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Abstract

Hyperheuristics can be defined to be heuristics which choose between heuristics in order to solve a given op-
timisation problem. The main motivation behind the development of such approaches is the goal of developing
automated scheduling methods which are not restricted to one problem. In this paper we report the investigation
of a hyperheuristic approach and evaluate it on various instances of two distinct timetabling and rostering prob-
lems. In the framework of our hyperheuristic approach, heuristics compete using rules based on the principles of
reinforcement learning. A tabu list of heuristics is also maintained which prevents certain heuristics from being
chosen at certain times during the search. We demonstrate that this tabu-search hyperheuristic is an easily re-usable
method which can produce solutions of at least acceptable quality across a variety of problems and instances. In
effect the proposed method is capable of producing solutions that are competitive with those obtained using state-
of-the-art problem-specific techniques for the problems studied here, but is fundamentally more general than those
techniques.
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1. Introduction

The past twenty years or so have seen the development of a number of metaheuristics,
including tabu search, simulated annealing, ant algorithms and genetic algorithms (e.g. see
Glover and Kochenberger (2003), Rayward-Smith et al. (1996), Reeves (1993), and Voss
et al. (1999)). In order to generate an automated method for a given NP-hard optimisation
problem, a software developer must produce a solution technique which takes into account
the context within which the technique will be used (e.g. does the problem owner place
much emphasis on solution quality, is the problem owner prepared to invest a lot of time
in the development of the technique, is computational expense an issue, etc.). In order
to determine which solution approach to use it is important to distinguish between the
following two scenarios.

∗Author to whom all correspondence should be addressed.



452 BURKE, KENDALL AND SOUBEIGA

• Scenario a: We are looking for the best solutions possible and preferably one that is
optimal. Any slight improvement on the solutions will make a big difference. We are
prepared to invest time and money in order to obtain these solutions.

• Scenario b: This is not a one-off problem but an instance of a series (class) of problems
which we encounter regularly. We want to use the same method for a number of other
problems without having to spend a lot of time re-adapting the method to each new
instance or new problem tackled. We would much prefer one method as long as the
solutions produced are of acceptable quality across the various problems which we have
to solve. One ‘general’ method is far more efficient to implement (and market) than a range
of ‘problem-specific’ approaches. We require solutions which are ‘good enough—soon
enough—cheap enough’ (Burke et al., 2003a).

In the first scenario, it may be worth considering exact algorithms, or the development
of bespoke metaheuristic techniques, which, in practice, are often hybridised with prob-
lem specific heuristics. Sometimes these heuristics are even specific to particular prob-
lem instances. Metaheuristics have been proven to be very successful for solving various
optimisation problems in such a context (Glover and Kochenberger, 2003; Osman and
Laporte, 1996; Rayward-Smith et al., 1996; Reeves, 1993; Voss et al., 1999), especially
when domain-specific knowledge is incorporated. The advantage of metaheuristics in this
scenario is that, once the technique has been developed, good-quality solutions can be
produced quite quickly. The drawback of metaheuristics in this scenario, however, is that
in order to apply the same technique to a different problem or problem instance, one of-
ten needs to carry out (sometimes extensive) tuning of the method. This may involve the
adjustment of relevant parameters of the technique for the new problem. It may also in-
volve the incorporation of different problem-specific heuristics. For example it was noted
in Aickelin (1999) and Aickelin and Dowsland (2000) that a tabu search metaheuristic used
in Dowsland (1998) relied heavily on some of the problem-specific information such as the
coefficients of the objective function. As a result, the tabu search of Dowsland (1998) was
no longer effective when perturbations of the problem data were made (Aickelin, 1999).
Some metaheuristics can be brittle, precisely because of their bespoke, tailor-made nature.
Hence problem-specific metaheuristics are often not readily applicable to a new problem
(Cowling, Kendall, and Soubeiga, 2000). Another illustration can be found in Burke, De
Causmaecker, and Vanden Berghe (1998) and Burke et al. (2001) where a metaheuristic ap-
proach is used for a nurse rostering system. The system produces excellent results for nurse
rostering and is in use in over 40 Belgian hospitals. The methods would need significant
programming effort though to use them for nurse rostering in different countries because
the system is tailor-made for the rules, regulations and working practices that apply in Bel-
gium. If those rules, regulations and working practices change then the system will need
altering. This situation is highly appropriate in circumstances where high quality sched-
ules that satisfy a wide range of constraints are crucial (such as the one described above).
The problem is that such systems are expensive to implement and often more expensive to
adapt to new problems or problem instances. There will always be a place for expensive
problem-specific systems which can produce very high quality solutions to specific critical
problems. However, there is also a place for much more general systems which can deal with
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a wide range of problems. In many optimisation scenarios we are not looking for very high
quality solutions. Instead, we may well require solutions which are ‘good enough—soon
enough—cheap enough’.

This paper is concerned with developing the heuristic infrastructure which will allow
us to operate efficiently and effectively within this more general framework. The overall
goal of such research is to develop systems that can operate at a higher level of generality
than today’s systems, but which can also produce solutions which are competitive with
state-of-the-art problem-specific systems.

