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Abstract—Path planning is one of the most important problems
in the development of autonomous underwater vehicles (AUVs).
In some common AUV missions, e.g., wreckage search for res-
cue, an AUV is often required to traverse multiple targets in
a complex environment with dense obstacles. In such case, the
AUV path planning problem becomes even more challenging. In
order to address the problem, this paper develops a two-layer
algorithm, namely ACO-A*, by combining the ant colony opti-
mization (ACO) with the A* search. Once a mission with a set
of arbitrary targets is assigned, ACO is responsible to determine
the traveling order of targets. But, prior to ACO, a cost graph
indicating the necessary traveling costs among targets must be
quickly established to facilitate traveling order evaluation. For
this purpose, a coarse-grained modeling with a representative-
based estimation (RBE) strategy is proposed. Following the order
obtained by ACO, targets will be traversed one by one and the
pairwise path planning to reach each target can be performed
during vehicle driving. To deal with the dense obstacles, A* is
adopted to plan paths based on a fine-grained modeling and an
admissible heuristic function is designed for A* to guarantee its
optimality. Experiments on both synthetic and realistic scenar-
ios have been designed to validate the efficiency of the proposed
ACO-A*, as well as the effectiveness of RBE and the necessity
of A*.

Index Terms—A* search, ant colony optimization (ACO),
autonomous underwater vehicles (AUVs), dense obstacles, path
planning.

Manuscript received November 17, 2017; revised April 23, 2018 and August
14, 2018; accepted October 17, 2018. Date of publication October 26, 2018;
date of current version July 30, 2019. This work was supported in part by
the National Natural Science Foundation of China under Grant 61622206,
Grant 61332002, and Grant 61873097, and in part by the Natural Science
Foundation of Guangdong under Grant 2015A030306024. (Corresponding
authors: Wei-Neng Chen; Jun Zhang.)

X. Yu is with the School of Computer Science and Engineering, South
China University of Technology, Guangzhou 510006, China, and also with the
School of Data and Computer Science, Sun Yat-sen University, Guangzhou
510006, China.

W.-N. Chen and J. Zhang are with the School of Computer Science and
Engineering, South China University of Technology, Guangzhou 510006,
China (e-mail: cwnraul634@aliyun.com; junzhang@ieee.org).

T. Gu is with the School of Computer Science and Engineering, Guilin
University of Electronic Technology, Guilin 541004, China.

H. Yuan is with the School of Computer Science and Network Security,
Dongguan University of Technology, Dongguan 523808, China.

H. Zhang is with the School of Information Science and Engineering,
Shandong Normal University, Jinan 250014, China.

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2018.2878221

I. INTRODUCTION

THE AUTONOMOUS underwater vehicle (AUV) is
a robotic device equipped with an onboard computer,

a propulsion system, a series of sensors and other units if
necessary so that it is able to work autonomously in danger-
ous and complex underwater environments [1]. More and more
efforts have been devoted to AUV-related researches focusing
on sectors, such as energy, navigation, sensors, autonomy, and
communication. Particularly, the AUV path planning [2] has
always been an essential and challenging topic for AUV nav-
igation and autonomy [3]. It aims to plan an optimal feasible
path to reach one or more given target positions, i.e., tar-
gets, in terms of the optimization objectives or requirements,
such as the operation cost minimization, risk minimization,
and collision avoidance.

To meet the challenges of AUV path planning, many
research efforts have been devoted to this field as detailed
in Section II. However, most existing works [3] are merely
aimed at the pairwise path planning from a position to a sin-
gle target. Only a few of them have considered the mission
requirements. Thus, in this paper, we focus on a common
class of target traveling missions, e.g., air crash investigation
and mine reconnaissance, which have the same requirement
to traverse a number of targets orderly. For path planning
of such missions, before planning the detailed path to reach
each target, an algorithm must first determine the traveling
order of all targets. However, the traveling order determina-
tion problem is quite challenging since it indeed belongs to
the NP-hard permutation-based problems [4], [5]. Moreover,
extra efforts must be devoted to build a target-to-target cost
graph in preparation of traveling order evaluation and deter-
mination. To obtain the cost graph, it is intuitive to perform
pairwise path planning between each pair of targets, but the
necessary computing cost will be expensive. Instead, it should
be more reasonable to design a sophisticated strategy for quick
and accurate cost estimation.

Furthermore, in the literature, there are few AUV path plan-
ning algorithms specially designed for the very complex under-
water environments with dense and irregular obstacles, e.g.,
wreck remains and reef, as discussed in Section II. However,
such obstacles must be considered when AUVs are to conduct
some common target traveling missions, such as wreckage
search for rescue, and submarine exploration in reef zones.
The dense and irregular obstacles bring new challenges to path
planning. First, due to the ubiquitous obstacles, it is difficult to
find feasible path segments to form a feasible path. Second, for
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many irregular obstacles, such as coral reefs, it is hard to find
an appropriate model for each of them, but a good modeling
for obstacles is essential to path evaluation and path planning.

In this paper, for path planning of target traveling missions
in complex underwater environments with dense obstacles, we
propose an ant colony optimization (ACO) algorithm armed
with the A* search, namely ACO-A*, based on a two-layer
environment modeling, i.e., the fine-grained modeling plus the
coarse-grained modeling. As a result, the problem is solved
from two respects: 1) the traveling order determination for
targets and 2) the pairwise path planning to reach each target.

First, for traveling order determination, ACO is adopted due
to its popularity and efficiency [6]–[8] for permutation-based
optimization [9]. To accelerate the solution evaluation in ACO,
a representative-based estimation (RBE) strategy is developed
to quickly build a target-to-target cost graph based on the
coarse grained modeling. In the strategy, a sufficient number
of well distributed points, i.e., representatives, are located in
the environment and then the optimal traveling costs among
them are calculated to build a representative cost map. Both
feasibility and connectivity have been considered during the
representative location such that the resultant representatives
are capable of representing the whole environment, in which
each point may become a mission target. As a result, given
a mission with a random set of targets, there is no need to
compute the exact traveling costs among these targets. Instead,
the best representative is selected for each target and then the
optimal traveling costs among targets can be quickly estimated
using the traveling costs among their representatives. Note that
the representative cost map needs to be built only once for
a specific environment and the map is reusable for different
AUV missions.

Second, for pairwise path planning, considering the chal-
lenges brought by the dense obstacles, a fine-grained modeling
is developed to decompose a 3-D environment into cubes and
each cube is assigned a certain cube value for the convenience
of path evaluation. Particularly, the cube value is set to be
infinity or 0 if the cube is obstructive or safe; otherwise, it is
set by the risk cost or intensity at the cube center. Based on
the cube-based modeling, A* is performed to plan the detailed
path to reach each target in the traveling order determined by
ACO. An admissible heuristic function is carefully designed
to guarantee the optimality of A*. As a result, the algorithm
is always able to find the best possible path following the
traveling order obtained by ACO.

Overall, the two-layer modeling is performed only when
the working environment changes. The coarse-grained mod-
eling locates representatives and computes the traveling costs
among these representatives to build a representative cost map.
The fine-grained modeling decomposes the feasible regions
into cubes and assigns them cube values for subsequent path
evaluation. Based on the two-layer modeling, ACO-A* can be
invoked to plan a path for an arbitrary set of mission targets.
The algorithm first selects a representative for each target and
then builds an estimated cost graph of targets. Using the cost
graph, ACO is performed to obtain an appropriate traveling
order of all targets. In this order, A* is adopted to plan the
detailed path to reach each target. In reality, once the path

toward the first target has been planned, an AUV can start off
for its mission since the path planning for subsequent targets
can be performed during vehicle driving.

The rest of this paper is organized as follows. Section II
reviews the related works. Section III gives the algorithm back-
ground, and the problem is stated in Section IV. Section V
shows the environment modeling and Section VI presents the
proposed algorithm. Experiments on synthetic and realistic
scenarios are detailed in Sections VII and VIII. The conclusion
is drawn in Section IX.

II. RELATED WORKS

A. Path Planning Algorithms

Up to now, there has been a great development in the field of
autonomous path planning. Existing path planning algorithms
can be roughly classified into two types, the deterministic ones
and the nondeterministic ones. There are popular determinis-
tic algorithms, such as fast marching [2], mixed integer linear
programming [10], A* search algorithm [11], and A*-based
dynamic algorithms, e.g., sparse A* search [12]. These algo-
rithms are often effective to find optimal solutions on the
premise of a good environment modeling. But they tend to
be time-consuming when dealing with a large problem space
since most of them are based on exhaustive space search [13].
As for nondeterministic algorithms, the evolutionary or swarm-
based algorithms (EAs or SAs) [14], [15], e.g., genetic
algorithm (GA) [16], differential evolution (DE) [17], [18],
ACO [19], particle swarm optimization (PSO) [13], [16],
predator-prey optimization [20], [21], are especially popular
for path planning due to their ability to handle various con-
straints and multiple optimization objectives [22]. Generally,
these algorithms plan paths by locating and connecting a fixed
number of waypoints. Thus, their time consumption will not
greatly increase as the problem space increases [13].

