
European Journal of Operational Research 203 (2010) 550–558
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Discrete Optimization

A simulated annealing with a new neighborhood structure based algorithm
for high school timetabling problems

Defu Zhang a,*, Yongkai Liu a, Rym M’Hallah b, Stephen C.H. Leung c

a Dep. of Computer Science, Xiamen University, Xiamen 361005, China
b Dep. of Statistics and Operations Research, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
c Department of Management Sciences, City University of Hong Kong, Hong Kong

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 July 2008
Accepted 14 September 2009
Available online 19 September 2009

Keywords:
Timetabling
Simulated annealing
Extended neighborhood
0377-2217/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.ejor.2009.09.014

* Corresponding author. Tel.: +86 592 5918207; fax
E-mail address: dfzhang@xmu.edu.cn (D. Zhang).
This paper approximately solves the high school timetabling problem using a simulated annealing based
algorithm with a newly-designed neighborhood structure. In search for the best neighbor, the heuristic
performs a sequence of swaps between pairs of time slots, instead of swapping two assignments as in
a standard simulated annealing. The computational results show that the proposed heuristic, which is
tested on two sets of benchmark instances, performs better than existing approaches.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Many institutions (academic, health, transportation, sport, etc.)
in the world face timetabling problems. For a relatively large
institution, this problem is a challenging combinatorial task; thus,
efficient timetabling tools should be made available to concerned
decision-makers wishing to generate conflict-free flexible
timetables.

Timetabling consists in identifying an ‘‘optimal” allocation of a
given set of events (courses, exams, surgeries, sport events) and re-
sources (teachers, exam proctors, nurses, medical doctors) over
space (classrooms, operating rooms, sport fields) and time. For
example, high school timetabling consists in allocating courses
and teachers to groups of students over time slots (or periods)
and assign each pair of (teacher, group of students) during a given
period to a classroom. This allocation, which strives to satisfy many
objectives, is subject to a set of constraints that are problem depen-
dent. For instance, in high school timetabling, some subjects such
as science and mathematics may require two consecutive periods.
The science classes require special classrooms. Teachers may be
unavailable during some time periods, and some subjects should
be taught during the first or last period of the day.

Timetabling constraints can be classified into hard and soft con-
straints. Any feasible timetable has to satisfy all hard constraints.
For instance, the constraint that a teacher cannot be assigned to
two classes during the same time period is a hard constraint that
ll rights reserved.

: +86 592 2580035.
has to be satisfied by any feasible schedule. On the other hand, a
feasible schedule does not need to satisfy the soft constraints but
should strive to maximize their degree of satisfaction. In fact, soft
constraints are generally formulated as part of the objective func-
tion of the problem. For example, imposing that teachers have a
continuous schedule throughout the day is a soft constraint, that
is included as part of the objective function.

Timetabling problems faced by academic institutions differ
from one institution to another. Most institutions face the timet-
abling problem in its primary form, which is to allocate sessions
and rooms to lectures so as to satisfy a given set of hard and soft
constraints. However, each institution has some unique combina-
tion of constraints depending on the pertinent policies that usually
differ from one institution to another. For example, university
timetables are quite different from high school timetables. High
school students require constant supervision during the day; thus,
should have their schedules continuous. In addition, their teachers
generally have much higher teaching loads than their university
counterparts. Subsequently, high school timetabling problems
may become computationally expensive. Worst, they become more
complex as the number of enrolled students (thus, the number of
classes) increases. In fact, the larger the problem’s size, the more
constraints any feasible schedule has to satisfy, and the more con-
flicting objectives such a schedule has to fulfill. Therefore, the gen-
eration of ‘‘high-quality” timetables is not a straightforward task.

As pinpointed in the numerous literature reviews [15,22,30,
33,34], various timetabling approaches have been investigated.
Yet, no specific one can be applied universally due to the specifics
of individual problems. The newer approaches focus on bridging
the gap between research and the real world applications they

http://dx.doi.org/10.1016/j.ejor.2009.09.014
mailto:<xml_chg_old>dfzahng@xmu.edu.cn</xml_chg_old><xml_chg_new>dfzhang@xmu.edu.cn</xml_chg_new>
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


D. Zhang et al. / European Journal of Operational Research 203 (2010) 550–558 551
tackle [22,23]. To create better understanding between researchers
and practitioners, PATAT and WATT have organized two interna-
tional timetabling competitions where emerging techniques were
tested on real world models. Details relative to these competitions
(including benchmark instances, assessment criteria, and proposed
approaches) are available at http://www.cs.qub.ac.uk/itc2007 and
http://www.idsia.ch/Files/ttcomp2002/. However, the objectives
and constraints of these instances are quite different from those
of the problem at hand.

Timetabling is generally tackled using mathematical program-
ming, artificial intelligence, or meta-heuristics. Birbas et al. [13]
presented a 0–1 integer programming model for the timetabling
problem of Greek high schools. In their model, a binary variable
indicates whether or not a specific lesson to be taught by a given
teacher is to be held at a specific time of the week. The model gen-
erates timetables that satisfy all the hard and soft constraining
rules of the schools. Daskalaki et al. [24] and Daskalaki and Birbas
[25] designed a mixed-integer program for a timetabling problem
related to Greek universities. In the latter paper, a two-stage relax-
ation procedure is applied. In the first stage, the computationally
heaviest constraints are initially relaxed. In the second stage, the
relaxed constraints are introduced afresh and the timetable is gen-
erated on a day-by-day basis to find local optima for the original
problem. Papoutsis et al. [32] modeled the high school timetabling
problem as a set partitioning problem, and solved it using a column
generation approach. Each binary variable (or column) indicates
whether or not a feasible weekly schedule of a teacher is included
in the timetable. Wood and Whitaker [43] formulated a non-linear
goal program to the secondary school timetabling problem, where
students freely choose their courses of study from a list of subjects.
Mirrazavi et al. [31] developed a two-phase approach for the uni-
versity timetabling problem. The first phase allocates rooms to
classes whereas the second phase assigns a time period to each
class. Both phases are modeled as integer goal programs. The
approach applies a preprocessing module to remove redundant
solutions prior to initiating the optimization step. Asratian and
de Werra [9] and de Werra et al. [42] considered a generalized
class-teacher model that extends the basic ‘‘class-teacher
model” of timetabling to situations which occur, for example, in
the basic training programs of universities and schools, and de-
signed a network flow algorithm for the solution. Al-Yakoob and
Sherali [6,7] designed mixed-integer programming models and
algorithms that assign sections of male, female and joint classes
to time periods.

Solving large sized instances of timetabling problems using
integer or constraint programming [27] remains a challenge. This
is not surprising since timetabling problems are NP-complete. As
an alternative, researchers have focused on solving this problem
using neural networks [19,20] and meta-heuristics such as ant col-
ony optimization [26,36], genetic algorithms [18,29,40], tabu
search [1,8,11], evolutionary search [12], simulated annealing
(SA) [2,4], programmed search [27], and hyper heuristics [17,21].
Among these approximate approaches, SA has proven quite effec-
tive in tackling timetabling related problems such as school, high
school, and exam timetabling [2,4,15,16]. For example, Bullnhei-
mer [14] developed a model suitable for small scale exam timet-
abling problems. He formulated a quadratic assignment problem,
transformed it into quadratic semi assignment problems, and used
SA to demonstrate the model’s ability to generate schedules that
satisfy students. Johnson [28] incorporated SA into his cluster ap-
proach for exam timetabling. Thompson and Dowsland [38,39]
investigated the robustness of an SA approach to the exam timet-
abling problem and undertook a sensitivity analysis of the solution
to the adaptive cooling schedule and to the choice of neighbor-
hood. Abramson et al. [4], which considered high school timet-
abling, applied an SA with a newly-designed special dynamic
cooling schedule. The temperature is increased or decreased
adaptively, according to the number of successful moves. Finally,
Avella et al. [10] incorporated SA into the first phase of their
algorithm with the objective of generating an initial feasible
timetable.

