
A Multi-Stage Evolutionary Algorithm for the Timetable Problem 21

[Cart86]M. W. Carter. A survey of practical applications of examination timetabling.Operations Research,
34:193–202, 1986.

[Cart94]M. W. Carter, G. Laporte, and J.W.Chinneck. A general examination scheduling system.
Interfaces, 11:109–120, 1994.

[Cart95]M. W. Carter, G. Laporte, and S. Y. Lee. Examination timetabling: Algorithmic strategies and
applications. Working Paper 94-03, University of Toronto Dept of Industrial Engineering, January
1995. to appear in Journal of Operational Research Society.

[Cart96]M. W. Carter and G. Laporte. Recent developments in practical examination timetabling. In
Edmund Burke and Peter Ross, editors,The Practice and Theory of Automated Timetabling: Selected
Papers from the 1st International Conference, Lecture Notes in Computer Science 1153, pages 3–21.
Springer-Verlag, Berlin, 1996.

[Corn94]D. Corne, P. Ross, and H. Fang. Fast practical evolutionary timetabling. In T.C.Fogarty, editor,
Lecture Notes in Computer Science 865, pages 250–263. Springer-Verlag, Berlin, 1994.

[Davi91] L. Davis.Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

[Dawk76] R. Dawkins.The Selfish Gene. Oxford University Press, 1976.

[Foxl68] E. Foxley and K. Lockyer. The construction of examination timetables by computer.The
Computer Journal, 11:264–268, 1968.

[Hert91]A. Hertz. Tabu search for large scale timetabling problems.European Journal of Operations
Research, 54:39–47, 1991.

[Mosc91]P. Moscato and M. G. Norman. A ‘memetic’ approach for the travelling salesman problem -
implementation of computational ecology for combinatorial optimisation on message-passing
systems. InProceedings of the International Conference on Parallel computing and Transputer
Applications. IOS Press (Amsterdam), 1991.

[Paec95]Ben Paechter, Andrew Cumming, and Henri Luchian. The use of local search suggestion lists for
improving the solution of timetable problems with evolutionary algorithms. In T. C. Fogarty, editor,
Lecture Notes in Computer Science 993 (AISB Workshop on Evolutionary Computing), pages 86–93.
Springer-Verlag, Berlin, 1995.

[Ross94]Peter Ross, Dave Corne, and Hsiao-Lan Fang. Improving evolutionary timetabling with delta
evaluation and directed mutation. In Y. Davidor, H-P. Schwefel, and R. Manner, editors,Parallel
Problem Solving in Nature, volume III. Springer-Verlag, Berlin, 1994.

[Thom96]J. M. Thompson and K. A. Dowsland. General cooling schedules for a simulated annealing based
timetabling system. In Peter Ross Edmund Burke, editor,The Practice and Theory of Automated
Timetabling: Selected Papers from the 1st International Conference, Lecture Notes in Computer
Science 1153, pages 345–364. Springer-Verlag, Berlin, 1996.

[Wear95]R. F. Weare.Automated Examination Timetabling. PhD dissertation, University of Nottingham,
Department of Computer Science, 1995.

A Multi-Stage Evolutionary Algorithm for the Timetable Problem 20

In attempting to determine the best subset size to use with this method, there appears to be an optimal size
that is perhaps related to the number of events in the problem, though there may be other considerations.
For instance when using saturation degree the smallerkfu andcarf92 problems seem to work best with the
smaller subset size of 50 with a look ahead set, the largernott data set produces roughly equivalent results
at sizes of 50 and 100, both with look ahead sets, while a subset size of 100 with a look ahead set produces
the best results on thepur data set. As mentioned earlier we might have expected the optimal subset size
for thepur data set to be higher due to the huge nature of the problem. This could be due to the evolution-
ary algorithm perhaps having an upper limit on the amount of data it can efficiently handle (which could
perhaps be overcome with larger population sizes, though this would inevitably lead to even higher run
times), or maybe because of the low density of the conflict matrix. Throughout the trials however, the use
of a look ahead set shows obvious benefits. Although there is substantial extra time involved in doing this,
it is not quite so important when we use subset sizes that are relatively small such as those which seem to
produce the best results.

Even with a good choice of heuristic and an optimal subset size and look ahead set it is possible that on
some more difficult problems placements made earlier in the process could well prevent some events being
scheduled in earlier periods. To prevent this from happening we could borrow another idea from heuristic
sequencing methods and allow a backtracking operator to be applied at the end of a phase if there are any
events still unscheduled. Such an operator would have to be allowed to move events that have previously
been fixed in order to be effective. This would inevitably that the quality of the timetable is lowered to
some degree but should mean that the process will have as much chance of finding a feasible timetable as
any other method.