In scenario b we are looking for a technique which can be easily applied to different
problems. This means that we require a method which was not designed with one particular
problem (or problem instance) in mind but is instead applicable to a class of problems or
domains. Note that the aim is not to solve all problems with one method, but a subset of
problems. The No Free Lunch Theorem (Wolpert and MacReady, 1997) implies that the
former objective cannot be achieved anyway. The aim is to raise the level of generality.
The method should not require customisation when applied to a new problem, perhaps at
the expense of reduced but still acceptable solution quality (when compared with, say, a
made-to-measure metaheuristic technique). While the focus in scenario a is on solution
quality, the focus in scenario b is on developing more generally applicable approaches. It
is the context of scenario b that has motivated the use of hyperheuristic techniques (Burke
et al., 2003a). A hyperheuristic can be defined to be a heuristic which chooses between
heuristics. While a metaheuristic usually deals with solutions, a hyperheuristic deals with
solution methods (e.g. heuristics). A metaheuristic can and usually does modify solutions
directly. A hyperheuristic can only modify solutions indirectly, by way of an operator (a
low-level heuristic). This places a hyperheuristic at a higher level of abstraction than most
current studies of metaheuristics. Of course, hyperheuristics can be metaheuristics. Indeed
they usually are (Burke et al., 2003a). The point of using the term hyperheuristics (rather
than metaheuristics) is that it tells us that we are working on trying to find the right method
or heuristic in a particular situation rather than trying to solve a problem directly.

The work reported in this paper was conducted in this context. The aim is not to develop
a method which would ‘beat’ existing algorithms for a given optimisation problem, but
instead to develop a method which is capable of performing well-enough, soon-enough,
cheap-enough across a range of problems and domains. Such a method could ultimately
underpin cheaper optimisation systems which would be available to a wider range of users
than is the situation today. A hyperheuristic can choose which low-level heuristic to apply
at each decision point, until a stopping condition has been fulfilled. In order to apply a
hyperheuristic to a given optimisation problem, we only need a set of low-level heuristics
and an evaluation function to assess solution quality. A key ingredient in implementing a
hyperheuristic is the learning mechanism, which guides the hyperheuristic in the way in
which low-level heuristics are selected.

Over the past few years a number of hyperheuristic studies have been reported in the
literature although the term ‘hyperheuristic’ is not always employed (Burke et al., 2003a;
Cowling, Kendall, and Soubeiga, 2000, 2001, 2002; Fang, Ross, and Corne, 1994; Norenkov,
1994; Schaffer and Eshelman, 1996; Storer, Wu, and Vaccari, 1992; Terashima-Marin, Ross,
and Valenzuela-Rendón, 1999). In fact the term ‘hyperheuristic’ was introduced relatively
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recently. See Burke et al. (2003a) for an overview of hyperheuristic approaches. The first
papers which discussed hyperheuristic ideas were published in the early 1960’s by Fisher
and Thompson (1961, 1963) and by Crowston et al. (1963). All three papers (Crowston et al.,
1963; Fisher and Thompson, 1961, 1963) tackled the problem of job-shop scheduling. The
learning method was based on probabilistic weighting of the low-level heuristics, which
represented various scheduling rules. Subsequent work on hyperheuristics was carried out
by Mockus et al. who advocated a Bayesian mechanism for searching between low-level
heuristics (Mockus et al., 1997; Mockus and Mockus, 1991; Mockus, 1989). More recently
Hart and Ross (1998) used a genetic algorithm (GA)-based hyperheuristic to solve the job-
shop scheduling problem. In their approach the GA chromosome represents which method
to use in order to identify conflicts among schedulable operations and which heuristic to use
in order to select an operation from the conflicting set. Computational results showed that
evolving solution methods was beneficial and results obtained were promising when com-
pared to those most recently published. Another GA-based hyperheuristic approach was that
presented by Cowling, Kendall, and Han (2002) for solving a trainer scheduling problem. In
Cowling, Kendall, and Han (2002) the GA chromosome represents an ordered sequence of
low-level heuristics to be applied to the problem. Results produced by their hyperheuristic
were superior to those obtained by both a conventional GA using a direct representation
of the problem and a memetic algorithm which invokes a local search improvement pro-
cedure after the application of crossover and mutation operators. Nareyek (2001, 2003)
also proposed a hyperheuristic method which uses ideas based on reinforcement learning
(Kaelbling, Littman, and Moore, 1996; Sutton and Barto, 1998) in order to choose which
heuristic to apply at each decision point. In his approach each heuristic is assigned a weight
which can increase or decrease according to the heuristic’s performance. Various reward
and punishment schemes were considered when selecting a low-level heuristic. These re-
ward and punishment schemes were then compared to one another by way of solving two
optimisation problems. Another account of a hyperheuristic approach is reported in Ross
et al. (2002) for solving bin-packing problems. The learning mechanism here is a learning
classifier system, in which each classifier represents a bin-packing heuristic or rule. The aim
is to use learning classifier systems in order to produce good combinations of bin-packing
heuristics and rules. The resulting hyperheuristic method was able to produce bin-packing
solutions which were better than the ones obtained when each bin-packing heuristic was
used on its own. Cowling, Kendall, and Soubeiga (2000, 2001, 2002) report the application
of another type of hyperheuristic which uses a choice function to rank the low-level heuris-
tics. The choice function hyperheuristic has been successfully applied to various real-world
personnel scheduling problems.