This paper adapts SA to the high school timetabling problem
and designs a new neighborhood structure that yields high-qual-
ity solutions within a reduced runtime. The application of the
new algorithm to one typical real-world data set and one ran-
domly generated synthetic data set of high school timetabling
problems (i.e., hdtt and gwtt where w = b or p) shows its
efficiency.

This paper is organized as follows. Section 2 defines the high
school timetabling problem, and models it as a 0–1 integer pro-
gram. Section 3 presents the basics of SA, explains the new neigh-
borhood structure, and details the proposed algorithm. Section 4
assesses and compares the performance of the new algorithm to
that of existing approaches. Finally, Section 5 provides a summary
and future extensions.

2. Problem definition

The high school timetabling problem involves assigning teach-
ers to classes (or groups of students). Each class is assigned a fixed
classroom where the class meets for all its lectures, whereas teach-
ers rotate among classes; thus, among classrooms. The assignment
of teachers to classes has to satisfy a set of hard and soft con-
straints. The set of hard constraints follows:

H1 A teacher cannot be assigned to more than one class during
any time slot.

H2 A class cannot be assigned more than one teacher for any
time slot.

H3 A teacher t, teaching subject (or lesson) s, is to be assigned
ht;s lectures (or time periods or time slots) per week.

H30 A teacher t, teaching subject s, and assigned to class c meets
c for hc;s lectures per week.

H4 A class c must attend hc lectures per week.
H5 The lectures of a teacher are scheduled only when he/she is

available.
H6 A class should have no free time slot except for the last one

during a day.

Let nc denote the number of classes, ns the number of subjects,
nts the number of teachers teaching subject s; s ¼ 1; . . . ;ns; np; the
number of periods per working day, and nd; the number of working
days per week. In addition, let the binary decision variable
ycts ¼ 1; c 2 C ¼ f1; . . . ; ncg; t 2 Ts ¼ f1; . . . ;ntsg; s 2 S ¼ f1; . . . ;

nsg; if teacher t of subject s is assigned to class c: Furthermore, let
the binary variable xctspd ¼ 1; c 2 C; t 2 Ts; s 2 S; p 2 P ¼f1; . . . ;

npg; d 2 D ¼ f1; . . . ;ndg; if ycts ¼ 1 and teacher t is scheduled to
meet class c during period p of day d. Finally, let At;s (resp. At;s) de-
note the set of periods when teacher t of subject s is available (resp.
unwilling) to teach. The hard constraints can therefore, be modeled
as follows:

X
c2C

xctspd 6 1 t 2 Ts; s 2 S; p 2 P; d 2 D; ðH1Þ

X
c2C

X
d2D

X
p2P

xctspd ¼ ht;s s 2 S; t 2 Ts; ðH2Þ

X
s2S

X
t2Ts

xctspd 6 1 c 2 C; p 2 P; d 2 D; ðH3Þ

X
d2D

X
p2P

xctspd P hc;sycts c 2 C; t 2 Ts; s 2 S; ðH30 Þ

http://www.cs.qub.ac.uk/itc2007
http://www.idsia.ch/Files/ttcomp2002


552 D. Zhang et al. / European Journal of Operational Research 203 (2010) 550–558
X
s2S

X
t2Ts

X
d2D

X
p2P

xctspd ¼ hc c 2 C; ðH4Þ
X
c2C

xctspd ¼ 0 if ðp;dÞ R At;s; t 2 Ts; s 2 S; ðH5Þ
X
s2S

X
t2Ts

xctsðpþ1Þd �
X
s2S

X
t2Ts

xctspd P 0 c 2 C; d 2 D; ðH6Þ

p ¼ 1; . . . ; np � 2 ðH7ÞX
t2Ts

ycts ¼ 1 c 2 C; s 2 S; ðH8Þ

ycts P xctspd c 2 C; s 2 S; p 2 P; d 2 D; t 2 Ts: ðH70 Þ

Constraints (H8) and (H7
0
) are added to the mathematical

model to ensure that only one teacher is assigned to a subject for
a given class, and that only this specific teacher is assigned to
the hc;s lectures of class c for subject s. Evidently, there are the bin-
ary constraints which have not been explicitly stated.

There are some cases in the literature [4,10,11,32,37,41] where
the teachers are pre-assigned to teach a given subject to a class.
The above model can be easily transformed to account for those
cases by setting the appropriate binary variables to their corre-
sponding preset values; i.e., by presetting ycts to 0 and 1, and
removing (H8) from the model. Furthermore, when the concept
of a subject is completely irrelevant, for simplification purposes
or because of the actual problem in its origin, the model can be
changed as follows: the index s is dropped from the variables,
the set of teachers is defined as T ¼

S
s2STs; the condition

s 2 S; t 2 Ts is replaced by t 2T; and
P

s2S

P
t2Ts

is substituted byP
t2T:

The soft constraints are used as an evaluation tool of the quality
of a feasible timetable. They are included into the objective
function z, which is problem dependent. For instance, for hdtt
problems, z is the weighted sum of the total penalty (or inconve-
nience) incurred by the teachers:

z ¼
X
s2S

X
t2Ts

ct;szt;s;

where a large ct;s emphasizes the importance of the timetable of
teacher t of subject s, denoted hereafter as ðs; tÞ. In turn, zt;s; the total
penalty incurred by teacher ðs; tÞ for a specific timetable, is a
weighted sum of six penalties:

zt;s ¼
X6

i¼1

hizi
t;s;

with zi
t;s being the penalty for criterion i, and hi its relative

importance.
The first penalty z1

t;s indicates the number of times teacher ðs; tÞ
is assigned to teach when he/she is unwilling to lecture. That is,

z1
t;s ¼

X
ðp;dÞ2At;s

X
c2C

xctspd:

The second penalty z2
t;s tallies the idle time of teacher ðs; tÞ over D,

where the idle time for a given day d 2 D is only measured over
the interval ½p0d;p00d� with p0d and p00d being the first and last teaching
period of teacher ðs; tÞ on day d. That is, the idle time for d is the dif-
ference between the range p00d � p0d and the number of teaching
hours

P
p2P

P
c2Cxctspd. Subsequently,

z2
t;s ¼

X
d2D

p00d � p0d �
X
p2P

X
c2C

xctspd

" #
:

The third penalty z3
t;s specifies the number of times teacher ðs; tÞ

meets a class c more than once a day but during two non-consecu-
tive periods. Let dctsd ¼ 1 if

P
p2Pxctspd > ycts and for p ¼ 1; . . . ;

np � 1; xctspd–xctsðpþ1Þd. It follows that
z3
t;s ¼

X
d2D

X
c2C

dctsd:

The fourth penalty reflects the number of days, over D, when the
number of contact hours of teacher ðs; tÞ with class c differs from
1
nd

hc;s; the average daily contact hours for subject s. Let d0ctsd ¼ 1 if

j
P

p2Pxctspd � 1
nd

hc;syctsj > 1; and 0 otherwise. Then,

z4
t;s ¼

X
c2C

X
d2D

d0ctsd:

The fifth penalty z5
t;s indicates the number of days, over D, when the

teaching load of teacher ðs; tÞ differs from his/her daily average load
1
nd

ht;s. Let d00tsd ¼ 1 if j
P

c2C

P
p2Pxctspd � 1

nd
ht;sj > 1; and 0 otherwise.