B. AUV Path Planning Under Dense Obstacles

In reality, AUVs often need to operate in complex
ocean environments, e.g., underwater battlefields, which
often bring up various difficulties, especially the commonly
seen dense obstacles, e.g., coral reefs. However, the path
planning problem will become much more challenging if
dense obstacles must be considered. In such case, many
recently developed algorithms, especially the nondeterminis-
tic algorithms [16]–[18], [22], such as EAs [15], [22] and
SAs [13], [17], tend to become incapable since they are only
designed for path planning in aerial or ground environments
with a wide range of free space. Generally, these algorithms
generate a path by locating a number of waypoints in the envi-
ronment and then connecting adjacent waypoints by direct path
segments. But the path is very likely to be infeasible if there
are dense obstacles, since a random path segment indeed has
a great chance to intersect with the dense obstacles. As exem-
plified in Fig. S1 in the supplementary material, if obstacles
are added in Fig. S1(b) in the supplementary material, sev-
eral path segments are found to intersect with the obstacles
and the three originally feasible paths in Fig. S1(a) in the
supplementary material all become infeasible.
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Thus, recently, it has attracted increasing research interests
to develop specialized AUV path planning considering obsta-
cle avoidance. A survey of path planning for AUVs can be
found in [3]. Petillot et al. [23] modeled obstacles in ellipses
and then adopted numerical programming techniques for path
planning. Braginsky and Guterman [24] developed a two-layer
obstacle avoidance algorithm by combining the preplanning
technique with the reactive method, in which obstacles are
modeled in rectangles. Aghababa [25] formalized the 3-D
path planning with static obstacles as a nonlinear optimal
control problem and applied five EAs to solve the problem.
Zhang et al. [26] improved the wolf pack algorithm to solve
the 3-D underwater path planning considering terrain obstacles
in the peak shape. Yan et al. [27] classified irregular obstacles
into four types and accordingly designed obstacle avoidance
rules.

However, despite the rich achievements as reviewed above,
some deficiencies still exist. On the one hand, some works
merely consider 2-D environments [23], [24]; on the other
hand, many algorithms are designed on the hypothesis that
the obstacles are of a small number and in a certain regu-
lar shape [26], but the hypothesis actually not always holds
in reality. Even among the few works designed for irregular
obstacles, most of them such as [27] lack a versatility due to
the use of some sophisticated classification strategies. Thus,
there is still a great need to develop AUV path planning con-
sidering the very complex 3-D environments with dense and
irregular obstacles.

C. AUV Path Planning Under Mission Requirements

In the literature, many efforts have been devoted to design-
ing more efficient algorithms for pairwise path planning. These
algorithms often ignore the specific mission requirements.
However, in reality, different AUV missions usually have
different requirements for path planning.

Recently, researchers have gradually realized the importance
of mission requirements to path planning. Zhu et al. [28] have
achieved path planning based on an improved self-organizing
map for a multi-AUV system with the requirement of dynamic
task assignment. Englot and Hover [29] accounted for the
inspection coverage need of a ship hull and developed a com-
prehensive method for sampling-based design of inspection
routes. Also, in [30], both path planning and replanning are
designed to satisfy the inspection coverage requirement of
AUV missions.

From the above, we find that existing mission planning often
focus on a class of missions with the same requirement, such
as task assignment and inspection coverage, so as to design an
algorithm with higher versatility. Thus, in this paper, we also
concentrate on a class of commonly seen AUV missions, e.g.,
air crash investigation, with the same requirement for target
traveling. That is, an AUV needs to visit a set of targets instead
of a single target during a voyage. It is encouraging to find that
such target traveling missions have attracted some attentions.
For example, Han et al. [31] developed an ethology-based
hybrid control architecture for an AUV to travel to multiple
target positions; Mcmahon and Plaku [32] focused on motion

planning for such AUV missions in spatially and temporally
environments. But few works have been specially designed for
target traveling in complex environments with dense obstacles.
In such case, the traveling order of targets must be first deter-
mined before the detailed path planning to reach each target.
For preparation of traveling order determination, the neces-
sary traveling costs among targets should be obtained to build
a target-to-target cost graph so as to facilitate the evalua-
tion of traveling orders. However, many time-efficient path
planning algorithms are indeed unavailable in dense obstacles
as mentioned above. Thus, more efficient strategies must be
developed for quick cost graph building.

III. ALGORITHM BACKGROUND

A. A* Search Algorithm

A* is a best-first search algorithm [33] to find an optimal
path from a start node to a target node in terms of the given
cost function. A* is developed by importing a heuristic func-
tion into the Dijkstra’s algorithm so as to improve the com-
putational efficiency, especially for pairwise path planning.

The search of A* is graph-based. Given a graph G = (V, E),

in order to find the path from start node s to target node
t, A* starts at s to search the graph until the target node
t is reached. A* maintains a priority queue Q of candidate
nodes to be searched. The priority of each node x is inversely
proportional to

f (x) = g(x) + h(x).

In fact, f (x) estimates the cost of an optimal path from s to t
through x, where g(x) is the best-so-far cost from s to x, h(x) is
the heuristic function to estimate the cost from x to t. A node
with a smaller f -value is thought to have a higher probability
or priority to occur in an optimal path from s to t. Thus, by
always choosing the node with minimal f -value from Q, the
graph search is directed toward the target.

The optimality of A* can be guaranteed by the admissibility
of heuristic function as Definition 1. If the heuristic function is
admissible, A* must be able to find an optimal path; otherwise,
A* may only find a suboptimal path. Thus, to apply A* to
solve a specific problem, it should be important to design an
appropriate heuristic function corresponding to the problem
objective function.

The general framework of the A* algorithm for pairwise
path planning from s to t can be described as follows.

Step 1 (Initialization): Set f (i) as positive infinity for each
possible node i; f (s) = 0; initialize “open list” Q using s.

Step 2 (Waypoint Selection): Node n with minimal f -value
in Q is selected as the next waypoint; delete n from Q.

Step 3 (Stop Criteria): Algorithm stops if the destination t
is reached in step 2.

Step 4 (Search Extension): For each node m adjacent to n
by edge (n,m) in the graph, if g(m) > g(n)+cost(n, m), update
g(m) = g(n)+cost(n, m), set f (m) = g(m)+h(m), add m into
Q if it is not in Q; then, go to step 2.

Definition 1 (Admissibility): Assume h∗(x) is the truly opti-
mal cost from x to t. If h(x) ≤ h∗(x) holds for every x, function
h(x) is said to be admissible.
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B. Ant Colony Optimization

ACO is a class of nature-inspired algorithms for solving
combinatorial optimization problems [34]. There are popular
ACO variants, such as the ant colony system (ACS) [6] and the
elitist ant system [35]. The efficiency of ACO was originally
verified on the traveling salesman problem. Up till now, ACO
has been successfully applied to solve various problems, e.g.,
data mining [36] and project scheduling [37].

ACO is mainly characterized by its pheromone model and
probabilistic solution construction. In addition, a local search
procedure is often utilized for solution refinement. Generally,
ACO solves a problem by performing the following steps
repeatedly.

1) Solution Construction: Candidate solutions are con-
structed according to a parameterized probability dis-
tribution, which is composed by heuristic information
and pheromone values.

2) Pheromone Update: Pheromone values are updated
using the previously constructed solutions such that they
can direct the future evolution toward the high-quality
solution space.

To solve a specific problem using ACO, the solution con-
struction process and pheromone model should be carefully
designed in terms of the specific problem characteristics, such
as decision variables and solution structures.

IV. PROBLEM STATEMENT

A. Target Traveling Problem

In this paper, we focus on the target traveling problem
caused by a class of target traveling missions [28], [38], such
as air crash investigation, with the requirement to traverse
a number of targets in underwater environments. Such mis-
sions are quite common especially when the environment is
so wide and complex that an AUV often only has time to tra-
verse and examine the several most suspicious positions, i.e.,
targets. The problem mainly includes the following aspects.