This approach could possibly be adapted to other scheduling problems, especially those where some sort
of heuristic sequencing approach exists. Early work is being carried out in the Automated Scheduling and
Planning group at the University of Nottingham into employing a similar approach for power maintenance
scheduling problems.

References

[Burk95] E. K. Burke, D. G. Elliman, and R. F. Weare. A hybrid genetic algorithm for highly constrained
timetabling problems. In Larry J. Eshelman, editor,Genetic Algorithms: Proceedings of the 6th
Internation Conference, pages 605–610, San Francisco, 1995. Morgan Kaufmann.

[Burk96a]E. K. Burke, D. G. Elliman, P. H. Ford, and R. F. Weare. Examination timetabling in british
universities - a survey. In Edmund Burke and Peter Ross, editors,The Practice and Theory of
Automated Timetabling: Selected Papers from the 1st International Conference, Lecture Notes in
Computer Science 1153, pages 76–90. Springer-Verlag, Berlin, 1996.

[Burk96b]E. K. Burke, J. P. Newall, and R. F. Weare. A memetic algorithm for university exam
timetabling. In Edmund Burke and Peter Ross, editors,The Practice and Theory of Automated
Timetabling: Selected Papers from the 1st International Conference, Lecture Notes in Computer
Science 1153, pages 241–250. Springer-Verlag, Berlin, 1996.

[Burk97] E. K. Burke and J. P. Newall. Investigating the benefits of utilising problem specific heuristics
within a memetic timetabling algorithm. Working Paper NOTTCS-TR-97-6, University of
Nottingham, UK, Dept of Computer Science, 1997.

[Cart83]M. W. Carter. A decomposition algorithm for practical timetabling problems. Working Paper 83-
06, Industrial Engineering, University of Toronto, April 1983.

A Multi-Stage Evolutionary Algorithm for the Timetable Problem 19

Considering the results when using colour degree we see little difference in the individual results when
compared to largest degree apart from a few minor variations in solution quality. However if we instead
compare with saturation degree we can discern a notable improvement. While there is no substantial varia-
tion for thekfu andcarf92 problem we can see that the approach works completely differently on thenott
data set where the employment of saturation degree results in the algorithm consistently finding feasible
solutions even with very small subset sizes. A probable reason for this is that thenott data set has variable
length exams and periods resulting in fewer available timeslots for longer exams. This is something that
neither colour degree or largest degree consider but saturation degree does. For this problem, subset sizes
of 50 and 100, both with look ahead sets, produce the best quality solutions. While the general trend for the
pur problem remains roughly the same there is a noticeable increase in quality for smaller subset sizes,
indicating that saturation degree is also a much better heuristic for this problem.

Taking all the results into account it would seem that least saturation degree first is the most reliable heuris-
tic to use for this method. Though other choices of heuristic may be more suitable for other problems it is
notable that least saturation degree first outperforms the other heuristics on thenott problem, which is
more constrained in terms of seats and less dense in terms of its conflict matrix, while still achieving equiv-
alent performance on the more densely conflicting problems. In terms of which subset size to use a size of
50 seems to be appropriate for smaller problems and a size of 100 for larger problems. In both cases a look
ahead set should be used. Using these sizes, and given a suitable heuristic, it is possible to produce sub-
stantially better results in a fraction of the time than if the memetic algorithm were applied.

For the purposes of comparison with a more established method Table 5 shows the results when using a
heuristic backtracking method similar to that described by Carter[Cart95] which is well established and
has been implemented at several universities. These results represent the lowest penalty found for these
data sets by a published algorithm. The heuristic used here was least saturation degree first, which was
found to be the most effective heuristic in [Cart95]. This also provides the best comparison as saturation
degree certainly appears to be the most effective heuristic for our method. This method requires very little
run time, even with the largepur problem requiring no longer than a few minutes. Comparing the results
in Table 5 with our results when using saturation degree we see a quite uniform reduction in penalty of
roughly 40%.

5 Conclusions

We have seen that by applying an algorithm to a problem in phases we can not only drastically reduce the
amount of time taken to find that solution, relative to the time taken to apply an algorithm to the entire
problem, but also considerably improve the quality of that solution. In essence this method is a hybrid of
heuristic sequencing and evolutionary methods, which (as we have shown) outperforms either method on
its own. This hybrid improves on its components by utilising knowledge of the problem to order events
according to expected difficulty but instead of taking the single most difficult event and perhaps placing it
in the best available period, we take a number of the most difficult events and apply the EA to find the best
placements with respect to each other, as well as with those events already scheduled.