In this paper, we carry out a thorough investigation of a tabu-search hyperheuristic tech-
nique. Under this framework, the heuristics compete against one another in order to be
selected. We demonstrate the generality of our hyperheuristic by evaluating it on a compre-
hensive suite of problem instances of nurse-scheduling and university course-timetabling
problems. In effect, the proposed method is capable of producing solutions which are com-
petitive with those obtained using the state-of-the-art techniques for both problems.

The remainder of this paper is organised as follows. In Section 2 we give a description
of the proposed hyperheuristic approach. Computational experiments are then reported for
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the nurse scheduling problem and the university course timetabling problems in Sections 3
and 4 respectively. Section 5 presents our conclusions.

2. A tabu-search hyperheuristic

As previously mentioned, in order to apply a hyperheuristic to a given problem, we only need
to input the low-level heuristics and the evaluation function. The hyperheuristic described in
this paper can be thought of as being a black box which returns (outputs) a solution to a given
problem, by employing a given set of low-level heuristics for the problem. This is illustrated
in figure 1. The hyperheuristic black box receives, as input, information about the problem
as well as a number of low-level heuristics. It then selects and applies a heuristic at each
decision point. Then, when the stopping condition has been met, the hyperheuristic black
box returns, as output, one or several solution(s) to the problem. A detailed description of
how this process is carried out is presented in the next paragraph and is illustrated in figure 2.
Simple low-level heuristics (e.g. ‘add’, ‘drop’, ‘swap’ objects) can be easily implemented
and input to the black box. There is a potential drawback due to the argument that this

heuristics at each decision point
Select and apply appropriate 

Output solution (s) to the problem

BLACK BOX
TABU SEARCH HYPERHEURISTIC (e.g. heuristics might be chosen from a database

Input problem (e.g. objective function
solution / problem representation, stopping condition)

Input low-level simple heuristics

Figure 1. General hyperheuristic framework.
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HYPERHEURISTIC BLACK BOX

Increase rank Decrease rank Decrease rank

Empty tabu list

Include highest-ranking heuristic

Check stopping condition

and apply it once
Select highest-ranking non-tabu heuristic

HoldsDoes not hold

in tabu list on a 1st in, 1st out basis

STOP & output best solution (s)

objective function > 0
Improvement in Improvement in

objective function = 0
Improvement in

objective function < 0

Figure 2. Tabu-search hyperheuristic framework.

approach will not underpin a wider take up of more general systems because a user has
to input low-level heuristics, which requires specialist knowledge. However, this argument
can easily be countered by developing systems which link to a maintained database of low-
level heuristics, which could be dragged-and-dropped into the hyperheuristic. Each heuristic
in the database could be described in simple natural language terms so that the user can
understand what they do. The idea of storing previously built heuristics in a database is
not new. The machine learning paradigm of case-based reasoning has recently been used to
select heuristics for course timetabling problems (Burke et al., 2004; Burke et al., 2003b;
Petrovic and Qu, 2002). In these three papers, the case-based reasoning system maintains
a case base of information regarding the performance of different heuristics on previously
solved timetabling problems.

Different types of hyperheuristics will have different ways of selecting the low-level
heuristics, e.g. choice function hyperheuristics (Cowling, Kendall, and Soubeiga, 2000,
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2001, 2002), genetic-algorithm hyperheuristics (Cowling, Kendall, and Han, 2002; Hart
and Ross, 1998), etc. In this paper we investigate and develop a tabu-search hyperheuristic.
In figure 2, we present the framework of our tabusearch hyperheuristic. Both the problem
and a number of low-level heuristics have already been input to the hyperheuristic black box.
The output of the hyperheuristic is a (set of) solution(s) to the problem. As mentioned earlier,
the low-level heuristics can be thought of as competing with each other. The competition
rules are inspired from the principles of reinforcement learning (Kaelbling, Littman, and
Moore, 1996; Sutton and Barto, 1998). At the beginning of the search each low-level
heuristic k has a score, rk = 0, of 0 points. Heuristic ranks are allowed to decrease and
increase within the interval [rmin, rmax], where rmin, rmax are respectively lower and upper
ranks. When a heuristic has been applied we note the change � in the evaluation function
value from the previous solution to the new one (� represents the improvement in the
objective function). If this results in an improvement (i.e. � > 0) then the score of the
heuristic is increased, e.g. rk = rk + α. Otherwise it is decreased, e.g. rk = rk − α, where
α is a positive number. There are several ways in which α can be chosen. For example
α can be selected to be a simple integer or real number. It can also be determined as
a function of various parameters such as the change � in the objective function value,
the amount of CPU time used to apply the chosen low-level heuristic, the individual and
collective performance of a set of heuristics, etc. (Cowling, Kendall, and Soubeiga, 2000,
2001, 2002). Here we choose a simple scheme for α; it is taken to be a positive integer
number.