Then,

z5
t;s ¼

X
d2D

d00tsd:

The sixth penalty z6
t;s shows the number of times teacher ðs; tÞ is as-

signed to teach during the last period of any day d 2 D. That is,

z6
t;s ¼

X
d2D

X
c2C

xctsnpd:

For gHtt instances, z reflects the degree of non-satisfaction of
three soft constraints S1–S3:

S1 The teaching load of a teacher should be balanced through-
out the week.

S2 A class should not be assigned the same subject more than
once during a day d 2 D.

S3 The lectures of a teacher should be consecutive with no free
time slots.

Specifically, the objective function is driven by six penalties:
z1; . . . ; z6. z1 and z2 are relative to S1; z3 and z4 to S2; and z5 and
z6 to S3. z1 is the number of teachers whose teaching hours are
not uniformly distributed among the days of the timetable, and
z2 is the total number of days (over all teachers over a week) that
this uneven distribution of lectures occurs. z3 is the number of clas-
ses which are taught the same subject twice or more during a day
while z4 tallies (over all classes and days of the week) the number
of times this situation occurs. Finally, z5 is the distinct number of
teachers whose timetables have idle time slots while z6 is the total
number of idle time slots for all teachers over a week.
3. Solution approach

The proposed solution approach has two phases with each
phase using an SA heuristic with a new extended neighborhood
structure. SA is a variant of local search. It is a meta-strategy for
optimization by local improvements [5]. It was developed by
analogy to the annealing process studied in mechanical statistics.
It is a stochastic steepest descent where moves to non-improving
neighboring solutions are allowed with a given probability that
decreases as the search progresses. These moves are undertaken
in hope of escaping local minima. This section explains how SA
has been adapted to the high school timetabling at hand, then de-
tails the proposed solution approach.

3.1. Adapting SA to the high school timetabling problem

Applying SA requires defining a solution configuration, identify-
ing the neighborhood of the current solution, and setting SA’s
parameters. For the high school timetabling, a solution s is repre-
sented by a two-dimensional matrix of dimensions nc � ðnpndÞ;
with each cell ðc; p0Þ indicating the teacher ðs; tÞ assigned to class



Table 1
Teachers, their respective subjects, and the corresponding (subject, teacher) code.

s Subject Teacher ðs; tÞ

1 Math Mary (1,1)
1 Math Monica (1,2)
2 Science Steve (2,1)
2 Science Sam (2,2)
3 Literature Larry (3,1)
3 Literature Laura (3,2)
4 History Henry (4,1)

Table 2
A timetable s for a day d where each cell represents ðs; tÞ.

Class Period

1 2 3 4 5

1 (2,1) (1,1) (3,1)
2 (3,1) (1,2) (2,2)
3 (3,2) (1,1) (2,2) (4,1) (3,2)
4 (3,2) (4,1) (1,1) (2,1)
5 (3,1) (2,1) (1,2)

D. Zhang et al. / European Journal of Operational Research 203 (2010) 550–558 553
c during period p of day d or is empty if class c is idle during that
period with p0 ¼ pþ ðd� 1Þnp.

For example, let np ¼ nc ¼ 5;ns ¼ 4 (with s ¼ 1 for math, s ¼ 2
for science, s ¼ 3 for literature, and s ¼ 4 for history), nt1 ¼ nt2 ¼
nt3 ¼ 2; and nt4 ¼ 1. In addition, let the list of teachers and their
corresponding subjects be given by Table 1. A timetable s for a gi-
ven day d 2 D can be represented by the two-dimensional sub-ma-
trix of Table 2, where the rows correspond to the five classes, and
the columns to the five time periods of day d. Class 2 is assigned to
teacher 1 of subject 3 (i.e., Larry) during the first time period
ðp ¼ 1Þ, to teacher 2 of subject 1 (i.e., Monica) for p ¼ 2, and to tea-
cher 2 of subject 2 (i.e., Sam) for p ¼ 4. This class is free during the
third and fifth periods. This timetable is obviously infeasible. It vio-
lates the hard constraints (H1). Indeed, teacher 1 of subject 3 is as-
signed to classes 2 and 5 for period 1. Similarly, teacher 2 of subject
3 is assigned to classes 3 and 4 for period 1. Thus, the schedules of
these two teachers violate (H1). In addition, classes 2, 4, and 5 are
free during the third period of d; thus, their schedules violate (H7).
Evidently, s violates many soft constraints. For instance, class 3 has
two non-consecutive lectures of subject 3. Most teachers have idle
time in their schedules; etc.

A neighbor sN of s is constructed by swapping the assignments
of time slots in s. For instance, swapping the assignments of p ¼ 1
and p ¼ 4 for class 4 is equivalent to swapping the lecture times of
subjects 3 and 1. It yields the timetable sN displayed in Table 3.
Obviously, sN violates less hard constraints than s : teacher (3,2)
no longer has a conflict during p ¼ 1 and teacher (1,1) is conflict
free during p ¼ 4. However, sN remains infeasible. sN can be further
improved if the same swap is applied successively to all c 2 C; that
is, if all lectures (or idle times) scheduled during p ¼ 1 are swapped
with those scheduled during p ¼ 4.
Table 3
A neighbor of s obtained by swapping the assignments of p ¼ 1 and p ¼ 4 for c ¼ 4.

Class Period

1 2 3 4 5

1 (2,1) (1,1) (3,1)
2 (3,1) (1,2) (2,2)
3 (3,2) (1,1) (2,2) (4,1) (3,2)
4 (1,1) (4,1) (3,2) (2,1)
5 (3,1) (2,1) (1,2)
Accepting or rejecting a swap proceeds as follows. When s is
infeasible, a swap is adopted if it results in fewer non-satisfied
hard constraints; i.e., if zhðsNÞ < zhðsÞ; where zhðsÞ (resp. zhðsNÞ) is
the number of hard constraints violated by s (resp. sN). The swap
is also accepted with a probability Pa ¼ exp�D0

T when D0 ¼ zhðsNÞ�
zhðsÞ > 0; where D0 is the number of additional non-satisfied hard
constraints, and T is the current temperature of the annealing pro-
cess. On the other hand, when s is feasible, a swap is adopted if it
satisfies all hard constraints and improves or maintains the objec-
tive function value; i.e., if zhðsNÞ ¼ 0; and zðsÞP zðsNÞ; where zðsÞ
and zðsNÞ denote the objective function value of s and sN; respec-
tively. The swap is also accepted with a probability Pa ¼ exp�D

T if
sN satisfies all hard constraints but deteriorates the objective func-
tion value; i.e., if zhðsNÞ ¼ 0; and D ¼ zðsNÞ � zðsÞ > 0; where D is
the deterioration of the objective function value.

The swaps are undertaken consecutively. Every time a swap is
accepted, the current solution s is updated: it is set to sN . On the
other hand, when a swap is rejected, the current solution is not up-
dated, and a new neighbor is generated. Applying the swaps to a
random order of the classes avoids premature convergence of the
algorithm.