AUV: To achieve autonomy, AUVs are typically equipped
with sensors, controllers, propellers, on-board computers, and
so on. Since there are more communication difficulties within
water than air, AUVs usually follow a preprogrammed course
with robust navigation [39] and path following [40].

Environment: The problem considers the complex under-
water environments with rough bathymetrics, risky areas, and
dense obstacles of various irregular shapes [41]. During mis-
sion execution, AUVs should have no collision with obstacles
and try to keep away from the risky areas. It is worth not-
ing that in reality, there are often not sufficient computing
resources to handle a very large underwater scenario, e.g., the
wide ocean space. Thus, like most existing works [28], [38],
the path planning problem must be solved in a local envi-
ronment of a limited size instead of the whole underwater
scenario. However, in a complex local environment with dense
obstacles, two random targets may be disconnected and no
feasible path exists between them. For ease of description, the
feasibility and connectivity of point(s) and path(s) are defined
as Definitions 2 and 3.

AUV Target Traveling: A typical mission consists of a set of
targets to be traversed by an AUV. That is, the AUV needs to
be released from a certain target to visit the other targets one
by one, and finally return to the start position to be recovered.
The AUV path planner is expected to find an optimal path
to traverse these targets in a certain order. The optimization
objective should consider collision, risk, as well as cost, which
will be detailed in the following section.

AUV Path: For AUV path generation, one simple but pop-
ular category of existing methodologies is based on straight
lines [3], which is also adopted in this paper. In this method,
to generate a path, an ordered set of intermediate waypoints is
located in the environment such that each direct path segment
connecting two adjacent waypoints is feasible. The resultant
path is indeed a polygonal line formed by these path segments.

Notably, in reality, it is quite common to release AUVs
into the same underwater environment to perform different
missions with different sets of targets. Therefore, a generic
algorithm for the target traveling problem should not highly
depend on the target information that will change accord-
ing to AUV missions. Instead, the algorithm is expected to
extract more environment information that will be useful for
the path planning of a set of arbitrary targets. Moreover, since
an operator may carelessly design an unreasonable mission
with disconnected targets, an algorithm should be able to
quickly identify the disconnected targets and only plan paths
for connected targets.

Definition 2 (Feasible and Feasibility): A point in the envi-
ronment is said to be feasible if it is above the bathymetry
and has no collision with any obstacle. A feasible path only
passes through feasible points. A feasible region only consists
of feasible points.

Definition 3 (Connected and Connectivity): A feasible point
is connected to itself. Two feasible points are said to be con-
nected if there is a feasible path between them. A feasible
region is said to be connected if any point within the region
is connected to the others, i.e., connected region.

B. Path Optimization Objective

To plan paths in complex environments with obstacles
and risky areas, the optimization objective should at least
consider three requirements: 1) collision avoidance; 2) risk
minimization; and 3) AUV operation cost minimization.

Collision Avoidance: The collision avoidance is viewed as
a hard constraint. That is, an AUV path is infeasible once it
has an intersection with any obstacle in the environment.

Risk Minimization: In this paper, we consider global risky
areas with descending risk, which are quite common in reality,
e.g., areas within the range of sonar detection. Once an AUV
enters a risky globe, it is at risk and the risk increases when
the AUV approaches the globe center. Consider the rth risky
area in the environment with area center pr, the maximal risk
intensity RI, and the maximal risk radius R. The risk intensity
of a random point p caused by this risky area is inversely
proportional to its distance to pr, which is defined as

risk(p, r) = RI ∗ max{0, (R − distance(p, pr))}/R. (1)
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Operation Cost Minimization: Referring to existing works
such as [42], the AUV operation cost considers traveling
length cost, turning cost, and height cost. The height cost,
also denoted as climbing/diving cost, is defined by the abso-
lute heights of path segments. The turning cost is defined by
the turning angles between adjacent path segments.

To optimize more than one cost as aforementioned, there
are two popular approaches: 1) optimize the multiple costs
simultaneously using specialized multiobjective algorithms
and 2) integrate the costs into a single optimization objec-
tive function using techniques, such as a weighted sum
of the objectives [43], and then optimize it by single-
objective algorithms. In the field of path planning, weight-
based single optimization is quite popular, and easy to
use [16], [26], [44]–[46]. For the setting of cost weights, pre-
vious works generally believe that the weights can be reason-
ably set according to some professional knowledge, e.g., the
specific task type or priority [45] or the user preference [46].
Notably, such professional knowledge is often also necessary
in multiobjective optimization. For example, in [22], a mul-
tiobjective EA is designed for multi-UAV path planning but
prior knowledge is required to preset the priority level and
the acceptable interval of each objective for solution evalua-
tion and the final solution selection; in [47], after a path set is
obtained by the multiobjective path planning, a weight vector
is needed to show the user preference so as to select the ideal
path with the minimum preferred value.

Thus, in this paper, the weighted approach is also adopted.
In particular, four cost weights, i.e., α1, α2, α3, α4, are intro-
duced for risk cost, length cost, height cost, and turning cost,
respectively. Thereby, the traveling cost of a path can be
defined by the weighted summation of these four kinds of cost.

Mathematically, given a path from start point st to
end point ed with n waypoints, i.e., path(st, ed) =
(x0, . . . , xi, . . . , xn, xn+1) with x0 = st and xn+1 = ed, the
traveling cost of this path, i.e., path cost, can be computed
using

cos t(st, ed) =
n∑

i=0

(lc(xi, xi+1) + hc(xi, xi+1))

+
n∑

i=1

(rc(xi) + tc(xi−1, xi, xi+1)) (2)

where lc(xi, xi+1) gets the length cost of the path segment from
xi to xi+1 as

lc(xi, xi+1) = α2 · |xi − xi+1| (3)

hc(xi, xi+1) gets the height cost of this path segment as

hc(xi, xi+1) = α3 · |Z(xi) − Z(xi+1)|. (4)

Z(xi) is Z-coordinate value of point xi, rc(xi) computes the
risk intensity at point xi caused by the total rn risky areas as

rc(xi) = α1 ·
rn∑

r=1

risk(xi, r) (5)

and tc(xi−1, xi, xi+1) obtains the turning cost between the two
path segments that join at xi as

tc(xi−1, xi, xi+1)

= α4 ·
(

1 − pi · pi+1

|pi| · |pi+1|
)

,

{
pi = xi − xi−1
pi+1 = xi+1 − xi.

(6)

V. TWO-LAYER MODELING

To model the environment in preparation for path planning
of target traveling missions, a two-layer environment modeling
is proposed consisting of a fine-grained modeling and a coarse-
grained modeling. The fine-grained modeling helps to build
a search graph for pairwise path planning, and the coarse-
grained modeling defines a RBE strategy so as to quickly
build an estimated cost graph of targets before target order
determination. To facilitate understanding, we have given an
exemplification of the two-layer modeling in Fig. S2 in the
supplementary material, where the fine-grained modeling is
shown in black thin lines and the coarse-grained modeling is
shown in blue thick lines. Also, an explanation of the key
symbols used in this paper is provided in Table SI in the
supplementary material.

A. Representation (Environment and Path)

To prepare for the following modeling, we first repre-
sent the environment, the AUV, and the path in a coordi-
nate system, as done in some existing works of AUV path
planning [2], [3], [28].

Environment Coordinate System: Given a rectangular 3-D
environment � with (length, width, and height) = (l, w, h),
a 3-D coordinate system will be established where the x-axis,
y-axis, and z-axis correspond to the length, width, and height,
respectively. Then, each position in the environment uniquely
corresponds to a point (x, y, z) in the system satisfying

x ∈ [0, l], y ∈ [0, w], z ∈ [0, h].

AUV Point: Since the AUV size is often ignorable com-
pared with the environment size, an AUV is often simplified
as a point that flies in the coordinate system [2].

Target Point: As some existing works on target-search path
planning [28], [38], we also use points in the coordinate sys-
tem to simplify the suspicious or candidate targets to be
traversed.

AUV Path: Based on the above abstractions, to plan a path
for a given set of m target points T = {t1, . . . , tm}, an algo-
rithm should first determine a target order or permutation P
that starts from some target P1 and finally return P1 after
traversing each target once and only once, defined as

P = (P1, . . . , Pm, P1), Pi = Pj ↔ i = j, Pi ∈ T. (7)

Then, between each pair of successive targets in P, an ordered
set of intermediate waypoints should be located to constitute
a complete path, i.e., solution, as follows:

path =
(

P1, . . . , Wj
1, . . . , P2, . . . , Pi, . . . , Wj

i , . . .