In addition, a tabu list of low-level heuristics is maintained, which excludes some heuris-
tics from the competition for a certain duration. Note that, while in a standard tabu search
metaheuristic approach (which operates directly on a problem), solutions or solution at-
tributes are made tabu, in our tabu-search hyperheuristic approach it is rather solution
methods (heuristics) that are made tabu. The basic idea of the tabu list is to prevent a heuris-
tic which did not perform well recently from being chosen too soon (even if it still has the
highest rank). More precisely we include heuristic k in the tabu list (on a ‘First In—First
Out’ basis) if � is non-positive. In addition, heuristics already in the tabu list are released
if � �= 0. The idea is that there is no point in keeping a heuristic tabu once the current
solution has been modified (e.g. when � �= 0). Thus we employ a variable-length dynamic
tabu list of heuristics (Burke and Soubeiga, 2003).
Overall the tabu search hyperheuristic can be outlined by the following pseudocode:

Do
1—Select the low-level heuristic, k, with highest rank and apply it.
2.1—If � > 0 then rk = rk + α

2.2—Else rk = rk − α and include k in TABULIST
Until Stopping condition is met.

We use α = 1, rmin = 0 and rmax = n as defined in Burke and Soubeiga (2003) where
n is the number of low-level heuristics available. In the next two sections we report results
that are obtained by applying the tabu-search hyperheuristic to two different optimisation
problems. Again, in order to apply a hyperheuristic to a given problem, all that is needed is a
set of low-level heuristics and a means of evaluating solution quality. These will be given for
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each problem considered below. Note that the key point of this paper is that the tabu-search
hyperheuristic is not designed with a particular problem in mind. On the contrary the goal
is to develop an approach which is more general than the current state of the art. It is this
generality that is demonstrated in the next two sections.

3. An application to nurse scheduling

3.1. Problem description

This problem is taken from Aickelin and Dowsland (2000) and Dowsland (1998). It repre-
sents a real world nurse scheduling problem at a large hospital in the UK. There is a wide
range of constraints and requirements to meet the demands and regulations of the institution
and the preferences of the staff. The problem is discussed in more detail in Aickelin and
Dowsland (2000) and Dowsland (1998). We will just briefly present the necessary details
of the problem in this section.

The nurses are required to work day shifts and night shifts. The day shift is categorized
into two different types: “earlies” and “lates”. The overall goal is to generate a “weekly
shift-pattern” for all the nursing staff. Any particular nurse is usually required to work more
day shifts than night shifts in any given week. Features of the problem include:

• Normally between 20 and 30 nurses per ward
• 3 different categories of staff qualification
• 411 different shift-patterns (including both full and part time shifts)

The evaluation criteria are discussed below and in more detail in Aickelin and Dowsland
(2000) and Dowsland (1998). It is worth noting that Aickein and Dowsland point out that
these criteria were established after input from staff at the hospital.

• xi j be the decision variables which take value 1 if nurse i works shift-pattern j and 0
otherwise;

• parameter g be the number of grades;
• parameter n be the number of nurses;
• parameter s be the number of possible shift-patterns;
• a jk be a parameter which assumes 1 if shift-pattern j covers shift k, 0 otherwise;
• bir be a parameter which assumes 1 if nurse i is of grade r or higher, 0 otherwise;
• pi j be the penalty cost of nurse i working shift-pattern j ;
• Skr be the demand of nurses of grade r or above on shift k;
• F(i) be the set of feasible shift-patterns for nurse i .

The aim of the problem is to minimise the following penalty cost function:

n∑
i=1

s∑
j=1

pi j xi j (1)
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subject to the following constraints:

∑
j∈F(i)

xi j = 1, ∀i (2)

s∑
j=1

n∑
i=1

bir a jk xi j ≥ Skr , ∀k, r (3)

The objective, expressed in (1), is to minimise the overall penalty cost associated with
the nurses’ view of the shift-patterns they have been allocated to. The constraint in (2) en-
forces each nurse to work exactly one shift-pattern. Constraint (3) requires that a minimum
number of nurses be scheduled for each shift and for each grade-band. The variable bir

is defined in such a way that higher-grade nurses can be substituted for those with lower
grades if necessary. The problem is NP-hard (see Aickelin and Dowsland, 2000). They say
that instances can involve between 1000 and 2000 variables and up to 70 constraints. It was
noted in Aickelin and Dowsland (2000) that the difficulty of a given instance is related to
the shape of the solution space, which itself depends on the distribution of the penalty costs
(Pi j ) and their relationship with the set of feasible solutions. Here we propose to compare
the hyperheuristic results with those published in the literature for 52 instances of the prob-
lem, using three wards and corresponding to each week of the year. This represents a fairly
comprehensive suite of problems which feature a wide variety of solution landscapes. The
most successful method to date which works within the low CPU time available in practice
is a tabu search metaheuristic (Dowsland, 1998) which uses chain-moves whose design
and implementation were very problem-specific. Effectively these chain-moves relied on
the way the different factors affecting the quality of a schedule were combined in the Pi j

penalty costs (Aickelin and Dowsland, 2000). In an attempt to reduce the problem speci-
ficity and domain-dependency of the tabu search approach of Dowsland (1998), a genetic
algorithm which did not use the chain-moves was developed in Aickelin and Dowsland
(2000) but failed to obtain good solutions. This led to the use of a co-evolutionary strategy
which decomposed the main population into several co-operative sub-populations. How-
ever, domain-knowledge of the problem structure was incorporated in both the way the
sub-populations were built, and the way partial solutions were recombined to form com-
plete ones. The co-evolutionary strategy of Aickelin and Dowsland (2000) is very much
problem-specific, and, both the tabu search of Dowsland (1998) and the genetic algorithm
of Aickelin and Dowsland (2000) are only applicable to problems with a very similar
structure.