Consider, for instance, the random permutation of the five clas-
ses as 1–3–5–2–4, and let the current solution for a day d be the
timetable given by Table 2. Then, the first neighbor is obtained
by swapping the assignment of p ¼ 1 and p ¼ 4 for class 1; that
is, swapping (1,1) with the free time slot. This swap reduces the
number of violations of the hard constraints; thus, the current
solution is set to this neighbor. The following neighbor is the result
of the swap of the assignment of p ¼ 1 and p ¼ 4 for class 3: it has
(4,1) swapped with (3,2). Again, this neighbor reduces the number
of violations of the hard constraints; thus, it is retained as the cur-
rent solution. The next neighbor swaps the assignment (3,1) with a
free time slot for class 5. Since it reduces the non-feasibility of the
timetable, this neighbor is retained as the current solution. The
next two neighbors obtained by swapping (2,2) and (3,1) for class
2 and (1,1) with (3,2) for class 4 are non-improving neighbors since
they do not reduce the number of non-satisfied constraints. In this
case, they are rejected, and the resulting current solution is given
by Table 4.

The temperature, the length L of the plateau, and the stopping
criterion are the parameters of SA. The temperature is initially
set at a level T0 that guarantees a fixed initial probability of accep-
tance (eg., 0.95 or 0.9). It is adjusted every L iterations. If Tk is the
temperature at plateau k, then the temperature at the next plateau
is Tkþ1 ¼ aTk; where the cooling rate a 2 ½0;1�; for example,
a ¼ 0:93. This cooling strategy makes the acceptance of non-
improving neighbors less likely as the search progresses. The algo-
rithm stops when the temperature reaches a pre-specified thresh-
old level.

3.2. Detailed algorithm of the proposed approach

Specifically, the proposed approach, whose pseudocode is de-
tailed in Table 5, is a two-phase heuristic. The first phase con-
Table 4
A neighbor of s obtained using the extended neighborhood structure.

Class Period

1 2 3 4 5

1 (1,1) (2,1) (3,1)
2 (3,1) (1,2) (2,2)
3 (4,1) (1,1) (2,2) (3,2) (3,2)
4 (3,2) (4,1) (1,1) (2,1)
5 (2,1) (3,1) (1,2)



Table 5
Algorithm of the proposed approach.

Phase one: Identifying a feasible timetable s
Initialization Step

Randomly generate a timetable s that satisfies (H2), (H3
0
) and (H4)

Compute zh(s) the number of hard constraints violated by s
Set k = 1 and Tk ¼ T1

0, where k and Tk are the number and temperature of the current plateau, and T1
0 is a preset initial temperature for phase one

Iterative Step
While(zh(s)>0 and Tk>T1) // T1: threshold temperature for phase one

Do for ‘ = 1–L1 // L1: length of the plateau for phase one
� Generate a random permutation PC of C
� Choose a period p1 2 P such that the assignments during p1, for any day d 2 D, violate one or more of the hard constraints
� Choose, randomly, a period p2 2 P n fp1g

Do for i = 1–nc

– Swap the assignment for p1 and p2 for the ith class in PC, and let sN be the resulting neighbor
– Evaluate zh(sN), and compute D0 = zh(sN) � zh(s)
– If D0 � 0, set zh(s) = zh(sN)
– Else, generate a random number r from the continuous Uniform[0,1]; If r < exp�

D0
Tk , set zh(s) = zh(sN)

End Do
End Do
Set Tk + 1 = a1 Tk, and k = k + 1. // a1: cooling rate for phase one

End While
Phase Two: Identifying a (near) optimal timetable

Initialization Step
Compute z(s) the value of the objective function at s
Set k = 1 and Tk ¼ T2

0, where T2
0 is a preset initial temperature for phase two

Iterative Step
While(Tk>T2) // T2: threshold temperature for phase two

Do for ‘ = 1–L2 // L2: length of the plateau for phase two
Generate a random permutation PP of P
Set p1 as the first item in PP, and remove it from PP

While ðjPP jP 1Þ
Do for j = 1–jPP j

� Set p2 to the jth item of PP

� Generate a random permutation PC of C
Do for i = 1–nc

– Swap the assignment for p1 and p2 for the ith class in PC, and let sN be the resulting neighbor
– If zhðsNÞ > 0, goto End Do
– Evaluate zðsNÞ, and compute D ¼ zðsNÞ � zðsÞ
– If D 6 0, set zðsÞ ¼ zðsNÞ
– Else, generate a random number r from the continuous Uniform[0,1]; if r < exp�

D
Tk , set zðsÞ ¼ zðsNÞ

End Do
End Do

End While
End Do

Set Tkþ1 ¼ a2Tk , and k = k + 1. // a2: cooling rate for phase two
End While

554 D. Zhang et al. / European Journal of Operational Research 203 (2010) 550–558
structs an initial feasible solution whereas the second phase –
which starts from the initial feasible solution identified in phase
one – searches for a near optimum that minimizes the degree of
non-satisfaction of the soft constraints.

Phase one starts with an initialization step, which chooses an
initial solution, sets the current plateau, and specifies its tempera-
ture. Specifically, it randomly generates a timetable s that satisfies
(H2), (H3

0
) and (H4). That is, s ensures the assignment of a teacher

t 2 Ts for every subject s 2 S for every class c 2 C, that at most a sin-
gle lecture is assigned to each class for each time period, and that
each class c 2 C gets hc;s lectures for each subject s 2 S. In case, the
teachers are pre-assigned to the classes, then phase one generates
a timetable that respects this pre-assignment. Next, it sets the cur-
rent plateau k ¼ 1; and the current temperature Tk to T1

0.
Phase one proceeds, then, with an iterative phase (correspond-

ing to the While loop of Phase one of Table 5) that moves the
search from one plateau to the next. For plateau k, it investigates
L1 neighborhoods of s updating s every time either an improving
neighbor or a neighbor with an improvement potential is identi-
fied. Specifically, it sets ‘; the counter of the number of neighbor-
hoods investigated at the current plateau k to 1. It then obtains a
random permutation PC of C, and proceeds by generating succes-
sively the neighbors of s. It chooses a period p1 2 P such that the
assignments, in s, of the pairs ðs; tÞ to classes during p1, for any
day d 2 D, violate one or more of the hard constraints. Next, it
chooses randomly another period p2 2 P n fp1g, and swaps, succes-
sively, for i ¼ 1—nc , the assignments corresponding to p1 and p2 for
the ith class in PC . Each swap results in a new neighbor sN of s. If
zhðsNÞ 6 zhðsÞ, the heuristic accepts the swap. Otherwise, it gener-
ates a random number r from the continuous Uniform[0,1], and
compares it to exp�

D0
Tk , where D0 ¼ zhðsNÞ � zhðsÞ. The heuristic ac-

cepts the swap if r < exp�
D0
Tk , and rejects it otherwise. When the

heuristic accepts the swap, it updates the current timetable by set-
ting s ¼ sN . Once it has performed all the nc swaps and either ac-
cepted or rejected each of them, the heuristic increases the
counter ‘.

If ‘ 6 L1 while s is infeasible, the heuristic proceeds by generat-
ing a new permutation PC of the classes and choosing two periods
p1 and p2 as described above. On the other hand, when ‘ exceeds L1,
the heuristic moves to a new plateau; signaling the end of the first
do loop of phase one. Subsequently, it cools the temperature set-
ting Tkþ1 ¼ a1Tk; increments k by one, and initializes ‘ to 1. It then
repeats the above steps for the new plateau.

The heuristic keeps moving from plateau to plateau as long as s
is infeasible and the temperature Tk > T1; a preset threshold tem-
perature. If the heuristic stops with s being infeasible, it generates
a new initial timetable and reapplies all the above steps. (However,
this never occurred during the computational investigation.) Phase



D. Zhang et al. / European Journal of Operational Research 203 (2010) 550–558 555
one stops at any of the above steps when it identifies a feasible
timetable s; i.e., when zhðsÞ ¼ 0.