Pi+1, . . . , Pm, . . . , Wj
m, . . . , P1

)
(8)
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Algorithm 1 (cubeConnectivityRecord)
Input: cubes obtained by cube-based decomposition
Output: connectivity tag of each cube, i.e., connect[]
1. tag = 0;
2. While there is an unvisited feasible cube sc
3. tag + = 1;//tag of a new connected region
4. put sc into an empty queue q;
5. While q is not empty
6. cur = q.front();//get the front cube in q
7. connect[cur] = tag;//mark cube using tag
8. For each unvisited feasible cube i adjacent to cur
9. put cube i into q;
10. End For
11. flag cur as visited and delete it from q;
12. End While
13. End While

Algorithm 2 (representativeLocation)
Input: cubes of a block, connected region tag tag
Output: representative point pr of the region
1. fcB = 0; pr = Null;
2. For each unvisited feasible block facet cube i, connect[i] == tag
3. (p,fc) = connectedTraverse(i);//Algorithm 3
4. If fc > fcB
5. pr = p; fcB = fc;
6. End If
7. End For

where Wj
i is the jth waypoint of the subpath from target Pi

to target Pi%m+1, and each path segment that connects two
adjacent points in path must be feasible.

Definition 4 (Cube Feasibility): A cube is said to be feasible
if each point within the cube is feasible.

Definition 5 (Cube Connectivity): A feasible cube is con-
nected. Two cubes are connected if they are both feasible and
their center points are connected. The connectivity of a cube
is determined by the number of cubes that are connected to
this cube. The connectivity of a point equals the connectivity
of the cube containing the point.

Lemma 1 (Connectivity Affirmation): Two points must be
connected if they exist in connected cube(s).

B. Fine-Grained Modeling

Given an environment, to find a path for a set of mission
targets using A*, the environment should be first transformed
into a search graph to indicate all candidate waypoints and
the adjacent relationship among these waypoints. Moreover,
considering the possible existence of disconnected targets
as mentioned in Section IV, a strategy should be designed
to quickly examine the connectivity of targets since it is
meaningless to plan paths for disconnected targets.

To this end, we adopt a cube-based decomposition to help
build the search graph for preparation of A*. Also, a fast con-
nectivity examination strategy is designed to quickly obtain
the targets’ connectivity from the cubes’ connectivity. The
cube-based feasibility and connectivity have been defined in
Definitions 4 and 5, respectively.

Specifically, a rectangular environment is decomposed into
exclusive cubes so that each point exists in one and only one
cube. It is worth noting that we are actually using “cube” to

Algorithm 3 (connectedTraverse)
Input: start cube sc
Output: region center point p and connectivity metric fc

1. put start cube sc in queue q
2. Ncube = Nface = 0;//number of feasible cubes and facets
3. p = the center point of sc;
4. While q is not empty
5. cur=q.front();//get the front cube of the queue
6. For each unvisited feasible cube i around cur in block
7. q.push(cube i);//add this cube into the queue
8. Ncube+ = 1;//a new feasible cube
9. If cube i is in a unvisited block facet
10. Nface+ = 1; //a new feasible facet
11. flag the facet as visited;
12. End If
13. If cube i’s center is closer to the block center than p
14. p = the center point of cube i;
15. End If
16. End For
17. flag cube cur as visited;
18. q.pop();//delete the front element of the queue
19. End While
20. calculate fc using Ncube and Nface;

denote “cuboid.” That is, the cube size is determined by three
parameters, i.e., length L, width W, and height H, which are
often related to the environment size. After decomposition,
each cube with a center point p = (x, y, z) has a unique triple
index (i, j, k) where i, j, k are integers, and they satisfy

x = (2i + 1)L, y = (2j + 1)W, z = (2k + 1)H.

Supposing there are at most N cubes along each axis direc-
tion, each triple index corresponds to a unique index (ixN2 +
jxN + k).

To model an environment with dense obstacles, the cube-
based decomposition should be performed in a quite fine-
grained scheme to obtain more feasible cubes and hence to
increase the probability of finding a feasible path. However,
as the cube size decreases, the search graph will become
larger and hence the search complexity will increase. Thus,
an appropriate cube size is expected to be set in considera-
tion of realistic factors, such as environment size, density of
obstacles, and available computing resources.

1) Search Graph Building: To build a search graph G =
(V, E) based on the above decomposition, the center point of
each feasible cube is viewed as a candidate waypoint for path
planning. Two waypoints are said to be adjacent only when
their corresponding cubes are adjacent. As a result, the vertex
set V is composed by the center points of all feasible cubes,
and an edge is created for each pair of adjacent vertexes to
form the edge set E.

Furthermore, for the convenience of path evaluation, cubes
are assigned different cube values so as to distinguish the
cubes in safe zones, risky zones, and obstructive zones, i.e.,
safe cubes, risky cubes, and obstructive cubes, as illustrated in
Fig. S2 in the supplementary material. Specifically, if a cube
intersects with obstructive areas, it is an obstructive cube; oth-
erwise, if the cube intersects with risky areas, it is a risky cube;
otherwise, the cube is a safe cube. The cube value of a safe
cube is set as 0. The cube value of an obstructive cube is set
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as positive infinity such that a path planning algorithm will try
to avoid the cube. The cube value of a risky cube is set by the
risk cost at the cube’s center point. Thereby, the risk cost of
a path segment from xi to xi+1 in (5) can be simply computed
by the summation of the involved cube values as follows:

rc(xi, xi+1) =
∑

b∈S

cv(b) (9)

where cv(b) is the cube value of cube b and S is the set of
cubes that intersect with the path segment.

2) Fast Connectivity Examination: Based on the cube-
based definitions, the point connectivity can be implied by the
cube connectivity as Lemma 1. That is, two points existing in
one or two connected cubes must be connected. Lemma 1 can
be proven as follows.

1) Two points within a connected cube must be connected
by the direct line connecting them. The line is feasible
since each point in a connected, i.e., feasible, cube must
be feasible (by Definition 4).

2) If points a and b exist in two connected cubes whose
center points are ca and cb, we can construct a feasible
path between a and b using the direct line connecting a
and ca, the direct line connecting cb and b, and the fea-
sible path between ca and cb (by Definition 5). Thus,
two points existing in two connected cubes must be
connected.

In this paper, we further constrain Lemma 1 so as to design
a fast point connectivity examination strategy based on the
cube connectivity. That is, two points are viewed as connected
only if the cube(s) containing the points is/are connected.
As a result, whenever to check the connectivity of two arbi-
trary targets, we can quickly query the connectivity of the
cube(s) containing the two targets.

To obtain the cube connectivity, we traverse the cubes and
record their connectivity during the fine-grained modeling as
Algorithm 1. In each loop of Algorithm 1, an exhaustive search
is started at an unvisited feasible cube sc to traverse all cubes
that are connected to sc, and these cubes as well as sc are
marked by an identical tag value. In this way, two feasible
cubes are connected if and only if they have the same tag
value. Indeed, all cubes with the same tag value constitute
a maximal connected region (MCR) as Definition 6. The max-
imal tag value will be equal to the number of different MCRs
in the environment.

Definition 6 (Maximal Connected Region): An MCR is
a connected region formed by cubes such that each cube
outside the region is not connected to any cube in the region.

Definition 7 (Local Connectivity): Two points in a region are
locally connected if they are connected by a feasible path that
entirely exists in the region. Two cubes in a region are locally
connected if their centers are locally connected. A locally con-
nected region (LCR) is a region in which any two points are
locally connected.

C. Coarse-Grained Modeling

In order to quickly build an estimated target-to-target cost
graph prior to target order determination, we locate a number

of points as representatives in the environment and then cal-
culate the optimal traveling costs among these representatives
to build a reusable representative cost map. In this way, given
a random set of targets, we can select a representative for each
target and then consult the representative cost map for quick
cost estimation among targets. However, several issues must
be considered during representative location to achieve high
estimation accuracy and efficiency. First, considering that there
may be more than one MCR in the environment, each MCR
must be guaranteed to have a sufficient number of representa-
tives. Second, since each feasible point may become a target
in the future, representatives should be evenly distributed in
each MCR so as to better represent all feasible points therein.
Third, the number of representatives should be within a reason-
able range to avoid a heavy computational burden. To address
these issues, we further develop a coarse-grained modeling,
in which the cubes in fine-grained modeling are merged into
larger-size blocks. Then, a block-based approach is carefully
designed for representative location.

In the coarse-grained modeling, provided that the block size
is B, every B3 cubes will constitute a large-size cubic block
such that each cube belongs to one and only one block. In
particular, each cube indexed by (i, j, k) belongs to the block
labeled by (I, J, K) with

I = i/B, J = j/B, K = k/B.