In this paper, we solve this nurse scheduling problem using our tabu-search hyperheuris-
tic which does not rely upon the problem-specific information required by the tailor-made
approaches of Aickelin and Dowsland (2000) and (Dowsland, 1998). We use the hyper-
heuristic evaluation function of Cowling, Kendall, and Soubeiga (2002) and Burke and
Soubeiga (2003). Given that nurses work either days or nights it is the case that in order
for a given solution to be feasible, (i.e. enough nurses covering all 14 shifts at each grade-
brand), the solution must have sufficient nurses in both days and nights independently of
each other. Recall that, in a given week, nurses work either days or nights, but not both. A
solution is defined as balanced in days (or nights) at a given grade-band r if there are both
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under-covered and over-covered shifts in the set of days (or nights) at grade r such that the
nurse surplus in the over-covered day (or night) shifts suffices to compensate for the nurse
shortage of the under-covered day (or night) shifts. A solution cannot be made feasible until
it is balanced (Dowsland, 1998; Aickelin and Dowsland, 2000). The degree of infeasibility
of a solution as defined in Cowling, Kendall, and Soubeiga (2002) is

Infeas =
g∑

r=1

(ρ × Balr + 1)
14∑

k=1

max

([
Skr −

n∑
i=1

s∑
j=1

bir a jk xi j

]
, 0

)
,

where Balr is 2 if both day and night are unbalanced at grade r , 1 if either day or night is
unbalanced at grade r , and 0 otherwise; ρ is a severity parameter for unbalanced solutions,
whose value is chosen so that a balanced solution with more nurse-shortages is preferred
to an unbalanced one with fewer nurse-shortages, as the latter is more difficult to make
feasible than the former. We use ρ = 5 as given in Cowling, Kendall, and Soubeiga (2002).
The evaluation function can then be defined as

E = PC + Cdemand InFeas

with Cdemand a weight associated with InFeas as in Aickelin and Dowsland (2000). The
definition of Cdemand is based on the number, q, of nurse-shortages in the best least-infeasible
solution so far, i.e.

q =
14∑

k=1

g∑
r=1

max

([
Skr −

n∑
i=1

s∑
j=1

bir a jk xi j

]
, 0

)
.

Coefficient Cdemand of InFeas in E is then given by Cdemand = γ × q if q > 0, and
Cdemand = v otherwise; where γ is a preset severity parameter, and v is a suitably small
value. The idea is that the weight Cdemand depends on the degree of infeasibility in the best
least-infeasible solution encountered so far, after which it remains at v. We use γ = 8 and
v = 5 as given in Aickelin and Dowsland (2000) so as to have to make a fair comparison.
Note that we weight feasibility more highly than we weight cost.

3.2. Low-level heuristics

We used the same 9 low-level heuristics as given in Burke and Soubeiga (2003) and Cowling,
Kendall, and Soubeiga (2002), seven of which (heuristics h1, h2, h3, h4, h5, h6, h7) were
also used in the tabu search metaheuristic approach of Dowsland (1998), in addition to four
variants of chain-moves heuristics. In Dowsland (1998), heuristics were applied in a given
order, in conjunction with two tabu lists (one for the nurse that is to be moved and one for
the type of shift-patterns utilised). The tabu search algorithm of Dowsland (1998) relied
heavily on the chain-moves in order to produce good solutions (Aickelin, 1999; Aickelin
and Dowsland, 2000). Two of the chain-moves heuristics (nurse-chain and shift-chain) were
specifically designed to help produce feasible solutions, and two others (nurse-chain and
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shift-chain) to improve on the penalty cost (Dowsland, 1998). The 9 low-level heuristics
that we use are:

h1: Change the shift-pattern of a random nurse.
h2: Same as [h1] but the acceptance criterion is ‘1st improving InFeas’.
h3: Same as [h1] but ‘1st improving InFeas and no worsening of PC’.
h4: Same as [h1] but ‘1st improving PC’.
h5: Same as [h1] but ‘1st improving PC and no worsening of InFeas’.
h6: Change the shift-pattern type (i.e from day to night or vice versa) of a random nurse, if

solution unbalanced.
h7 : Same as [h6] but the aim is to restore balance. That is change a day shift-pattern with

a night one if night is unbalanced and vice-versa. If both days and nights are unbalanced
a swap of shift-pattern type for a pair of nurses, one working days and the other working
night is considered. The nurse working day is assigned a night shift-pattern and the nurse
working night is assigned a day shift-pattern.

h8 (Change-and-keep1): This heuristic finds the first move which improves PC by changing
the shiftpattern of a nurse and assigning the removed shift-pattern to another nurse.

h9 (Change-and-keep2): Same as [h8], but only considers moves which do not worsen
InFeas.