Data Penalty

carf92 2915

kfu 2700

nott 918

pur 97521

Table 5. Results when using heuristic backtracking

A Multi-Stage Evolutionary Algorithm for the Timetable Problem 18

tic. When considering the results for thepur problem we must take into account that “two in one [first
order] conflicts are unavoidable”[Cart95], by this the authors mean that some conflicting exams will have
to be scheduled in the same period. This situation in practice involves quarantining a student until they can
sit an exam after the main sitting. Therefore we must reduce the amount of infeasibility in the timetable
rather than find fully feasible timetables. Bearing this in mind it is clear that a larger subset size of 100 with
a look ahead set finds the best solution. We might have expected this subset size to be larger given the huge
number of events but this does of course depend on the structure of the problem.

Figure 9. Results when run onnott without
a look ahead set

Figure 10. Results when run onnott with a
look ahead set

Figure 11. Results when run onpur
without a look ahead set

Figure 12. Results when run onpur with a
look ahead set

0 500 1000 1500 2000 2500
Time (seconds)

0

20000

40000

60000

P
e
n
a
lty

Colour Degree
Largest Degree
Saturation Degree

Set=50

Set=100

Set=250
Set=500

0 1000 2000 3000
Time (seconds)

0

5000

10000

15000

20000

P
e
n
a
lty

Colour Degree
Largest Degree
Saturation Degree

Set=50

Set=50

Set=100

Set=250
Set=500

0 5000 10000 15000 20000
Time (seconds)

50000

100000

150000

200000

P
e
n
a
lty

Colour Degree
Largest Degree
Saturation Degree

Set=50

Set=50

Set=100

Set=250

Set=500

0 10000 20000 30000 40000 50000
Time (seconds)

50000

100000

150000

200000

250000

P
e
n
a
lty

Colour Degree
Largest Degree
Saturation Degree

Set=50

Set=100

Set=250

Set=500

A Multi-Stage Evolutionary Algorithm for the Timetable Problem 17

Looking at the results when using Largest degree, shown in Table 2, we see quite a mixed picture. On the
carf92 problem the best result is obtained with a subset size of 50 and a look ahead set, taking less than
one tenth of the amount of time to execute, with the larger subset sizes failing to find feasible solutions.
Similarly for thekfu problem the best result is also found with the subset size of 50 and a look ahead set,
but the difference with the higher subset sizes is not quite as great. The situation with thenott data is quite
different. In this case, only the larger subset sizes are able to consistently find good quality timetables. This
is most probably due to high room utilisation (nearly 100%) and the low density of the problem, making it
more of a bin-packing problem than a graph colouring one and therefore lessening the effects of the heuris-

Figure 5. Results when run oncarf92
without a look ahead set

Figure 6. Results when run oncarf92 with
a look ahead set

Figure 7. Results when run onkfu without
a look ahead set

Figure 8. Results when run onkfu with a
look ahead set

0 500 1000 1500 2000 2500
Time (seconds)

0

5000

10000

15000

P
en

al
ty

Colour Degree
Largest Degree
Saturation Degree

Set=50

Set=100 Set=250

Set=500

0 500 1000 1500 2000 2500
Time (seconds)

0

5000

10000

15000

P
en

al
ty

Colour Degree
Largest Degree
Saturation Degree

Set=50

Set=100

Set=250

Set=500

0 200 400 600 800
Time (seconds)

1000

1500

2000

2500

3000

3500

4000

P
e
n
a
lty

Colour Degree
Largest Degree
Saturation Degree

Set=100

Set=250

Set=50

0 200 400 600 800
Time (seconds)

1000

2000

3000

4000

P
e
n
a
lty

Colour Degree
Largest Degree
Saturation Degree

Set=50

Set=100

Set=250

A Multi-Stage Evolutionary Algorithm for the Timetable Problem 16

Tables 2 to 4 show the results achieved when using the relevant heuristics. The value given in the time col-
umn is the execution time in CPU seconds on a DEC Alpha computer for that particular run. Where the
number of exams implies that the last subset of a run is incomplete the final phase of the process is run
with a reduced subset size. The breakdown of results for the best of the 5 runs is given as the number of
unscheduled exams and the violations of the second order conflicts. The results are also shown graphically
in figures 5 to 12.