Phase two starts its search with the feasible timetable identi-
fied in phase one, and strives to improve the value of z while main-
taining feasibility. The initialization step sets the current plateau
k ¼ 1; and the current temperature Tk to T2

0.
Phase two proceeds, with an iterative phase (corresponding to

the While loop of phase two of Table 5) that moves the search from
one plateau to the next. For plateau k, it investigates L2 neighbor-
hoods of s as follows. First, it initializes ‘ ¼ 1. Then, it generates
a random permutation PP of P. It sets p1 as the first period appear-
ing in PP , removes it from PP setting PP ¼ PP n fp1g, then selects
randomly a period p2 from PP . Subsequently, it considers a random
permutation PC of C, and generates successively the neighbors of s
by swapping the assignment of p1 and p2 for every class c 2 C, with
the classes considered according to their order in PC . A neighbor sN

of s is automatically rejected if it violates any hard constraint (i.e.,
zhðsNÞ > 0Þ. On the other hand, when sN is feasible, the heuristic ac-
cepts the swap if zðsNÞ 6 zðsÞ, or if zðsNÞ > zðsÞ but a randomly gen-
erated number r 2 ½0;1� is less than exp�

D
Tk where D ¼ zðsNÞ � zðsÞ.

When the heuristic accepts the swap, it updates the current time-
table setting s ¼ sN . Once it has performed all the nc swaps and
either accepted or rejected each of them, the heuristic restarts this
loop by setting p1 to the new first period in PP , removes it from PP ,
and selects randomly a period p2. It repeats this step as long as
jPPj; the number of elements in PP , is greater than one. When
jPPj ¼ 1; the heuristic increases the counter ‘ setting it equal to
‘þ 1.

When ‘ exceeds L2, the heuristic moves to a new plateau; sig-
naling the end of the first do loop of phase two. Subsequently, it
cools the temperature setting Tkþ1 ¼ aTk, increments k by one,
and initializes ‘ to 1. It then applies the above steps for the new
plateau. The heuristic keeps moving from plateau to plateau as
long as the temperature Tk > T2.
4. Computational results

The purpose of the computational investigation is to compare
the performance of the proposed approach to existing algorithms.
The proposed approach is coded in C

++, and is run on a Pentium

IV, 2.60 GHz and 512 MB of RAM, under the Linux environment.
It is tested on two sets of benchmark instances: hdtt and gwtt.

4.1. First benchmark set

The set hdtt has five instances: hdtt4–hdtt8. It was originally
proposed by Abramson and Dang [3], and is publicly available from
the OR-Library (http://www.ms.ic.ac.uk). Even though small-sized
in terms of the total number of teachers and classes, each of these
instances has a very dense timetable that uses all available time
periods. Differently stated, each of these instances has a feasible
solution; however, identifying it is extremely hard [37]. Indeed,
the ‘‘hd” in the label of the instances stands for ‘‘hard”. Thus, these
instances are used, as in [37], to assess the proposed approach as
an optimization tool.

An instance hdttm; m ¼ 4; . . . ;8; is characterized by
nc ¼ m;

P
s2Snts ¼ m; and ndnp ¼ 30. It is run with the parameters

of the proposed approach set as follows: T1
0 ¼ 4; T2

0 ¼
1; T1 ¼ 1; T2 ¼ :01; a1 ¼ a2 ¼ :90; L1 ¼ 20; and L2 ¼ 2. In addi-
tion, At;s is set to the empty set for all s 2 S and t 2 Ts; that is,
teachers are willing to teach during any of the ndnp periods. More-
over, ct;s ¼ 1; for all s 2 S and t 2 Ts; and h2 ¼ . . . ; h6 ¼ 1 whereas
h1 ¼ 0. The aforementioned parameter levels and restrictions are
imposed to allow for the comparison of the results to their coun-
terparts in the literature. Each instance is run 20 times. The best
solution z�; the average solution z; and the average run time CPU
(in s) over the 20 runs are compared to their counterparts in the
literature obtained via the simulated annealing heuristic SA2 of
[35], the neural network algorithm NN-TT3 of [37], and the local
search heuristic SA-VLSN of [10]. SA2 and NN-TT3 are reported
to be the best approaches among those tested in [37]. SA-VLSN per-
forms better than SA2 and NN-TT3, and is more recent.

SA2 is a meta-heuristic based solver. It encodes the solutions
using a linked list representation of the problem, rather than bin-
ary matrices. The lists and their lengths are dynamic. They are sub-
ject to several transition operators: swap, move, reposition,
inversion, add, drop, and change. The probability that an operator
is applied is adaptive: The better the solutions it yields, the more
frequently it is applied and the more its transition probability is
raised. SA2 applies a cooling schedule which reheats the tempera-
ture every 10,000 solutions. It stops when it reaches a zero cost or
2750 second of runtime.

NN-TT3 is a modified discrete Hopfield neural network. Its
modifications enable the neural network to work in short bursts
of gradient descent, followed by random but controlled perturba-
tions that allow its escape from local minima. Furthermore, the
modifications guarantee a dynamic number of iterations at each
descent, and maintain the run time reasonable.

SA-VLSN combines a standard SA with a very large-scale neigh-
borhood search (VLSN). In fact, it applies VLSN to the best solution
obtained by the standard SA. VLSN consists in solving iteratively a
mixed-integer programming (MIP) problem with all teachers’
schedules prefixed except for two. If it improves the current solu-
tion, the resulting neighbor is adopted, the list T of teachers is re-
set to

S
s2STs; and the MIP problem is solved again using Cplex

(evoked via ILOG); otherwise the two teachers are removed from
T, two other teachers are chosen randomly, and the problem is re-
solved. VLSN is repeated until T ¼ ;; that is, until there is no
improving solution in the extended neighborhood of the current
solution. The results highlight the need for the combination of SA
with an extended neighborhood search since applying VLSN from
an arbitrary feasible solution slows its convergence, and does not
necessarily yield good quality solutions. In addition, the value of
any solution obtained by the standard SA is evidently greater than
or equal to the value of SA-VLSN’s solution.

Table 6 summarizes the results of the comparison of the pro-
posed approach to SA2, NN-TT3, and SA-VLSN. Column 1 indicates
the instance. Columns 2–4, 5–7, 8–10, and 11–13 report z�; z; and
CPU for the proposed approach, NN-TT3, SA2, and SA-VLSN, respec-
tively. SA2 and NN-TT3 were run on a Pentium II, 333 MHz and
128 MB of RAM whereas SA-VLSN was run for the hdtt instances on
a Pentium II, 400 MHz and 256 MB of RAM, a machine equivalent
to that used in [37] (according to [10]).

Even though the four approaches reach the optimum during one
of the 20 runs, the proposed approach performs consistently better
than SA2 or NN-TT3, and slightly better than SA-VLSN. In fact, it
reaches the optimum on every run for instances hdtt4–hdtt7; a
performance that is not matched by SA2, NN-TT3, or SA-VLSN. In
addition, its z for hdtt8 is less than its counterparts: 1.2 for NN-
TT3, 1.9 for SA2, and 0.6 for SA-VLSN. Finally, the runtime of the
proposed approach is very small in comparison to that of SA2
and NN-TT3. It is true that machine differences account for some
of this gap, but it can be inferred that the proposed approach is fas-
ter than either SA2 or NN-TT3. Subsequently, it is more efficient
than SA2 (with its complex reheating and cooling schedules) and
NN-TT3 (with its modified dynamics which are meant to yield fas-
ter and better results).