The above low-level heuristics are much simpler and easier to code than the chain-moves
of Dowsland (1998). They are all based around changing, or swapping one or two shift-
patterns.

3.3. Computational results

Our tabu-search algorithm was coded in Micosoft Visual C++ version 6 and all experiments
were run on a PC Pentium III 1000 MHz with 128 MB RAM running under Microsoft
Windows 2000 version 5. In both figures 3 and 4, we compare results of the tabu-search
hyperheuristic (HH) with those obtained using the indirect genetic algorithm of Aickelin
and Dowsland (2000) (GA). Both algorithms start with an initial solution obtained by
assigning a random feasible shift-pattern to each nurse as in Aickelin and Dowsland (2000)
and Dowsland (1998). This rarely leads to a feasible solution. For each of the 52 real-
world instances, both algorithms are run 10 times and average results given. The stopping
condition for the GA is 30 generations without improvement (population size is 100).
The stopping condition for the hyperheuristic was 8000 iterations. In terms of feasibility
we report the proportion of feasible solutions obtained at the end of each of the 10 runs
(figure 3). Therefore a proportion of 1 means that a feasible solution was produced at the
end of each run. In terms of cost we give the average cost over the 10 runs (figure 4).

In the original problem, there are 3 grade-bands for nurse qualifications. We see that in
terms of feasibility (top-left chart of figure 3) the hyperheuristic (FeasHH) outperforms the
genetic algorithm (FeasGA). The hyperheuristic, which was not designed for this problem,
always produces feasible solutions thus making it more reliable than the genetic algorithm
which was specifically designed for this problem. In terms of cost however (top-left chart
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Figure 3. Feasibility study for the nurse scheduling problem. Each chart corresponds to a set of 52 problem
instances.

of figure 4) the genetic algorithm outperforms the hyperheuristic, though in many cases the
hyperheuristic was also capable of producing solutions of acceptable quality in the same
range as those of the GA. Considering that the GA exploited problem-specific information
this should not come as a surprise.

To test the generality of both algorithms for this problem, we made the following pertur-
bations to the original data. All nurses are now given the same grade of 1, which means that
all nurses now have the same qualification level. 3 sets of problem instances were created:
one with the original Pi j costs, one where each Pi j is randomly generated uniformly in in-
terval [0, 100] and finally one where some random noise uniformly taken in interval [−10,
10] is added to each original Pi j (if the resulting Noise Pi j is below 0 it is set to 0 and if
the resulting Noise is above 100 it is set to 100). In both figures 3 and 4 we give results in
terms of feasibility and cost respectively. In each figure, results for Original Pi j are in the
top-right corner, those for Random Pi j are in the bottom-left corner and finally those for
Noise Pi j are in the bottom-right corner.

In terms of feasibility we see that the hyperheuristic, again, produces feasible solutions
for each of the 10 runs and for each of the 3 × 52 instances of the problem. The performance
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Figure 4. Cost study for the nurse scheduling problem. Each chart corresponds to a set of 52 problem instances.

of the genetic algorithm deteriorates, especially when using Random Pi j . In particular, the
GA seems to struggle with instance 50 for all 3 sets of perturbed problem instances. Very
strikingly the GA could not produce any feasible solution for each of the 10 runs of instance
50 when using Noise Pi j . This reveals the brittleness of this tailor-made metaheuristic as
opposed to the robustness of the general hyperheuristic method which was not designed
with this particular nurse scheduling problem in mind.

In terms of cost, the GA again outperformed the hyperheuristic for all 3 sets of problem
instances. We note however that the gap between the GA and the hyperheuristic decreases
substantially. For instances in the original data, the GA costs were lower than the hyper-
heuristic (HH) ones for all 52 instances. However, the GA achieved lower costs than the
hyperheuristic for only 37 instances in Original Pi j (with 1 gradeband), 29 instances in
Random Pi j , and 38 instances for Noise Pi j . It should be noted, however, that when a feasi-
ble solution has not been found in the GA we give a conventional penalty cost value of 255
to the resulting infeasible solution (as used by Aickelin and Dowsland (2000)). Note that
the hyperheuristic was able to produce optimal costs for each of the 10 runs of 12 instances
when using Noise Pi j . This again suggests that the GA is a little brittle while the HH seems
to be steadily improving.
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Overall it can be argued that the hyperheuristic is capable of producing solutions of
acceptable quality for the nurse scheduling problem. Our claim in this paper is that the
approach is more general than the current state-of-the-art. We now demonstrate this by
employing it on a very different scheduling problem: university course timetabling.

4. An application to university course timetabling

4.1. Problem description

This is one of the application problems considered in the Metaheuristic Network,1 a
European Commission project undertaken jointly by 5 European academic institutions,
in order to investigate the performance of various metaheuristic techniques on different
combinatorial optimisation problems.2 Here we consider the same timetabling problem as
that described in Rossi-Doria et al. (2002) and Socha, Knowles, and Sampels (2002). The
problem is a representation of a typical university course timetabling problem. A problem
instance generator creates a number of problem instances with different characteristics for
different values of given parameters. The problem consists of a set L of events (e.g. lectures,
seminars, etc.) to be scheduled in 45 timeslots corresponding to 5 days of 9 hours each, a
set R of rooms to hold the events, a set S of students, and a set F of features which define
requirements (e.g. a given event e might require a room equipped with an overhead pro-
jector, another might require a room equipped with sound system, video conference etc.).
Socha, Knowles, and Samples (2002) and Rossi-Doria et al. (2002) present the following
hard constraints (i.e. those that have to be satisfied in order for a solution to be feasible):

1. No student can be scheduled to more than one event at a time;
2. The room meets all features required by the event;
3. Room capacity is respected;
4. No more than one event is allowed per room and per timeslot.