Data
Subset
Size

Look
Ahead

Penalty Time

Results from Best

Unscheduled

exams

2nd Order
(Same Day)

2nd Order
(Overnight)

carf92

50
no 2211 47 0 433 792

yes 1765 186 0 363 576

100
no 2023 109 0 393 768

yes 2328 455 0 433 783

250
no 2613 600 0 463 931

yes 10910 1878 1 694 917

500
no 10917 1830 1 697 911

yes 11495 1857 1 693 841

kfu

50
no 1735 31 0 228 786

yes 1626 105 0 307 589

100
no 2878 56 0 372 636

yes 2688 233 0 471 890

250
no 2495 596 0 468 794

yes 3883 690 0 455 1078

nott

50
no 907 41 0 133 420

yes 552 156 0 65 324

100
no 889 78 0 127 320

yes 524 340 0 76 282

250
no 639 336 0 80 316

yes 771 1120 0 130 328

500
no 754 954 0 128 326

yes 1076 2700 0 147 404

pur

50
no 130228 995 17 3116 3562

yes 80323 1522 10 3514 3282

100
no 108248 904 14 3835 3089

yes 65461 2850 9 2890 3576

250
no 107556 2655 16 2679 2643

yes 160292 16411 28 1972 2294

500
no 161776 10240 28 2057 2480

yes 218192 26193 38 1727 2118

Table 4. Results using Saturation Degree

A Multi-Stage Evolutionary Algorithm for the Timetable Problem 15

Data
Subset
Size

Look
Ahead

Penalty Time

Results from Best

Unscheduled

exams

2nd Order
(Same Day)

2nd Order
(Overnight)

carf92

50
no 2495 42 0 515 884

yes 1812 184 0 302 804

100
no 2034 102 0 359 773

yes 2043 467 0 376 700

250
no 2766 607 0 501 847

yes 11260 1715 0 1250 1056

500
no 11232 1889 0 1244 1050

yes 13236 1908 2 673 803

kfu

50
no 2942 26 0 359 728

yes 1627 99 0 250 802

100
no 1836 61 0 260 999

yes 2355 254 0 464 724

250
no 2755 333 0 431 910

yes 3077 878 0 468 1258

nott

50
no 50897 31 1 259 520

yes 15923 138 0 77 396

100
no 15621 102 1 106 330

yes 544 467 0 67 289

250
no 5602 607 0 100 255

yes 759 1715 0 128 293

500
no 757 1889 0 131 322

yes 1061 1908 0 208 398

pur

50
no 198097 1426 28 3579 2917

yes 122499 1830 20 4667 3209

100
no 166370 1203 22 3958 3212

yes 84846 2661 11 2577 3068

250
no 105955 2518 17 2566 3079

yes 163145 13710 22 1987 3167

500
no 163405 9616 27 1957 2591

yes 212961 38394 41 1976 2033

Table 3. Results using Colour Degree

A Multi-Stage Evolutionary Algorithm for the Timetable Problem 14

Data
Subset
Size

Look
Ahead

Penalty Time

Results from Best

Unscheduled

exams

2nd Order
(Same Day)

2nd Order
(Overnight)

carf92

50
no 2577 42 0 524 849

yes 1822 173 0 313 766

100
no 2104 119 0 469 614

yes 2123 547 0 375 837

250
no 3493 510 0 460 938

yes 9476 2149 1 777 898

500
no 12078 1937 1 777 900

yes 12167 1942 1 812 837

kfu

50
no 2060 30 0 401 707

yes 1608 105 0 228 704

100
no 1811 73 0 222 838

yes 2525 265 0 368 1008

250
no 2708 345 0 683 839

yes 2823 762 0 541 836

nott

50
no 31097 31 5 173 450

yes 4762 219 0 128 350

100
no 14984 83 0 155 416

yes 15227 323 0 71 285

250
no 5833 340 0 99 297

yes 736 1434 0 94 316

500
no 766 1265 0 121 397

yes 1168 2551 0 216 358

pur

50
no 197635 1463 32 3385 3068

yes 117730 1802 19 3401 3318

100
no 139741 1097 21 3477 3473

yes 86558 3097 13 2479 3100

250
no 93110 2786 15 2765 2907

yes 155096 15630 28 1939 2522

500
no 155557 11331 28 2191 2541

yes 219371 41422 39 1581 2370

Table 2. Results using Largest Degree

A Multi-Stage Evolutionary Algorithm for the Timetable Problem 13

For all of the problems, a typical timetable layout was used that was comprised of three periods per day
from Monday to Friday and one period on Saturday morning. There were no periods on Sunday. This lay-
out was repeated until the given number of periods for the problem was reached.

The primary task of the algorithm was scheduling all events within the given number of periods and the
secondary task was minimising the number of back-to-back conflicts with adjacent periods, with adjacent
conflicts on the same day being penalised more than those occurring overnight. For the purposes of solu-
tion evaluation and quality the function as shown in EQ 1 was used.