To further substantiate the above inference regarding runtime
and to compare the runtime of the proposed approach and of SA-
VLSN, we ran the code of SA-VLSN (publicly available at http://ach-
eron.icc.ru/igor/hdtt.cpp) and our code on our machine. We added

http://www.ms.ic.ac.uk
http://acheron.icc.ru/igor/hdtt.cpp
http://acheron.icc.ru/igor/hdtt.cpp


Table 6
Comparative results for the hdtt instances.

Instance Proposed approach NN-TT3 SA2 SA-VLSN

z� z CPU z� z CPU z� z CPU z� z CPU

hdtt4 0 0 0.20 0 0.5 109.2 0 0 14.57 0 0 0.63
hdtt5 0 0 0.58 0 0.5 146.3 0 0.3 41.20 0 0 1.54
hdtt6 0 0 3.65 0 0.7 226.9 0 0.8 123.02 0 0 3.47
hdtt7 0 0 5.36 0 1.0 323.7 0 1.2 256.59 0 0.1 7.29
hdtt8 0 0.4 9.14 0 1.2 431.3 0 1.9 471.20 0 0.6 14.68

Table 7
Comparative results of the proposed approach and SA-VLSN for the hdtt instances.

Instance Proposed approach SA-VLSN

z� z CPU z� z CPU

hdtt4 0 0 0.0086 0 0 0.3386
hdtt5 0 0 0.0156 0 0 0.6180
hdtt6 0 0 0.0320 0 0.1 1.3914
hdtt7 0 0 0.2281 0 0.5 2.5710
hdtt8 0 0 0.5501 0 4.0 5.6914

Table 10
Comparing the average run time of the proposed approach and of EA [12].

556 D. Zhang et al. / European Journal of Operational Research 203 (2010) 550–558
to the former a random number generator and a run time counter.
In addition, we modified our code to make it use the same random
number generator. Finally, we initiated both codes with the same
seed; subsequently, with the same randomly generated solutions.
Table 7 displays the resulting best solution values, the average
solution values and the average run time over 20 runs. It shows
that the proposed approach obtains consistently a zero value for
the objective function within a much smaller time than SA-VLSN.
Differently stated, the proposed approach with its simple new
neighborhood structure provides results that are similar to or bet-
ter than those of SA-VLSN within a very reduced time.

4.2. Second benchmark set

The second benchmark set, gHtt, has 11 instances: gbtt1–gbtt7
[12], and gptt1–gptt4 [32,41]. Even though a description of in-
stances gbtt1–gbtt6 is available through the web site http://
prlab.ceid.upatras.gr/timetabling/, gbtt6 could not be tested due
to the lack of some important data. The gwtt set corresponds to
real-life problems emanating from Greek high schools settled in
the city of Patras. It reflects problems that are less dense than those
of the first set, but are larger in size with more teachers, classes,
subjects, and time periods. This set is run with the parameters of
Table 8
Characteristics of the gbtt and gptt instances.

Instance gbtt gptt

1 2 3 4 5 7 1 2 3 4P
s2Snts 34 35 19 19 18 35 11 15 17 21

nc 11 11 6 7 6 13 5 6 7 9
ndnp 35 35 35 35 35 35 30 35 30 35

Table 9
Comparing timetables constructed by the proposed approach with those constructed usin

gbtt Proposed approach EA

z1 z2 z3 z4 z5 z6 z1 z2 z3

1 6 11 1 1 11 17 18 40 1
2 7 14 3 3 10 20 15 34 0
3 3 4 3 3 1 1 4 8 3
4 4 11 0 0 7 17 5 12 0
5 0 0 0 0 3 3 1 2 0
7 7 12 3 4 11 24 24 50 13
the proposed approach fixed as follows: T1
0 ¼ 1; T2

0 ¼ 1; T1 ¼
:1; T2 ¼ :05; a1 ¼ :95; a2 ¼ :90; L1 ¼ 100; and L2 ¼ 10. The char-
acteristics of each of these instances are provided in Table 8.

For the gbtt instances, the timetables generated using the pro-
posed approach are compared to those generated by the adaptive
evolutionary algorithm (EA) of [12] and to the real-world ones
used at the Greek high schools. EA’s initial population, whose size
equals 25, consists of random timetables constructed iteratively by
assigning a class c 2 C and period p 2 P to a teacher t 2

S
s2STs

while maintaining the feasibility of H1, H2 and H3. The fitness of
each timetable is a weighted function of the violations of the hard
and soft constraints with the weights attributed to the violations of
the hard constraints being much larger than those for the soft con-
straints. EA does not apply a crossover operator, and uses a linear
ranking selection. Each chromosome is subject, with a probability
of 0.05, to two mutation operators: period, and bad period muta-
tion. Both operators preserve the satisfaction of H1, H2 and H3.
They swap periods of two teachers assigned to a same class c ex-
cept that the period mutation chooses the periods randomly while
the bad period mutation selects the periods causing the largest
cost. EA applies a simple elitism schema. It stops after 10,000
generations.

Table 9 compares the timetables constructed by the proposed
approach to those constructed using EA and those used at schools
for the gbtt instances. Column 1 indicates the instance number.
Columns 2–7, 8–13, and 14–19 display the values of
zi; i ¼ 1; . . . ;6; for the timetable obtained by the proposed ap-
proach, by EA, and the real-world one, respectively. The values of
z1; z2 are relative to the distribution of teachers, of z3; z4 to the
distribution of lessons, and of z5; z6 to the gaps in the teachers’s
schedules.
g EA [12] and those used at schools for the gbtt instances.

Used in high schools

z4 z5 z6 z1 z2 z3 z4 z5 z6

1 25 29 21 48 1 1 25 34
0 26 42 15 34 0 0 30 52
3 9 9 9 23 3 3 8 24
0 17 29 6 14 0 0 15 31
0 8 8 6 17 0 0 15 39

27 24 32 24 56 13 36 24 33

gbtt Proposed approach (second) EA (minute)

Phase 1 Phase 2 Total

1 1.23 138.63 139.86 30
2 1.08 170.21 171.29 30
3 0.47 47.14 47.61 24
4 0.59 32.66 33.25 24
5 0.56 53.61 54.17 22
7 6.48 202.61 209.09 45

http://prlab.ceid.upatras.gr/timetabling
http://prlab.ceid.upatras.gr/timetabling


Table 12
Comparing the average run times of the proposed approach, EA [12], CP [41], and CG
[32].

gptt Proposed approach
(second)

EA
(minute)

CP
(minute)

CG
(minute)

Phase 1 Phase 2 Total

1 0.20 20.45 20.66 22 15 <60
2 0.38 30.58 30.95 24 20 <60
3 0.23 32.16 32.39 24 60 <60
4 0.66 79.39 80.05 28 <60

Table 11
Comparing timetables constructed by the proposed approach with those constructed using EA [12], CG [32], and CP [41] for the gptt instances.

gptt Proposed approach EA CG CP

z1 z2 z3 z4 z5 z6 z1 z2 z3 z4 z5 z6 z1 z2 z3 z4 z5 z6 z1 z2 z3 z4 z5 z6

1 3 5 5 15 0 0 3 6 5 15 0 0 5 10 5 15 0 0 5 5 5 15 0 0
2 5 11 6 17 0 0 7 14 6 21 0 0 6 22 6 22 0 0 5 6 6 22 0 0
3 2 6 7 17 0 0 2 4 7 22 0 0 6 26 6 16 0 0 6 6 6 16 0 0
4 5 11 9 21 0 0 6 13 9 29 0 0 6 29 8 29 0 0