In addition, Socha, Knowles, and Samples (2002) and Rossi-Doria et al. (2002) present the
following soft constraints (ones that are desirable but not essential). These soft constraints
are penalised equally:

1. A student has a class in the last timeslot of the day;
2. A student has more than 2 classes in a row;
3. A student has only one class on a day.

We use the following evaluation function E for the tabu-search hyperheuristic E =
1000 × Hcv + Scv, where Hcv is the number of hard constraint violations and Scv the
number of soft constraint violations. Again we attach a higher weight to Hcv over Scv so
as to achieve feasibility, which is, of course, more important than cost. We use the solution
representation of Rossi-Doria et al. (2002) and Socha, Knowles, and Sampels (2002). A
solution consists of a vector of length |L| where the positions correspond to the events
(position j correspond to event e j for j = 1, . . . , |L|). The value of each position is
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an integer number between 1 and 45 corresponding to the timeslot index to which the
corresponding event has been assigned. For example vector (45, 2, . . . , 20) means that
event e1 is assigned to timeslot 45, e2 to timeslot 2, . . . , and e|L| to timeslot 20. As in
Rossi-Doria et al. (2002) and Socha, Knowles, and Sampels (2002) room assignment is
dealt with seperately by way of a matching algorithm which is applied to the solution every
time it is altered by any of the low-level heuristics that are outlined below.

4.2. Low-level heuristics

To allow for a fair comparison, we use the following 6 low-level heuristics which were used
in Rossi-Doria et al. (2002) and Socha, Knowles, and Sampels (2002).

h1: Move a random event from its current timeslot to a random one.
h2: Same as [h1] but ‘1st improving Hcv’.
h3: Same as [h1] but ‘1st improving Scv and no worsening of Hcv’.
h4: Swap the timeslots of two random events.
h5: Same as [h4] but ‘1st improving Hcv’.
h6: Same as [h4] but ‘1st improving Scv and no worsening of Hcv’.

As for the nurse scheduling problem of the previous section, the low-level heuristics are
relatively simple to implement.

4.3. Computational results

Because of the already existing tabu-search algorithm, we coded the low-level heuristics
in Micosoft Visual C++ version 6 under Windows, and all experiments were run on a
PC Pentium III 1000 MHz with 128 MB RAM running under Microsoft Windows 2000
version 5. In Socha, Knowles, and Sampels (2002) both a local search method which
uses the above 6 low-level heuristics and an ant algorithm were applied to the problem.
Both algorithms started with an initial solution generated by randomly assigning a timeslot
to each event. This rarely leads to a feasible solution (i.e. a solution with Hcv = 0). The
hyperheuristic solution also starts from the same solution so as to allow for a fair comparison.
Three types of problem instances were created using the problem instance generator. In
Socha, Knowles, and Sampels (2002), 11 instances were generated, 5 small (100 events, 5
rooms and 5 features), 5 medium (400 events, 10 rooms and 5 features) and 1 large (400
events, 10 rooms and 10 features). Here we propose to apply the tabu-search hyperheuristic
to these 11 instances. Comparison is made in terms of number of evaluations, rather than
CPU times.

In Table 1, we present results for our tabu-search hyperheuristic (HH) as well as those
for the local search method (RRLS) and the ant algorithm (ANT) which are both de-
scribed in Socha, Knowles, and Sampels (2002). The number of evaluations for both RRLS
and ANT was approximately 200000. The number of evaluations for HH is 12000 for
small, 1200 for medium and 5400 for large, hence the hyperheuristic used substantially
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Table 1. Comparison between the hyperheuristic (HH) and the metaheuristics RRLS and ANT. In HH column
the format is proportion of feasible solutions in 5 runs/average Scv for feasible solution/best Hcv in all runs. In
column RRLS 77.5% Inf and 100% Inf correspond to the proportion of infeasible solutions in 40 runs. Otherwise
(for both ANT and RRLS) feasible solutions were found at the end of each run. The best results are shown in bold.

RRLS ANT
Set HH (Socha, Knowles, and Sampels, 2002) (Socha, Knowles, and Sampels, 2002)

S1 1/2.2/1 8 1

S2 1/3/2 11 3

S3 1/1.4/0 8 1

S4 1/1.8/1 7 1

S5 1/0.2/0 5 0

M1 1/179/146 199 195

M2 1/197.6/173 202.5 184

M3 1/295.4/267 77.5% Inf 248

M4 1/180/169 177.5 164.5

M5 0.8/388.5/303 100% Inf 219.5

L 0.2/1166/1166 100% Inf 851.5

fewer evaluations than both RRLS and ANT. In Socha, Knowles, and Sampels (2002),
RRLS and ANT were each run 50 times on small instances, 40 times on medium in-
stances, and 10 times on the large instance (using different random seeds). Here we ran
HH five times with different seeds. We therefore propose to compare the best HH result
in 5 runs with the average results from RRLS and ANT as given in Socha, Knowles, and
Sampels (2002).