4.2 Results

The method was tested on all the above data sets with subset sizes of 50, 100, 250 and 500 events both
with and without a look ahead set. Each of these configurations was tested with all of the given heuristics
five times each (and the average result given) in order to provide a reasonable statistically relevant result.

Code Institution
Number of

Exams
Enrolment

Seats per
Period

Number of
Periods

Density of
Conflict
Matrix

carf92
Carleton University

(1992), Ottawa
543 55,552 2,000 36 0.14

kfu
King Fahd

University, Dharan
461 25,118 1,955 21 0.06

nott
Nottingham

University, UK
800 34,265 1,550 23 0.03

pur
Purdue University,

Indiana
2,419 120,690 5,000 30 0.03

Table 1. Data used for testing

A Multi-Stage Evolutionary Algorithm for the Timetable Problem 12

events’). Due to the way records of conflicts are handled, outlined in section 3.3.1, there is no more over-
head for checking conflicts with a ‘super’ event as there is for a single event.

Figure 4. Merging fixed events to improve performance

Figure 4 illustrates how the timetable might build up phase by phase using this approach. The actual pro-
cess of building a ‘super-event’ is basically a case of summing up the conflict matrices of the component
events and the size of each event. For instance say we wanted to create a new super eventep from a number
of eventse1,...,en scheduled in periodp, the eventep would have the properties shown in equation 12. Note
that as we must have a super event for each period the number of real events would now be given byE - P.

(EQ 12)

While we treat the combined ‘super-event’ as having size equal to the sum of its component events here
the process is a little more complicated when room allocation is part of problem. Unfortunately only one of
the data sets used for testing (the University of Nottingham data) includes information on rooms. In this
case the ‘super-event’ preserves the room allocation of its component events, which cannot then be altered.

4 Results

4.1 Experimental Data

In order to evaluate the effectiveness of this approach, several real enrollment data sets were used for test-
ing. Table 1 lists the data used together with the characteristics of each data set such as the total number of
exams and the total number of student exam enrollments. The density of the conflict matrix is calculated as
the average number of other exams that each exam conflicts with divided by the total number of exams.
For example, a conflict density of 0.5 indicates that each exam conflicts with half of the other exams on
average. As most of this data does not include data on rooms available, a simple upper limit on the number
of seats available each period is used instead. The problems range from the smaller but more densely con-
flicting kfu andcarf92 problems to the fairly large but relatively sparsely conflictingnott data set and the
hugepur data set. All of these data sets can be obtained over the internet from URLS:

• ftp://ftp.cs.nott.ac.uk/ttp/Data

• ftp://ie.utoronto.ca/mwc/testprob

Previously
Fixed

Not Fixed

Events

Period Period

Events

Phase N Phase N+1

Period

Events

Phase N+1
(After Merging)

cepi
cej i i 1 … E, ,{ }∈∀,

j 1=

n

∑= sep
sej

j 1=

n

∑=

A Multi-Stage Evolutionary Algorithm for the Timetable Problem 11

schedule in sets of 100 events with no look ahead. Now consider that we are in the third phase. 200 events
have already been fixed in the previous phase and we are trying to schedule the next 100 events. Even
though we are only placing those 100 events we must consider the 200 events already scheduled when
checking for first and second order conflicts, or other constraints. Similarly in the final phase we must still
consider the 300 events that will have been fixed by then. In an algorithm such as ours where the majority
of the execution time is spent either evaluating solutions, portions of solutions or possible moves, it
becomes clear that the time taken for each phase will increase substantially later on in the process when,
ideally, each phase that considers an equal number of events should require an equal amount of time.

In the implementation used for the experiments here wemergedevents that had already been fixed into a
number of virtual “super” events, one of these for each period in the timetable. These super events could be
considered as what would happen if all the students from all the events scheduled in a period so far were
taken and were all registered on a new single event instead. We can then forget about those initial events
and remove them from the timetable, letting our new super events be used for evaluation purposes. This
will have obvious complexity advantages as the number of events involved in evaluations will now be the
set size we have chosen plus the number of periods in the timetable, regardless of the phase we are cur-
rently on (with the obvious exception of the first phase, where there is no need for any of these ‘super

Figure 3. The encoding used for a solution timetable

Period 1

Period 2

Period N

Unscheduled

Event 1 Event 2 Event 9

Event 68 Event 22

Event 45 Event 34

Event 64 Event 3

A Multi-Stage Evolutionary Algorithm for the Timetable Problem 10

3.2.7 Using Within the Multi-Stage Framework

The operation of this algorithm varies very little when used within the proposed multi-stage framework.
There are basically three differences at any particular phase of execution:

1. Any events fixed at the end of an earlier phase cannot be moved byany operator in the memetic algo-
rithm, though they are still used for calculating conflicts, seat usage etc.