A block is feasibly connected only if there are at least one
feasible cube in the block’s facets since a block’s connection
to other blocks must use the feasible cubes in the block’s
facets.

For example, as shown in blue thick lines in Fig. S2 in
the supplementary material, B is 5, every 125 cubes consti-
tute a block. There are totally two blocks, and they are both
feasibly connected.

1) Representative Location: In order to locate a reasonable
number of representatives for each MCR in the environment,
we locate a representative in each block that intersects with
the MCR. As a result, once a block intersects with an MCR,
it will contribute a representative to this region. For ease of
demonstration, we give a 2-D example of environment mod-
eling in Fig. S3 in the supplementary material, which consists
of 36 cubes, four blocks, and two MCRs (tagged by 1 and 2).
Since the left bottom block contains cubes in both MCRs, two
representatives will be located in the block. In contrast, one
representative will be located in the right bottom block since
the block contains only cubes with tag = 2.

To locate a representative in a block for an MCR with a cer-
tain tag value, we first identify all feasible cubes with the same
tag value in the block, which indeed constitute the common
connected region (CCR) of the MCR and the block. Then,
a representative will be located in the CCR in consideration
of two factors, i.e., centrality and connectivity. Herein, the two
factors are considered during representative location for two
reasons: 1) a centered representative tends to have a short aver-
age distance to all points it represents and 2) a representative
of higher connectivity is likely to be able to represent more
points since a point must be connected to its representative.
Particularly, the local connectivity in the block as defined in
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Definition 7 is considered since two points in a CCR may be
not locally connected. That is, a CCR may consist of more
than one LCR. For example, in the right bottom block in
Fig. S3 in the supplementary material, a cube in yellow is
not locally connected to a cube in green since a feasible path
between them must go through the cube(s) outside the block.
To measure the local connectivity of an LCR indexed by R,
the connectivity metric fc is defined as

fc(R) =
{

w · FR1 + (1 − w) · FR2, if FR2 > 0
0, otherwise

(10)

where parameter w balances FR1 and FR2, FR1 measures the
region’s cube feasibility ratio to the total number of cubes in
a block as follows:

FR1 = ncube(R)/B3

where ncube(R) gets the total number of cubes in region R,
and FR2 measures the region’s facet feasibility ratio to the
total number of facets of a block as follows:

FR2 = nface(R)/6

where nface(R) gets the number of block facets that intersect
with region R.

Therefore, to locate a representative in the CCR of an MCR
and a block, we first identify the LCR with the best connectiv-
ity in the CCR and then select the most central cube center in
the LCR as a representative. The specific procedure is shown
in Algorithm 2. Especially, each LCR is obtained by starting
a traversal procedure (Algorithm 3) from an unvisited feasible
cube sc in the block facet, and the representative pr is set by
the center of the LCR with the largest fc value (lines 4–6).
In detail, to obtain the LCR containing cube sc, as shown in
Algorithm 3, we perform a breadth-first-search (BFS) to iden-
tify all feasible cubes connected to sc. These cubes plus cube
sc constitute an LCR. In each iteration of BFS, the search
extends to get the queue front cube cur and put all unvisited
feasible cubes adjacent to cur into the queue (lines 5–16),
and then cube cur is flagged as visited and deleted from the
queue. During BFS search, the necessary statistics are kept
(lines 8–12) for the final calculation of fc (line 19). Meanwhile,
the candidate representative point p is updated to approximate
the LCR’s center (lines 13–15).

2) Representative Cost Map (R-Map): After representative
location, we build a representative cost map for the represen-
tatives in each connected region, where the optimal traveling
costs among representatives can be obtained by a path plan-
ning algorithm. On this basis, given a random set of target
nodes, we can quickly find the best representative for each
target and estimate the traveling costs among these targets
using the costs among their representatives. In this way, an
estimated cost graph can be quickly built for a random set of
targets by consulting the representative cost map.

VI. ACO-A*

In order to solve the target traveling problem in complex
environments, based on the two-layer environment model-
ing, a two-layer algorithm is proposed by combining ACO

Fig. 1. Overall framework of environment modeling and ACO-A*, where
the parallelogram means data, the rectangle means operation or procedure.
The blue part is the two-layer environment modeling. The yellow part is
the proposed ACO-A*. The yellow blue parallelograms are modeling results,
which are important input to ACO-A*.

and the A* search algorithm, namely ACO-A*. The overall
framework of environment modeling and ACO-A* is given in
Fig. 1, where the modeling in blue extracts useful environ-
mental information in preparation for ACO-A* in yellow. As
shown in Fig. 1, in fine-grained modeling, the environment is
modeled to obtain the search graph for A* path planning, and
in coarse-grained modeling, representatives, and a representa-
tive cost map are obtained to facilitate ACO’s traveling order
determination. Once the environment modeling is completed,
ACO-A* can be invoked by different AUVs to plan paths for
sets of arbitrary targets. Given a set of targets, ACO optimizes
the traveling order of these targets according to an estimated
cost graph of targets, which is built by selecting representa-
tives for targets and consulting the representative cost map.
After a target order is determined by ACO, A* is performed
for pairwise path planning to reach each target following the
order.

A. Target Connectivity and Target Grouping

As mentioned in Section IV, in reality, a limited local envi-
ronment may include more than one connected region, and
a mission may include disconnected targets. In such case, the
traveling costs among disconnected targets are thought to be
much larger than the costs among connected targets. Thus,
in this paper, targets are first grouped according to their con-
nectivity such that the disconnected targets are grouped into
different sets. Thereafter, ACO-A* is performed to plan a path
for each set of connected targets.

Recall that two targets are thought to be connected only
if their corresponding cubes are connected. Since the cube
connectivity has been obtained in fine-grained modeling, we
can query the connectivity of the cubes containing the targets
so as to quickly determine the targets’ connectivity.

B. ACO for Order Determination

To determine the traveling order of a set of targets a set
of targets, we first select a representative for each target, and
then utilize the representative cost map to quickly build an



YU et al.: ACO-A* FOR 3-D TRAVELING IN ENVIRONMENTS WITH DENSE OBSTACLES 625

estimated cost graph. The cost graph is expected to indicate
the necessary traveling costs among targets so as to facilitate
the evaluation of an arbitrary traveling order of targets. Based
on the cost graph, ACO is performed to find an optimal or
suboptimal traveling order. Notably, in this paper, we mainly
adopt the specific ACO variant, the ACS [6].

1) Representative Selection: To select a reasonable rep-
resentative for each target, the following requirements are
necessary: 1) the target should be closely connected to its
representative and 2) the traveling cost from the target to its
representative should be available and sufficiently small. To
satisfy the requirements, given a target t, we perform a breath-
first-search from t. Once a representative p is reached, it will
be selected as target t’s representative, and the traveling cost
from t to p is also obtained during the search. For efficiency,
the search is limited in a depth of double block size (2*B). If
a representative is not found when the search stops, supposing
target t is in block b, we will first identify all representatives
that have the same tag value as target t in block b and b’s
adjacent blocks. Thereafter, the traveling cost from each of
these representatives to target t is estimated by the direct line
cost between them, and then the representative with the min-
imum traveling cost will be selected. Herein, the direct line
cost between two points is computed by viewing the direct
line segment between them as a feasible path.

2) Cost Graph and Data Structure: Given a set of con-
nected targets, to build an estimated cost graph G = (V, E),
each target acts as a vertex in the vertex set V and we gen-
erate an edge between any pair of targets to form the edge
set E. The edge cost of each edge ei,j from target i to target j
is set by a representative-based estimated value of the optimal
traveling cost from i to j. Particularly, to estimate the optimal
traveling cost from i to j, we construct an estimated optimal
path through the two targets’ representatives. As shown in
Fig. S4 in the supplementary material, to simulate the truly
optimal path path(i→j) from target i to target j as marked in
solid lines, we utilize an estimated optimal path that passes
through target i, i’s representative ri, target j’s representative
rj, and target j sequentially, i.e., path(i→ri→rj→j) as marked
in dotted lines. Since a target is always close to its representa-
tive, the estimated path(i→ri→rj→j) from target i to j tends
to be quite close to the optimal path(i→j). Thus, the traveling
cost of path(i→ri→rj→j) is indeed a quite reasonable esti-
mation for the traveling cost of the optimal path(i→j), and the
estimated cost is hence used to set the cost of edge eij from
i to j in this paper. However, as shown in Fig. S4(b) in the
supplementary material, if the length between two targets is
shorter than the length between their representatives, an esti-
mated path through the representatives is more likely to take
a detour. Thus, we design a length-based ratio rl to reduce the
estimated cost in such case so as to better estimate the optimal
path cost. Mathematically, the edge cost of eij is set as

|eij| = cost(ri, rj) + rl ∗ cost(i, ri) + rl ∗ cost(j, rj) (11)

where cost(ri, rj) is the optimal traveling cost from ri to
rj which can be obtained from the representative cost map,
cost(i, ri), and cost(rj, j) have been obtained during represen-
tative selection and they are generally equal to the traveling

costs of the optimal path(i→ri) and path(rj→j), respectively.
Thus, the sum of these three cost values approximates the
optimal traveling cost of path(i→ri→rj→j). The ratio rl is
defined as

rl = min
{
1.0, length(i, j)/length(ri, rj)

}
(12)

such that rl only takes effect when the length between i and j
is smaller than the length between their representatives.