In terms of feasibility (Hcv), we see that HH was able to produce a feasible solution for
each problem, whereas RRLS did not. In particular, RRLS only produced 9 feasible solutions
in 40 runs on instance M4. Also RRLS could not produce any feasible solutions in 40 runs
on M5. RRLS could not produce any feasible solutions in 40 runs on L (large instance)
either. ANT was able to produce feasible solutions for all instances. It would appear that
overall the tabu-search hyperheuristic, which was not specifically designed for this problem,
performs as well as ANT and outperforms RRLS both of which were specifically designed
for this particular problem. It can be seen that the tailor-made ANT algorithm is ‘beaten’ (or
has equivalent results) for all of the small problems and two of the medium problems by the
tabu-search hyperheuristic. However, the ANT algorithm produces better results on three of
the medium problems and the large problem. These observations are in line with what we
would expect. As the problems get larger, the problem specific features of the tailor-made
algorithm begin to give it an ‘edge’. However, this edge comes at the expense of having to
specially develop an algorithm for a particular problem. The tabu search hyperheuristic is a
more general approach which is more widely applicable. It is worth noting that even when
it is beaten, the tabu search hyperheuristic is producing results which are reasonably close
to the tailor-made algorithm.
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In terms of cost (Scv), we see that the best solution produced by HH in 5 runs was better
than the average solution of RRLS in most instances. Also for most instances HH is better
than or equal to ANT. Again the hyperheuristic proves to be highly competitive with two
tailor-made metaheuristics developed for this problem.

It should be noted that for both the nurse scheduling problem and the university course
timetabling problem, we used the same parameters of the tabu-search hyperheuristic as
given in Burke and Soubeiga (2003). We conclude that the hyperheuristic does not seem to
be very sensitive to the variety of problem and problem instances considered (Burke and
Soubeiga, 2003).

5. Conclusions

We have investigated the use of a hyperheuristic approach and applied it to two very different
scheduling problems. In our framework, heuristics compete against one another in order to
be selected by the hyperheuristic. The rules for competition are inspired by the principles of
reinforcement learning (Kaelbling, Littman, and Moore, 1996; Sutton and Barto, 1998). Our
hyperheuristic is also equipped with a dynamic tabu list of heuristics which are excluded
from the selection at certain times.

The application of the tabu-search hyperheuristic to a highly-constrained real-world
problem of scheduling nurses was very successful in terms of producing feasible solu-
tions for the hospital. When compared to a genetic algorithm specifically tailored for the
nurse scheduling problem (Aickelin and Dowsland, 2000) we observed that the tabu-search
hyperheuristic outperformed the GA in terms of feasibility. In terms of cost, the GA out-
performed the hyperheuristic. However, despite the fact that the hyperheuristic was not
specifically designed for this problem, solutions produced were of acceptable quality and
were certainly competitive with the GA (with optimality even achieved in many cases).
Further experiments on three sets of 52 perturbed problem instances revealed the brittleness
of the GA, especially in terms of feasibility, while the hyperheuristic tended to be consis-
tently improving, thus closing the gap between the cost performance of both algorithms.
Although the tabu-search hyperheuristic produced solutions which were competitive with
the GA, the purpose of this research was not to generate a method which could produce
‘better’ solutions than a specially tailored algorithm on a narrow range of benchmark prob-
lems. Instead the goal was to develop an approach which was competitive with the current
(problem specific) state of the art but which could be employed on different scheduling
problems.

In order to demonstrate the wider applicability of this method, the tabu-search hyper-
heuristic was also applied to a university course timetabling problem. In terms of both
feasibility (number of hard constraint violations) and cost (number of soft constraint viola-
tions) our hyperheuristic proved to be very competitive with the state-of-the-art techniques
for this problem. On seven out of eleven benchmark problems, the tabu-search hyperheuris-
tic, which was not designed with this problem in mind, produced solutions which were
better than or equal to those produced using a sophisticated local search method and an ant
algorithm, both of which were tailor-made algorithms for this problem (Socha, Knowles,
and Sampels, 2002).
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Our tabu-search hyperheuristic is a more general approach. All it requires is a series of
simple, easy to implement low-level heuristics. The system (tabu-search hyperheuristic)
will decide which of the heuristics to use. Is a heuristic any good? If you believe so, throw
it into the mix! The tabu-search hyperheuristic will search the problem space of low-level
heuristics with the aim of using the right one under the right conditions.

Our tabu-search hyperheuristic used the same parameter settings for both problems as
given in Burke and Soubeiga (2003). This confirms the fact that our hyperheuristic does not
appear to be particularly sensitive to parameter settings when using a variety of problems
and problem instances (Burke and Soubeiga, 2003). It would appear that the proposed
hyperheuristic approach has a good potential for generality across various problems and
would require little development time, without substantial deterioration in solution quality
as demonstrated in this paper. In fact our hyperheuristic was able to outperform published
problem-specific methods on some instances of the university course timetabling problem.
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