2. The algorithm ignores all events that will be added to the problem in a later phase.

3. When generating the initial population for a particular phase the set of events for this phase is added in
the same random orderover the fixed events from previous phases.

3.3 Implementation Matters

The following information is given for anyone reimplementing this approach so equivalent performance is
achieved.

3.3.1 The Memetic Algorithm

Conflict Checking

Due to the number of times conflicts between exams need to be checked it is impractical to obtain the num-
ber of conflicts each time by comparing the lists of enrolled students for those exams. Fortunately as we
are more interested in thenumber of students involved in the conflict, rather than theactual students
involvedin the conflict we need only perform the comparisons once. Having calculated the conflicts we
can then create aconflict matrix C.This matrixC will have dimensionsE by E, the definitioncij from sec-
tion 2.2 being the(i, j)th element of this matrix. Storing this matrix within the algorithm enables rapid con-
flict checking, and also eliminates the number of students as a factor in the complexity of the problem. For
instance let us say that 4 students must attend both examsa andb. In this case the(a, b)th element of the
matrix will have the value 4.

Data Structures

Due to the hill-climbing operator being responsible for a large part of the operation of the memetic algo-
rithm, the encoding of solution timetables is designed to reduce the time taken to evaluate and make small
steps. Figure 3 illustrates the link list style encoding used. Each period, plus the unscheduled list, has an
associated object in the solution that knows the first event scheduled in that period. Similarly each event
also has an associated object that knows the next event scheduled in that period, or has a null pointer as it
is the last event. By representing a timetable this way we can easily move through the events in a period to
check conflicts etc. It also facilitates rapid movement of single events from one period to another, making
it highly suitable for the hill climbing operator. Aside from this however, we may also need to quickly
establish which period an event is scheduled in. For this, we make the event objects keep knowledge of
which period its associated event has been scheduled in. By then storing all the event objects in an ordered
array we can quickly access the information about any one event. Altogether, this structure provides for
efficient manipulation and stable memory usage.

3.3.2 The Multi-Stage Decomposition Method

This method has to be implemented very carefully, otherwise we could find that using this method pro-
duces results little or no faster than the traditional single phase approach. The authors found that the main
reason that this might happen was the time taken to perform evaluations (and delta evaluations) at each
stage of the algorithm. For instance, consider a problem with 400 events and suppose we have decided to

A Multi-Stage Evolutionary Algorithm for the Timetable Problem 9

• ELSE IF disruptTHEN

• disrupt this period

• ELSE

• do not disrupt this period

A limitation of this approach is that the first period will never be disrupted, as there is no previous period
by which to evaluate the spread properties. However this period is not immune to changes made by either
the light mutation operator or the hill-climbing operator, and thus should change substantially over the
course of evolution.

3.2.5 The Hill-Climbing Operator

A simple efficient hill-climbing operator is applied after each mutation operator to restore solutions to
local optima. This utilises delta evaluation[Ross94] to avoid the time consuming process of performing a
full evaluation at every step. Where equation 1 gives us our fitness function, our delta evaluation function
when moving eventi from a periodp to a periodq is defined in EQ 11.

(EQ 11)

The actual process used by the hill-climber is as follows:

While the hill-climbing routing does occasionally check if it can schedule events that are currently
unscheduled its main aim is to improve the quality of already feasible solutions, rather than produce low
quality feasible solutions from infeasible solutions. A more complicated local search procedure might
achieve this, but would inevitably increase the total time spent by the algorithm.

3.2.6 Selection

Selection is achieved by using a simple rank based selection method, with each candidate being given a
probability of being selected in order of quality. The process functions by ordering candidate solutions in
order of fitness. The fittest solution (that with the lowest penalty) is given probabilityp of being selected. If
it fails this probability the second fittest solution is offered the same chance. This continues until either a
solution wins its chance or the final solution is reached. The probabilityp in this case was set to be 0.08.

∆fitness i p q, ,() tiptj p 1+() cij dp p 1+() tiptj p 1–() cij dp p 1–()+()(
j 1=

E

∑

ti q q 1+,() tj q 1+() cij dq q 1+() tiqtj q 1–() cij dq q 1–()+()

–

)

=

• REPEAT

• FOR each periodp (in some random order)

• FOR each eventi scheduled in periodp

• Schedule eventi in the valid period causing least penalty (this includes the original
period)

• Try and schedule any unscheduled events

• UNTIL no improvement can be made

A Multi-Stage Evolutionary Algorithm for the Timetable Problem 8

3.2.2 Initial Population Generation

The initial population is generated by taking events in a random order and scheduling in the first valid
period. The hill-climbing operator is then applied to each member of this population.