Based on the cost graph of targets, the solution structure,
pheromone model, and heuristic model of ACS are defined by
the vertex set V and the edge set E. Particularly, a solution is
defined as a permutation of all vertexes in V, and each vertex
or target hence acts as a candidate solution component. The
cost of a solution can be easily obtained by adding the costs of
the edges that connect all adjacent vertexes in the solution. As
for pheromone model and heuristic model, each edge ei,j in E
corresponds to a pheromone trail parameter τ

j
i and a heuristic

parameter η
j
i. For heuristic setting, each heuristic parameterηj

iis
defined by the inverse of the edge cost of ei,j referring to [6].

3) Solution Construction: To construct a solution in ACS,
targets are selected one by one to obtain a permutation of tar-
gets, which indicates a target traveling order. The construction
process starts with a partial solution sol = <s0> where the
first target s0 is selected randomly. Then, the solution is com-
pleted step by step. In each ith step, an unvisited target si+1
is selected after the current target si. Specifically, all unvisited
targets together constitute the set of candidate nodes Ci. Then,
the probability of each target j in Ci to be selected as si+1 is
calculated combining pheromone values and heuristic values
according to

P(j) =
(
τ

j
si

)α(
η

j
si

)β

∑
j∈Ci

(
τ

j
si

)α(
η

j
si

)β
,∀j ∈ Ci (13)

where α and β are parameters that determine the relative
importance of pheromone values versus heuristic values.

To select a target out of Ci as si+1, a random real number q
within [0, 1] is generated and compared with a preset param-
eter q0. If q is smaller than q0, the target with the largest
probability value in Ci will be selected; otherwise, Roulette
wheel selection according to above probability distribution is
applied.

4) Pheromone Initialization and Update: The pheromone
initialization is often essential to the ACS’s performance. In
fact, given a cost graph of targets, the problem of travel-
ing order determination closely resembles the classic traveling
salesman problem, for which ACS [6] is originally proposed.
Thus, referring to [6], we also utilize a solution sol generated
by a greedy method for pheromone initialization. To generate
sol, the greedy method starts from a random target s0 and then
always selects an unvisited target which has the least edge cost
from the last selected target si so as to form a target traveling
order. Then, each pheromone trail parameter is initialized by
the cost of solution sol and the number of targets m as follows:

τ
j
i = τ0 = (cost(sol) · m)−1. (14)
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The pheromone update is performed globally and locally in
ACS. The global update is performed after each iteration of
ACS according to

τ
j
i = (1 − ρ) · τ

j
i + ρ · �τ

j
i (15)

where ρ is a pheromone decay parameter within [0, 1]

�τ
j
i =

{
(cost(bsol))−1, if i is followed by j in bsol
0, otherwise

cost(bsol) is the traveling cost of the best-so-far solution bsol.
The local update is performed after the solution construction

of each ant k as follows:

τ
j
i = (1 − ρ′) · τ

j
i + (ρ′) · � τ

j
i (16)

where ρ′ is a parameter within [0, 1]

� τ
j
i =

{
τ0, if i is followed by j in some solk
0, otherwise

solk is the latest solution constructed by ant k.

C. A* for Path Planning

To apply the A* search for pairwise path planning, two
crucial issues must be carefully addressed: 1) define candi-
date waypoints and their adjacent relationship for the search
extension of A* and 2) define the cost functions required by
A*, especially the heuristic function, according to the problem
characteristics.

1) Search Extension: Based on the fine-grained modeling,
we consider all feasible cube centers as candidate waypoints
and extend the A* search in a 26-neighbor graph structure.
That is, once the center of a certain cube has been processed,
A* will check all 26 cubes adjacent to the cube so as to add
the unvisited feasible cubes into the open list for subsequent
waypoint selection and flag them as visited.

2) Cost Functions: Corresponding to the problem defini-
tion, the cost functions should be defined to reflect the path
traveling cost in terms of three path optimization requirements,
i.e., collision avoidance, risk minimization, and operation
cost minimization, where the operation cost includes travel-
ing length cost, AUV turning cost, and height cost. Indeed,
collision avoidance has already been guaranteed by the above
feasible-cube-based search extension. Thus, in the following,
the cost functions, i.e., actual cost function g(x) and heuris-
tic cost function h(x), are defined to combine the risk cost,
length cost, height cost, and turning cost corresponding to the
weighted-sum cost definition as in (2).

As for the actual cost function g(x), it should be defined
to reflect the actual cost of a so-far-constructed path. In A*,
a path is composed by the path segments connecting waypoints
and the path cost should be obtained by adding the costs of all
these path segments. Particularly, during the A* search, given
a so-far-constructed path till waypoint x, the path cost till each
candidate point y adjacent to x will be

g(y) = g(x) + rc(x, y) + lc(x, y) + hc(x, y) + tc(px, x, y)

(17)

where g(x) is the path cost till x, px is the waypoint prior to
x, rc(x, y), lc(x, y), and hc(x, y) compute the risk cost, length

(a) (b) (c)

Fig. 2. Examples of different types of synthetic problem instances. (a) G-type
is regularly clustered. (b) I-type is irregular. (c) D-type is space-segmented.

(a) (b)

Fig. 3. Path planned by ACO-A* to traverse 60 targets in New Zealand
bathymetry. (a) 3-D view. (b) Top view.

cost, and height cost of the path segment from x to y by (9),
(3), and (4), respectively, and tc(px, x, y) computes the turning
cost at turning point x by (6).

As for the heuristic function h(x), the virtual segment p(x,t)
from a waypoint x to the destination t is utilized for cost
estimation. Particularly, h(x) is defined as

h(x) = lc(x, t) + hc(x, t) + tc(px, x, t). (18)

Such a heuristic function can be proven to be admissible so
as to guarantee A*’s optimality. First, the traveling length and
height caused by the virtual path segment p(x, t) are obviously
no larger than the actual ones. Second, the turning cost in h(x)
only considers the virtual turning angle caused by p(x, t), and
the angle must be smaller than the sum of all necessary turning
angles if the truly optimal path from x to t requires two or more
path segments. For example, in Fig. S5 in the supplementary
material, angle c is the virtual turning angle, angles b and d
are the actual turning angles, then c ≤ (d+b) must hold since
c = (a + b) and a is smaller than d. Since a larger turning
angle corresponds to a larger turning cost, the turning cost in
h(x) will not exceed the actual one. Third, the risk cost in
h(x) is always 0, which is hence guaranteed to be no larger
than the true risk cost. Thus, the estimated cost obtained by
h(x) is a lower bound of the actual cost required to reach the
destination and h(x) is admissible by Definition 1.

VII. SYNTHETIC EXPERIMENTS

A. Synthetic Problem Instances

To simulate the 3-D underwater environments with dense
obstacles and risky areas, synthetic problem instances are
carefully constructed in consideration of obstacle scenar-
ios and risky scenarios. The 3-D environment of fixed size
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50*100*50 is considered. To simulate risky scenarios, a num-
ber of risky global zones are generated in terms of risky
degree fr, i.e., the ratio of feasible risky space volume to
the whole space volume. To simulate obstructive scenarios,
a method is designed to combine a set of 3-D obstacle units
of various sizes and shapes, e.g., ring, cylinder, cone, globe,
cuboid, hollow plane, spike ball, and random tree. In this way,
the method is able to construct a complex scenario of a cer-
tain obstructive degree fo, i.e., the ratio of obstructive space
volume to the whole space volume. In this paper, mainly three
types of obstacle scenarios are constructed.

1) G-type is regularly clustered, which includes only clus-
tered obstacles of global or coned shape, as exemplified
in Fig. 2(a) where the blue hollow spheres are risky
zones, and the other colorful things are obstacles.

