012 competition on evolutionary computation for dynamic
optimization problems,” Dept. Inf. Syst. Comput., Brunel Univ.,
Uxbridge, U.K., Rep. 2011, 2011.

[36] M. N. Omidvar, Y. Mei, and X. Li, “Effective decomposition of large-
scale separable continuous functions for cooperative co-evolutionary
algorithms,” in Proc. IEEE Congr. Evol. Comput., 2014, pp. 1305–1312.

[37] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential evolution
with neighborhood search,” in Proc. IEEE Congr. Evol. Comput., 2008,
pp. 1110–1116.

[38] G. N. Vanderplaats, “Very large scale optimization,” Nat. Aeronaut.
Space Admin. Langley Res. Center, Denver, CO, USA, Rep.
NASA/CR-2002-211768, 2002.

Ran Cheng received the B.Sc. degree in com-
puter science and technology from Northeastern
University, Shenyang, China, in 2010 and the Ph.D.
degree in computer science from the University of
Surrey, Guildford, U.K., in 2016.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
Southern University of Science and Technology,
Shenzhen, China. His current research interests
include evolutionary computation, deep learning and
their applications to engineering designs, and image

processing.
Dr. Cheng was a recipient of the 2018 IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION Outstanding Paper Award and the 2019
IEEE Computational Intelligence Society Outstanding Ph.D. Dissertation
Award.

Mohammad Nabi Omidvar (M’09) received the
first bachelor’s degree (First Class Hons.) in
computer science, the second bachelor’s degree
in applied mathematics, and the Ph.D. degree
in computer science from RMIT University,
Melbourne, VIC, Australia, in 2010, 2014, and 2016,
respectively.

He is a Research Fellow of evolutionary com-
putation with the School of Computer Science,
University of Birmingham, Birmingham, U.K. His
current research interests include large-scale global

optimization, decomposition methods for optimization, and multiobjective
optimization.

Dr. Omidvar was a recipient of the IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION Outstanding Paper Award for his research
on large-scale global optimization in 2017, the Australian Postgraduate Award
in 2010, and the Best Computer Science Honours Thesis Award from the
School of Computer Science and IT, RMIT University. He is a member of
IEEE Taskforce on Large-Scale Global Optimization.

Amir H. Gandomi (GS’14–M’15–SM’19) is a
Professor of data science with the Faculty of
Engineering & Information Technology, University
of Technology Sydney (UTS), Ultimo, NSW,
Australia. Prior to joining UTS, he was an Assistant
Professor with the School of Business, Stevens
Institute of Technology, Hoboken, NJ, USA, and a
distinguished Research Fellow at BEACON Center,
Michigan State University, MI, USA. He has pub-
lished over 150 journal papers and four books and
collectively has been cited more than 12 000 times

(h-index = 54). His research interests are global optimization and (big) data
mining using machine learning and evolutionary computations in particular.

Prof. Gandomi has been named as Highly Cited Researcher (top 1%) and
one of the world’s most influential scientific minds for two consecutive years,
2017 and 2018. He is currently ranked 19th in GP bibliography of more
than 12 000 researchers. He has also served as an associate editor, editor,
and guest editor in several prestigious journals and has delivered several
keynote/invited talks. He is part of a NASA technology cluster on Big Data,
Artificial Intelligence, and Machine Learning.

Bernhard Sendhoff (M’99–SM’05) received the
Ph.D. degree in applied physics from Ruhr-
Universität Bochum, Bochum, Germany, in 1998.

He has been with Honda Research Institute
Europe GmbH, Offenbach, Germany, from 2003
to 2010 as a Chief Technology Officer and from
2011 to 2017 as the President. Since 2017, he has
been an Operating Officer with Honda Research and
Development Company, Ltd., Hamamatsu, Japan,
and the Head of the Global Operation of the
Honda Research Institutes. He is an Honorary

Professor with the School of Computer Science, University of Birmingham,
Birmingham, U.K., and an Honorary Professor with the Technical University
of Darmstadt, Darmstadt, Germany. He has authored or co-authored over 180
scientific publications.

Dr. Sendhoff is a Senior Member of the ACM and a member of the SAE.

Stefan Menzel received the Dipl.-Ing. degree in
civil engineering from RWTH Aachen University,
Aachen, Germany, in 1998 and the Ph.D. degree
in civil engineering from Technical University
Darmstadt, Darmstadt, Germany, in 2004.

Since 2004, he has been with Honda Research
Institute Europe, Offenbach, Germany, where he
is currently a Chief Scientist with Optimization
and Creativity Group. His current research interests
include evolutionary optimization with special focus
on adaptive representations, machine learning for

experience transfer, and multidisciplinary optimization for real-world
applications.

Xin Yao (M’91–SM’96–F’03) received the B.Sc.
degree from the University of Science and
Technology of China (USTC), Hefei, China, in 1982,
the M.Sc. degree from the North China Institute of
Computing Technologies, Langfang, China, in 1985,
and the Ph.D. degree from USTC in 1990.

He is a Chair Professor of computer science with
the Southern University of Science and Technology,
Shenzhen, China, and a part-time Professor of com-
puter science with the University of Birmingham,
Birmingham, U.K. He was among the first in the

world studying many-objective optimization, publishing a well-cited paper
at EMO’2003. He and his students developed Two_Archive and Two_Arch2
many-objective optimization algorithms in 2006 and 2015, respectively. His
current research interests include evolutionary computation, and ensemble
learning and their applications to software engineering.

Dr. Yao was a recipient of the 2001 IEEE Donald G. Fink Prize Paper
Award, the 2010, 2016, and 2017 IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION Outstanding Paper Awards, the 2011 IEEE TRANSACTIONS

ON NEURAL NETWORKS Outstanding Paper Award, the prestigious Royal
Society Wolfson Research Merit Award in 2012, and the IEEE Computational
Intelligence Society (CIS) Evolutionary Computation Pioneer Award in 2013.
He was the President from 2014 to 2015 of IEEE CIS and the Editor-in-
Chief from 2003 to 2008 of the IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION. He was a Distinguished Lecturer of IEEE CIS.