3.2.3 Light Mutation

As mentioned in Section 1.2 this operator selects a number of events (30 in this case) at random, and tries
to place each in an alternative period, also picked at random. Moves that violate hard constraints are not
allowed, and in this case another period is tried.

3.2.4 Heavy Mutation

This operator is one of the more complicated operators in the algorithm and we will describe it in some
detail. It targets periods that appear to be causing “large” amounts of penalty for “disruption”. By “disrup-
tion” here we mean to say that all events contained within this period are temporarily unscheduled. All
events from disrupted periods can then be randomly rescheduled in the timetable. The penalty for a period
p is based on the evaluation function and is defined in EQ 8.

(EQ 8)

What actually constitutes a “large” amount of penalty is clearly relative so the algorithm also needs some-
thing with which to compare. For this it can calculate the average penalty per period of thebest solution in
our population as in EQ 9.

(EQ 9)

Having calculated these the algorithm can now calculate a probability of being disrupted for each period.
EQ 10 shows how the probability of being disrupted is calculated, withbias being a definable value (0.1
here) to vary the probability of periods being disrupted. Periods causing greater thanaverage penalty are
automatically disrupted.

(EQ 10)

As in this case the penalty arising from a particular period is dependant on the events scheduled in the next
period the algorithm must have special cases for disrupting two periods in a row. For instance, say the
operator preserved periodi because it had a low number of conflicts with periodi+ 1 it does not make sense
to then disrupt periodi+ 1. Instead the operator should maybe disrupt the next period. This can be summa-
rised formally as follows:

• FOR each periodp (where p > 1) in the timetable in turn

• decide ifp is to be disrupted based on the probability given by EQ 10

• IF decision is to disrupt but previous period was not disruptedTHEN

• do not actually disrupt this period, instead disrupt the next period

penaltyp tiptj p 1+() cij dp p 1+()
j i 1+=

E

∑
i 1=

E 1–

∑=

average
Fitness of best

Number of periods
---=

Probability Disrupt period p() 1 if penaltyp average≥,=

penaltyp 2 bias×()+

2 average×
--= if penaltyp average<,

A Multi-Stage Evolutionary Algorithm for the Timetable Problem 7

The multi-stage process when schedulingN exams at a time can be described by the following pseudo-
code:

The point at which to exit the memetic algorithm presents a choice. Normally the memetic algorithm
would exit when the population has fully converged but this is inappropriate with our mutation driven
memetic algorithm. Two other options would be to either run the algorithm for a fixed number of genera-
tions, or alternatively to end the algorithm after a set number of generations have passed without finding a
new “best so far” solution. In these experiments the algorithm was halted after 5 generations without a new
“best so far” solution. While 5 generations may seem a little low, it has to taken into account that a genera-
tion typically achieves considerably more (while also consuming considerably more CPU cycles) than a
typical genetic algorithm due to the use of the hill-climbing operator.

While the decomposition method is in itself independent of the particular technique used to solve each sub-
problem the memetic algorithm presented in [Burk96b] has been shown to be effective at solving all but
the very largest timetabling problems.

3.2 The Memetic Timetabling Algorithm

The memetic approach employs a simple evolutionary model with a population of solutions (of size 50 for
all experiments described here). The algorithm applies mutation operators (one of the light or heavy forms,
decided by a 50/50 probability), followed by a hill-climbing operator, to produce an oversize population
(which is twice the normal population size). Solutions are then selected from this oversize set to form the
new population for the next generation. Previous experiments [Burk97] with recombination operators for
this algorithm have proved unfruitful and as such were not used for these experiments.

3.2.1 Quality and Evaluation

A simple linear weighted penalty function is used to assess the quality (and hence the fitness, or rather
unfitness) of solutions. This function is identical to that shown in EQ 1.

• E’ = 0

• REPEAT

• E’ := E ’ + N

• IF E’ > E THEN

• n = N - (E’ - E)

• E’ := E

• ELSE

• n = N

• FOR each unscheduled exam

• Calculate the desired degree of that exam

• Pick then exams with the largest/least degrees

• Apply the memetic algorithm to schedule thosen exams, keeping the (E’ - n) previously
scheduled exams fixed in their current position.