2) I-type is irregular and branchy, which is filled by obsta-
cles in spike ball or random tree, plus several planes
with ring hollowness, as Fig. 2(b).

3) D-type is space-segmented and the free space is almost
segmented into several parts by planes with holes of
random number and size, as Fig. 2(c).

B. Parameters

In reality, the four cost weights α1, α2, α3, α4 should be
given by a decision maker according to the mission require-
ments. In the experiments, the same setting of cost weights
is guaranteed for all compared algorithms for fairness. We
mainly take the setting of (5.0, 1.0, 2.0, and 5.0) for an
example and some other settings will also be tested for
completeness.

As for the parameters introduced for environment modeling,
the cube size is set as 1, i.e., L = W = H = 1, the block size B
is set as 10, and a balance weight w within [0.4, 0.6] generally
performs well for representative location according to our trials
and it is set as 0.5. The ACO parameters q0, ρ, ρ′, α, β are
set as 0.9, 0.1, 0.1, 1.0, 2.0, referring to [6].

C. Performance of ACO-A*

For the lack of ready-made research into 3-D target traveling
in dense obstacles, we have not found available compara-
tive algorithms to validate the effectiveness of our proposed
ACO-A*. Thus, we design an inverse proof technique and
a trial-based proof technique to build a potentially optimal
solution and a baseline solution for each problem instance,
respectively, and then we compare the solutions obtained by
ACO-A* with these bound solutions. Especially, given an
upper-bound solution with cost U and a baseline solution with
cost L, we define the optimization degree opt of an algorithm
as follows:

opt(sol) = (L − cost(sol))/(L − U) (19)

where sol is the final solution obtained by the algorithm and
a larger opt value means a larger optimization capability. If the
value equals 1, the algorithm finds the upper-bound solution.

The inverse proof technique builds a problem instance from
an optimal solution as follows.

1) Generate a set of targets in the free space and then
construct a potentially optimal solution sol* to traverse
these targets in the free space. Then, the optimal target
cost graph is obtained by computing the direct line costs
among targets. According to the cost graph, an optimal
or suboptimal target order is obtained using ACO and
then a potentially optimal path sol* is constructed by
sequentially connecting all targets in this order.

2) An environment scenario that satisfies the preset fo and
fr is generated by randomly deploying obstacles and
risky zones in avoidance of any path segment in sol*.
Since sol* is at least a suboptimal solution in the free
space, it is very likely to be an optimal solution after
risks and obstacles are deployed. Thus, sol* is viewed
as an upper-bound or optimal solution in the newly
generated scenario.

The trial-based proof technique generates a baseline solu-
tion through a number of greedy trials. In each trial, the greedy
algorithm is performed to construct a target traveling order
step by step by always selecting the target that has the least
direct line cost from the last selected target, and then a path is
planned by the Dijkstra’s algorithm following this order. The
best path out of all trials is viewed as a baseline solution.

Following the inverse proof technique, we inversely con-
struct 45 instances of G-type, I-type, or D-type with different
target number m, obstructive degree fo and risky degree fr (we
name each instance by “type-m-fo”). ACO-A* is run 20 times
independently for each instance and the experimental results
are detailed in Table I, where column “m” lists target num-
ber, column “U” lists the upper-bound solution costs obtained
by the inverse proof technique, column “L” lists the base-
line solution costs obtained by the trial-based proof technique,
columns “fo” and “fr” correspond to obstructive degree and
risky degree, column “opt” lists the optimization degree of
ACO-A* computed by (19).

From Table I, the optimization degree opt of ACO-A* is
larger than 0.3 on each instance, and opt is not less than 0.5 on
42 out of 45 instances as marked in bold. Particularly, ACO-A*
finds the upper-bound solutions on 3 instances, i.e., G-20-0.1,
I-20-0.3, I-20-0.4, and on 9 out of 45 instances as marked
in italic, the solutions obtained by ACO-A* are quite close
to the upper-bound solutions, since ACO-A*’s opt is not less
than 0.9. Moreover, the Wilcoxon test has been applied at
5% significance level to compare ACO-A* and the baseline
greedy algorithm. According to the test results as shown in
column “W,” ACO-A* performs significantly better than the
baseline greedy algorithm. In conclusion, ACO-A* generally
has good performance in terms of both the optimization degree
and the Wilcoxon test, and ACO-A*’s optimization capability
is hence verified to some degree. Additionally, the standard
deviation values are almost negligible on each instance. That
is, ACO-A* is quite stable and robust.

Moreover, to investigate ACO-A*’s general performance for
a random instance, we normally construct 45 instances of
G-type, I-type, or D-type with target number m within {20, 40,
60}, and obstructive degree fo within {0.1, 0.2, . . . , 0.5}, and
fr = 0. Contrary to the inverse instance generation, the normal
instance generation first constructs environment scenarios and
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TABLE I
COMPARED RESULTS ON INVERSED INSTANCES

then generates targets in the feasible space. After instance gen-
eration, the baseline solutions are found using the trial-based
proof technique. To build an upper-bound solution for each
instance, we first build a real cost graph of targets by comput-
ing the truly optimal traveling cost between any two targets
using the A* search, and then find an optimal or suboptimal
target traveling order according to the real cost graph using
ACO.

The final results of ACO-A* on normal instances are given
in Table SII in the supplementary material. From the Wilcoxon
test, ACO-A* still achieves significantly better performance
than the greedy algorithm on normal instances. Particularly,
the optimization degree opt of ACO-A* is generally larger
than 0.2. As marked in bold, ACO-A*’s opt is not less than
0.5 on most of instances, i.e., 37 out of 45 instances. On
two instances I-20-0.3, D-20-0.3, ACO-A* even finds the
upper-bound solutions. In addition, the optimization capability
of ACO-A* is more obvious on D-type and I-type scenar-
ios than G-type scenarios, since ACO-A*’s opt is relatively
smaller on G-type scenarios. In conclusion, ACO-A* is able
to find a quite good solution for a random problem instance.
Especially, ACO-A*’s advantage becomes more obvious on
irregular and space-segmented scenarios.

Finally, in order to investigate whether ACO-A* is able
to retain its superiority under different cost weight settings,
we further conduct a comparison on normal instances under
another weight setting, i.e., (1.0, 1.0, 1.0, and 1.0). From Table
SIII, in the supplementary material, we find that ACO-A* still
achieves significantly better performance than the greedy algo-
rithm. Typically, ACO-A*’s opt is larger than 0.5 on 41 out
of 45 instances. To some degree, the consistent results on dif-
ferent cost weight settings show that the specific cost weight
setting has no obvious influence on the ACO-A*’s effective-
ness and the weight setting should be more problem-related
rather than algorithm-related.

D. Performance of Estimation

In ACO-A*, a good estimated cost graph of targets plays
an important role in the subsequent target order determination

and path planning. Thus, the estimation strategy should play
an important role in the performance of ACO-A*.

In practice, given an environment, it is quite intuitive to esti-
mate the traveling costs between targets by the line segment
connecting them. The line-based estimation (LBE) is very sim-
ple and needs no special environment modeling. However, if
there are dense obstacles, even if the line segment connecting
two targets is short, an optimal path between them may be
quite winding and long and the LBE hence becomes ineffec-
tive. Additionally, the LBE is unable to consider some special
kinds of path cost, e.g., the turning cost.

Herein, to investigate whether the proposed RBE has
an advantage over the LBE, we construct 24 scenarios of
G-type, I-type, or D-type, with obstructive degree equals to
0.1, 0.2, . . . , 0.8. Particularly, to investigate the possible neg-
ative impact brought by LBE’s neglect of turning cost, we
compare RBE and LBE under three different settings of turn-
ing cost weight, i.e., 5, 50, and 100, resulting in a total of
24×3 comparisons. For each comparison, there are five com-
petition circles and in each circle, a random set of targets is
generated for test. In each comparison, the number of victory
circles of RBE is counted, and RBE is thought as a winner if
its victory number is larger than a half of five. From Table SIV,
in the supplementary material, we observe that:

1) RBE wins on more comparisons, i.e., 48 out of 72, and
when fo is larger than 0.4, RBE wins almost all compar-
isons, i.e., 33 out of 36. The fact shows that RBE has
a great superiority for dealing with densely obstructive
cases;

2) RBE performs better in I-type and D-type scenarios
than G-type scenarios. Specifically, RBE wins 22 out
of 24 D-type comparisons, and wins 15 out of 24 I-type
comparisons. But for G-type scenarios, RBE only wins
when the obstructive degree is larger than 0.4;

3) as the weight of turning cost increases, LBE’s perfor-
mance becomes worse due to its neglect of turning cost.
In contrast, RBE’s performance is less affected since it
always considers all kinds of path cost.