Average improvement .75 1 0 4.25 0 0 2 13.5 -.5 3 0 0 2 -1.67 -.33 1.33 0 0

D. Zhang et al. / European Journal of Operational Research 203 (2010) 550–558 557
Except for z3 and z4 of instance gbtt2, the proposed approach
provides better timetables than either those obtained by EA or
those used by the Greek schools. Specifically, it improves all values
of z1; z2; z5 and z6 for the timetables of EA and of the Greek high
schools for all gbtt instances. It matches the values of z3 and z4

for gbtt1 and gbtt3-5, while it improves them for gbtt7. Thus, the
proposed approach provides better quality results. The comparison
of its runtime to that of EA further demonstrates the efficiency of
the proposed approach. Table 10 shows that, for the gbtt instances,
the average run time of the proposed approach (which is 109 sec-
ond) is negligible in comparison to that of EA (which averages
29 minute). In addition, it indicates that the average time it takes
the proposed approach to generate a feasible timetable is very
small in comparison to the average time required to improve this
solution: 1.74 versus 107.48 second. Moreover, it can be statisti-
cally proven that the average runtime of the proposed approach
is linearly correlated to the number of classes nc; an expected
behavior since the mutation operator is applied to the nc classes
at every iteration. Finally, the average runtime of the proposed ap-
proach is correlated to the total number of teachers

P
s2Snts.

Table 11 compares the timetables constructed by the proposed
approach to those constructed by EA, by the constraint program-
ming (CP) of [41], and by the column generation (CG) of [32], for
the gptt instances. CP is a constraint programming approach that
is enhanced by tight dynamic bounds and local search techniques
that reduce the solution search space. The bounds, computed at
various stages of the search, are the solutions to relaxed models,
solved using minimum cost matching algorithms. These bounds
are used to prioritize the search options of the CP environment
whereas the minimum cost matching algorithm serves as an effi-
cient mean to introduce problem domain information to the CP
process. CP was run on an HP 9000, 100 MHz and 715 MB of
RAM workstation, with a maximum runtime of 1 h per instance.

CG, an iterative procedure, uses a linear programming (LP)
relaxation of the original problem. It considers all the variables
implicitly. In fact, the legality rules and quality aspects of the
weekly schedules of the teachers are present in the model, while
their specification remains external to the mathematical model.
In each step, CG solves the LP relaxation of the problem using a
small number of variables, and determines based on the dual solu-
tion, new promising variables that may improve the incumbent. It
also uses a branching scheme, based on the fixing of the daily sche-
dule of a teacher, to locate a reasonable integer solution.
None of EA, CG or CP dominates the other two approaches. Thus,
the proposed approach is compared to the three of them indepen-
dently. The proposed approach improves or matches all
zi; i ¼ 1; . . . ;6; values obtained by EA except for z2 of instance
gptt3 where it reaches 6 whereas EA obtains 4. Similarly, the pro-
posed approach improves or matches all zi; i ¼ 1; . . . ;6; values ob-
tained by CG and CP except for z3 and z4 of instance gptt3 (where
both CG and CP reach 6 and 16 whereas the proposed approach ob-
tains 7 and 17), and z3 for gptt4 where CG reaches 8 while the pro-
posed approach gets 9. These exceptions, do not however reduce
the merit of the proposed approach especially that the average
improvements it induces in comparison to EA, CG and CP for each
of zi; i ¼ 1; . . . ;6; values are sizeable in many instances as demon-
strated by the last row of Table 11. These average improvements
are further amplified when the average runtime of the proposed
approach is compared to the runtime of EA, CG and CP, displayed
in Table 12. Over the gptt instances, the average runtime of the
proposed approach is 41 second versus 24.50 minute for EA,
31.67 minute for CP and less than one hour for CG. The analysis
of Table 12 shows, as for the gbtt instances, that the average time
it takes the proposed approach to generate a feasible timetable is
very small in comparison to the average time required to
improve this solution: 0.37 versus 40.64 second. Finally, the aver-
age runtime of the proposed approach for gbtt is larger than its
counterpart for gptt (i.e., 109.21 versus 41.01 second) since the
first set has instances with more classes and teachers than the sec-
ond set.
5. Conclusion

This paper proposes a simulated annealing based approach with
a new extended neighborhood structure obtained by performing a
series of swaps of pairs of assignments during two time periods.
The application of this approach to two benchmark sets of high
school timetabling problems shows that this algorithm can com-
pete with other effective approaches; i.e., the new neighborhood
structure increases the efficiency and performance of simulated
annealing. Other types of neighborhood structures are to be tested
with simulated annealing as well as with other meta-heuristics,
and their capacity to enhance the performance of the resulting
algorithms in solving large-scale timetabling problems is to be
determined. Finally, the application of these neighborhood struc-
tures in a parallel computing environment is worth investigating.
Acknowledgments

The authors thank the anonymous referees for their invaluable
comments and thank C.N. Moschopoulos, G.N. Beligiannis, and K.
Papoutsis for providing them with the benchmark sets. This work
was supported by the National Nature Science Foundation of China
(Grant No. 60773126), the Province Nature Science Foundation of
Fujian (Grant No. A0710023), the academician start-up fund (Grant
No. X01109), and the 985 information technology fund (Grant No.



558 D. Zhang et al. / European Journal of Operational Research 203 (2010) 550–558
0000-X07204) in Xiamen University. The first author is grateful for
their support. This research was partially supported under Kuwait
University Research Grant US01/06. The third author is grateful for
their support.
References

[1] S. Abdullah, S. Ahmadi, E.K. Burke, M. Dror, B. McCollum, A tabu-based large
neighbourhood search methodology for the capacitated examination
timetabling problem, Journal of the Operational Research Society 58 (11)
(2007) 1494–1502.

[2] D. Abramson, Constructing school timetables using simulated annealing:
Sequential and parallel algorithms, Management Science 37 (1) (1991) 98–
113.

[3] D. Abramson, H. Dang, School timetables: A case study in simulated annealing,
in: V. Vidal (Ed.), Applied simulated annealing, Lecture Notes in Economics and
Mathematics Systems, Springer, Berlin, 1993, pp. 103–124 (Chapter 5).

[4] D. Abramson, M. Krishnamoorthy, H. Dang, Simulated annealing cooling
schedules for the school timetabling problem, Asia-Pacific Journal of
Operational Research 16 (1999) 1–22.

[5] D. Abramson, M. Randall, A simulated annealing code for general integer linear
programs, Annals of Operations Research 86 (1999) 3–21.

[6] S.M. Al-Yakoob, H.D. Sherali, Mathematical programming models and
algorithms for a class-faculty assignment problem, European Journal of
Operational Research 173 (2) (2005) 488–507.

[7] S.M. Al-Yakoob, H.D. Sherali, A mixed-integer programming approach to a class
timetabling problem: A case study with gender policies and traffic
considerations, European Journal of Operational Research 180 (3) (2007)
1028–1044.

[8] R. Alvarez-Valdes, E. Crespo, J.M. Tamarit, Design and implementation of a
course scheduling system using tabu search, European Journal of Operational
Research 137 (2002) 512–523.

[9] A.S. Asratian, D. de Werra, A generalized class-teacher model for some
timetabling problems, European Journal of Operational Research 143 (2002)
531–542.

[10] P. Avella, B. D’Auria, S. Salerno, I. Vasil’ev, A computational study of local
search algorithms for Italian high-school timetabling, Journal of Heuristics 13
(2007) 543–556.

[11] Z.N. Azimi, Hybrid heuristics for examination timetabling problems, Applied
Mathematics and Computation 163 (2) (2005) 705–733.

[12] G.N. Beligiannis, C.N. Moschopoulos, G.P. Kaperonis, S.D. Likothanassia,
Applying evolutionary computation to the school timetabling problem: The
Greek case, Computers and Operations Research 35 (4) (2008) 1265–1280.

[13] T. Birbas, S. Daskalaki, E. Housos, Timetabling for Greek high schools, Journal of
the Operational Research Society 48 (1997) 1191–1200.

[14] B. Bullnheimer, An Examination scheduling model to maximize students’
study time, in: E. Burke, M. Carter (Eds.), Practice and Theory of Automated
Timetabling II (LNCS 1408), Springer-Verlag, Berlin, 1998, pp. 8–91.

[15] E.K. Burke, S. Petrovic, Recent research directions in automated timetabling,
European Journal of Operational Research 140 (2002) 266–280.

[16] E.K. Burke, J.P. Newall, Solving examination timetabling problems through
adaption of heuristic orderings, Annals of Operations Research 129 (2004)
107–134.

[17] E.K. Burke, B. McCollum, A. Meisels, S. Petrovic, R. Qu, A graph-based hyper-
heuristic for educational timetabling problems, European Journal of
Operational Research 176 (2007) 177–192.

[18] E.K. Burke, A. Eckersley, B. McCollum, S. Petrovic, R. Qu, Hybrid variable
neighbourhood approaches to university exam timetabling, European Journal
of Operational Research, submitted for publication.

[19] M.P. Carrasco, M.V. Pato, A Potts neural network heuristic for the class/teacher
timetabling problem, Applied Optimization Metaheuristics: Computer
Decision-making Book, Kluwer Academic Publishers, 2004. pp. 173–186.

[20] M.P. Carrasco, M.V. Pato, A comparison of discrete and continuous neural
network approaches to solve the class/teacher timetabling problem, European
Journal of Operational Research 153 (2004) 65–79.
[21] P. De Causmaecker, P. Demeester, G.V. Berghe, A decomposed metaheuristic
approach for a real-world university timetabling problem, European Journal of
Operational Research (2008), doi:10.1016/j.ejor.2008.01.043.

[22] B. McCollum, A perspective on bridging the gap between research and practice
in university timetabling, in: E. Burke, H. Rudova (Eds.), Practice and Theory of
Automated Timetabling VI, (LNCS 3867), Springer-Verlag, Berlin, 2007, pp. 3–
23.

[23] B. McCollum, P. McMullan, B. Paechter, R. Lewis, A. Schaerf, L. Di Gaspero, A.J.
Parkes, R. Qu, E. Burke, Setting the research agenda in automated timetabling:
The second international timetabling competition, INFORMS Journal of
Computing (2009), doi:10.1287/ijoc.1090.0320.

[24] S. Daskalaki, T. Birbas, E. Housos, An integer programming formulation for a
case study in university timetabling, European Journal of Operational Research
153 (2004) 117–135.

[25] S. Daskalaki, T. Birbas, Efficient solutions for a university timetabling problem
through integer programming, European Journal of Operational Research 160
(2005) 106–120.

[26] E. Eley, Ant algorithms for the exam timetabling problem, in: Burke, E.K.,
Rudova, H. (Eds.), Practice and Theory of Automated Timetabling VI: Selected
Papers from the 6th International Conference, (LNCS 3867), 2007, pp. 364–382.

[27] R. Gonzalez-del-Campo, F. Saenz-Perez, Programmed search in a timetabling
problem over finite domains, Electronic Notes in Theoretical Computer Science
177 (2007) 253–267.

[28] D. Johnson, Timetabling university examinations, Journal of the Operational
Research Society 41 (1990) 39–47.

[29] H.Y. Lee, Y.C. Lin, A decision support model for scheduling exhibition projects
in art museums, Expert Systems with Applications (2009), doi:10.1016/
j.eswa.2009.03.003.

[30] R. Lewis, A survey of metaheuristic-based techniques for university
timetabling problems, OR Spectrum 30 (2007) 167–190.

[31] S.K. Mirrazavi, S.J. Mardle, M. Tamiz, A two-phase multiple objective approach
to university timetabling utilizing optimisation and evolutionary solution
methodologies, Journal of the Operational Research Society 54 (2003) 1155–
1166.

[32] K. Papoutsis, C. Valouxis, E. Housos, A column generation approach for the
timetabling problem of Greek high schools, Journal of the Operational
Research Society 54 (2003) 230–238.

[33] S. Petrovic, E.K. Burke, University timetabling, Handbook of Scheduling:
Algorithms, Models, and Performance Analysis, CRC Press, Boca Raton, FL,
2004 (Chapter 45).

[34] R. Qu, E.K. Burke, B. McCollum, L.T. Merlok, S.Y. Lee, A survey of search
methodologies and automated approaches for examination timetabling,
Journal of Scheduling 12 (1) (2009) 55–89.

[35] M. Randall, D. Abramson, C. Wild, A general meta-heuristic based solver for
combinatorial optimisation problems, Computational Optimization and
Applications 20 (2) (2001) 185–210.

[36] K. Socha, M. Sampels, M. Manfrin, Ant algorithms for the university course
timetabling problem with regard to the state-of-the-art, in: Proceedings of
EvoCOP 2003, 3rd European Workshop on Evolutionary Computation in
Combinatorial Optimization (LNCS 2611), 2003, pp. 334–345.

[37] K.A. Smith, D. Abramson, D. Duke, Hopfield neural networks for timetabling:
formulations, methods, and comparative results, Computers and Industrial
Engineering 44 (2) (2003) 283–305.

[38] J. Thompson, K.A. Dowsland, A robust simulated annealing based examination
timetabling system, Computers and Operations Research 25 (1998) 637–648.

[39] J. Thompson, K.A. Dowsland, General cooling schedules for a simulated
annealing based timetabling system, in: E. Burke, P. Ross (Eds.), Practice and
Theory of Automated Timetabling I, (LNCS 1153), Springer-Verlag, Berlin,
1996, pp. 345–363.

[40] H. Ueda, D. Ouchi, K. Takahashi, T. Miyahara, Comparisons of genetic
algorithms for timetabling problems, Systems and Computers in Japan 35 (7)
(2004) 691–701.

[41] C. Valouxis, E. Housos, Constraint programming approach for school
timetabling, Computers and Operations Research 30 (2003) 1555–1572.

[42] D. de Werra, A.S. Asratian, S. Durand, Complexity of some special types of
timetabling problems, Journal of Scheduling 5 (2002) 171–183.

[43] J. Wood, D. Whitaker, Student centred school timetabling, Journal of the
Operational Research Society 49 (1998) 1146–1152.

http://dx.doi.org/10.1016/j.ejor.2008.01.043
http://dx.doi.org/10.1287/ijoc.1090.0320
http://dx.doi.org/10.1016/j.eswa.2009.03.003
http://dx.doi.org/10.1016/j.eswa.2009.03.003

	A simulated annealing with a new neighborhood structure based algorithm for high school timetabling problems
	Introduction
	Problem definition
	Solution approach
	Adapting SA to the high school timetabling problem
	Detailed algorithm of the proposed approach

	Computational results
	First benchmark set
	Second benchmark set

	Conclusion
	Acknowledgments
	References