In conclusion, the compared results show that the proposed
representative based estimation generally outperforms the
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LBE, especially on instances with more complex obstacles.
Also, it is a great advantage for the RBE to be able to consider
all kinds of path cost.

E. Necessity of A*

Due to the enormous continuous search space of 3-D path
planning, a number of nondeterministic algorithms, especially
EAs, have been developed and they have shown time efficiency
and good performance. Particularly, in [42], a self-adapted
DE (AoDE) is proposed and compared with other EAs, includ-
ing PSO, jDE, and DEs with different parameter settings for
3-D underwater path planning. The results shows that two EAs,
i.e., AoDE and DE with parameters F = CR = 0.7, generally
achieve better performance. In this section, we compare these
two EAs with A* so as to validate the necessity of A* for
3-D path planning considering dense obstacles. We construct
14 G-type or I-type obstacle scenarios with obstructive degree
fo in the range of [0.1, 0.5]. In each scenario, 60 pairs of dis-
tant points are randomly generated and then, EAs and A* are
adopted for the pairwise path planning between each pair of
points.

From the results as shown in Table SV in the supplementary
material, the performance of both EAs is obviously worse than
that of A*. Apart from this, EAs’ performance deteriorates as
the obstructive degree fo increases. When fo is larger than
0.4 for G-type and I-type instances, it becomes difficult for
EAs to find a feasible path for the targets. When fo is smaller
than 0.2, although EAs manages to find feasible paths, the
corresponding path costs are far larger than the path costs
obtained by A*. Thus, compared with the popular EAs, the
traditional graph-search algorithms, such as A* should be more
capable for the densely obstructive environments considered in
this paper.

F. ACO-A* Versus (GA-AoDE and GA-A*)

In order to further investigate the performance of ACO-A*
compared with EAs, we build a hybrid EA, namely GA-
AoDE based on our two-layer environment modeling, in which
a permutation-based GA [48] is adopted to determine travel-
ing order and AoDE [42] is applied for pairwise path planning.
The recommended parameter settings in the original works are
adopted. Meanwhile, to investigate the relative importance of
ACO and A* to the performance of ACO-A*, we also intro-
duce GA-A* into comparison. GA-A* differs from ACO-A*
only in that GA-A* adopts GA rather than ACO for travel-
ing order determination. The comparison results of GA-AoDE,
GA-A*, and ACO-A* are shown in Table SVI in the supple-
mentary material. Moreover, we have shown the detailed path
information found by these algorithms on three G-type, I-type,
and D-type instances with m = 20, fo = 0.1 in Table SVII in
the supplementary material.

First, from Table SVI, in the supplementary material, ACO-
A* shows a great superiority over GA-AoDE in terms of both
solution quality and time efficiency. ACO-A* is always able
to find feasible paths for target traveling while GA-AoDE fails
on almost all instances. In fact, the results are consistent with
the above finding that AoDE may fail to find a feasible path in

a densely obstructive environment. As shown in Table SVII in
the supplementary material, although the obstructive degree of
0.1 is quite small, AoDE still fails to find the feasible path(s) to
reach one or more targets out of the total 20 targets, especially
on I-type or D-type instances which include more complex
obstacles.

Second, it is observed that GA-A* also significantly outper-
forms GA-AoDE. This further shows that the necessity of A*
for solving the problem considered in this paper. In fact, com-
paring GA-A* with ACO-A*, GA-A* is only slightly worse
than ACO-A* as shown in bold in Table SVI in the supple-
mentary material. The results show that the great advantage
of ACO-A* over GA-AoDE should be mainly attributed to
the adoption of A* in ACO-A* for pairwise path planning in
densely obstructive environments.

G. Time Complexity

Herein, we investigate the time complexity of the proposed
ACO-A* from two respects, i.e., ACO for traveling order
determination and A* for pairwise path planning.

1) Comparing ACO with the greedy algorithm as in Table
SVIII in the supplementary material, we find that the
time consumed by both of them is less than a tenth
of second, which should be negligible in reality. But
note that ACO is able to achieve a significantly better
performance.

2) By comparing A* with the Dijkstra’s algorithm as in
Table SIX in the supplementary material, we verify
that proposed heuristic function for A* does help to
accelerate A*’s search process.

3) Comparing A* with two EAs, i.e., AoDE and DE as
shown in Table SX in the supplementary material, A*
is observed to be more time-efficient, especially on
instances with dense and irregular obstacles. On the
whole, the proposed ACO-A* is quite efficient. For more
details of the time comparison and analysis, please refer
to Appendix A in the supplementary material.

VIII. REALISTIC EXPERIMENT

In order to further validate the efficiency of the proposed
environment modeling and the proposed ACO-A* to deal with
realistic submarine scenarios, we conduct experiments on the
high-resolution, i.e., 250 m resolution, gridded New Zealand
bathymetry data.1 The bathymetry belongs to one of the largest
deep-water areas under national jurisdiction. For experiments,
we utilize a part of the bathymetry as shown in Fig. 3, in
which the maximum depth is close to 10 km.

For environment modeling, since the environment height is
significantly smaller than the environment length or width, we
set the cube size as (L, W, H) = (12.5, 12.5, 0.25). Therefore,
there are 200 × 200 × 40 cubes after fine-grained modeling.
Furthermore, we set block size B as 10, resulting in a total
of 20 × 20 × 4 blocks. For path cost evaluation, we set the
cost weights α1, α2, α3, α4 as 50, 1, 10, and 50, respectively,

1The New Zealand Region bathymetric datasets (2016) are free available
online: https://www.niwa.co.nz/our-science/oceans/bathymetry [2017-10-19].
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where the unit of traveling length is kilometer. The parameter
setting of ACO-A* keeps unchanged.

For completeness, we perform experiments in three kinds
of scenarios: 1) the above-safe scenario includes only the
New Zealand bathymetry, and the space above the bathymetry
is safe; 2) the risky scenario includes bathymetry and ran-
domly generated risky zones, which occupy 10% of the
space above the bathymetry; and 3) the obstructive sce-
nario includes bathymetry and randomly generated obstructive
zones, which occupy 10% of the space above the bathymetry.
In each scenario, we randomly generate 20, 40, and 60 tar-
gets and perform ACO-A* for their path planning. The
results are given in Table SXI in the supplementary mate-
rial, which presents not only the total traveling cost of
each path, but also the four kinds of path cost consti-
tuting the traveling cost. Since the weight of length cost
equals 1.0, the “length cost” column indeed lists the total
traveling length of each path and length unit is kilometer.
Fig. 3 illustrates the path planned by ACO-A* to traverse
60 targets in the above-free scenario and the path seems quite
reasonable.

Furthermore, in order to validate the efficiency of the pro-
posed ACO-A* as well as the efficiency of the proposed RBE
for quick cost graph building in realistic scenarios, we compare
the performance of ACO-A* using representative-based esti-
mated cost graph, line-based estimated cost graph, and the real
cost graph in each scenario, respectively. To some degree, the
line-based and real-based ACO-A* indeed provides baseline
solutions and upper-bound solutions, respectively. According
to these bound solutions, the optimization ratio of the RBE
is computed and listed in column opt in Table SXII in the
supplementary material. In each scenario, opt value is found
to be not less than 0.85. The results show that the pro-
posed ACO-A* and its RBE still perform well in realistic
environments.

IX. CONCLUSION

In this paper, to solve the target traveling problem in densely
obstructive environments, an algorithm, namely ACO-A* is
proposed by combining ACO and the A* search algorithm. In
ACO-A*, ACO is responsible to determine a traveling order
of targets according to an estimated cost graph, which is built
using a RBE strategy based on the coarse-grained modeling.
Following the traveling order obtained by ACO, A* performs
pairwise path planning based on a search graph obtained by the
fine-grained modeling. The optimization capability of ACO-
A* has been verified on both synthetic scenarios and realistic
scenarios. Particularly, the effectiveness of RBE and the neces-
sity of A* have been demonstrated by thorough comparison
experiments. The time efficiency of the proposed ACO-A* has
also been validated in experiments.

In the future study, there are several potential directions:
1) consider multiobjective optimization for multiple kinds of
traveling cost so as to avoid the use of cost weights; 2) develop
distributed algorithm versions so as to deal with larger-scale
problems; and 3) consider more realistic mission requirements
to improve the algorithm practicality.
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