• UNTIL E’ = E

A Multi-Stage Evolutionary Algorithm for the Timetable Problem 6

• Largest Degree. We choose to schedule first those events with the greatest number of conflicts with
other events. These would generally be considered to be more difficult.

• Colour Degree. Similar to largest degree except that we schedule those events first that have the
greatest number of conflicts with other events that have already been scheduled. We would expect
that events with conflicting events already scheduled would be more difficult to place than events
with a large amount of conflicts, but little or none with any events already scheduled.

• Saturation Degree. Here we schedule first those events with fewer valid periods remaining in the
timetable. We might expect that if we did not schedule these events sooner there may no valid peri-
ods at all remaining to schedule these events later on.

We can use our formal definition of the problem to define the above terms unambiguously. Thedegree of
an exam is defined in EQ 5, where# gives the cardinality of a set and the dot notation represents “such
that” relationships. As the degree of an exam is constant this need only be calculated once in any run of an
algorithm.

(EQ 5)

Similarly thecolourDegree of an exam is defined in EQ 6. Unlike the degree, the colour degree of an exam
changes every time one of its conflicting exams is moved from the unscheduled list to a valid period.

(EQ 6)

Finally thesaturation degree of an exam is defined in EQ 7. This will need to be recalculated every time an
event is moved to a period, either from the unscheduled list or another valid period.

(EQ 7)

degreei # j 1 … E, ,{ }∈() cij 0>•{ }=

colourDegreei # j 1 … E, ,{ }∈() p 1 … P, ,{ }∈()∃• tjp• 1 cij 0>∧={ }=

satDegreei= # p 1 … P, ,{ }∈() tjpcij
j 1=

E

∑• 0 tjpsj
j 1=

E

∑ S si–≤∧=

A Multi-Stage Evolutionary Algorithm for the Timetable Problem 5

Figure 1. How a problem could be divided

This should substantially reduce the complexity of the problem but there will of course be the obvious pit-
fall that by fixing events in periods in this fashion it may be impossible to schedule events later on in the
process. Fortunately, there are a number of methods we can employ to reduce the chances of this happen-
ing. Firstly we could borrow an idea from heuristic sequencing methods and choose our subsets according
to some heuristic ordering. This should help improve the quality of produced timetables by optimising first
those events that are likely to cause most problems. Secondly the process could look ahead in the process
by optimising two subsets at a time but only fixing the first of these subsets at the end of every stage. This
will inevitably lead to the process taking longer than if a single set of the same size was considered, as the
process is considering most of the events twice, but this could be justified if it leads to substantial improve-
ments in quality. Figure 2 illustrates how the earlier 3 phase example would be approached using a look
ahead set.

Figure 2. Using a look ahead set

While having this look ahead set will help, it is probably more important that a good heuristic is chosen
with which to order our events. If the process concentrates on scheduling those more difficult events earlier
on in the process and reducing the penalty caused by these events with respect to each other we should find
that fewer problems are encountered later on in the process, regardless of whether or not we are using a
look ahead set. For these experiments we will use three heuristics that are generally accepted to be suitable
for the exam timetabling problem[Cart95]:

Set A Set B Set C

Phase 1 Phase 3Phase 2

Events

Period

Set A Set B Set C

Phase 2

Phase 1

A Multi-Stage Evolutionary Algorithm for the Timetable Problem 4

(EQ 1)

subject to

(EQ 2)

and

(EQ 3)

and

(EQ 4)

3 A Multi-Stage Memetic Algorithm

3.1 Basic Framework

While memetic algorithms show promise for timetabling problems[Burk96b, Paec95] the time involved in
optimizing large problems (of say greater than 500 events) is much longer than we would find ideal. It
would be much more preferable if the algorithm could produce timetables in a matter of minutes rather
than hours. To achieve this it might make sense to use the original memetic algorithm but only apply it to a
subset of the total events at a time. The algorithm can then fix those events in the timetable before consid-
ering the next subset of events and trying to schedule those on top of those already scheduled in the previ-
ous stage. The process of decomposition has been studied by Carter[Cart83], proposing a heuristic method
of recursively splitting a large problem into smaller problems until each subproblem is small enough to be
solved by conventional methods such as linear integer programming.

The idea has also been studied by Weare[Wear95] who applied such a technique to random data on flexible
length timetables. The results of this indicated that as the number of events considered at one time is
decreased the time taken to produce solutions also decreases but unfortunately so did the quality of solu-
tions. A contributing factor to the lower quality could well have been the use of the flexible length timeta-
ble model and a preference for shorter timetables. This may have caused shorter timetables to be produced
in the earlier phases (at the expense of second order conflicts) when the final timetable may be much longer
anyway. Therefore for the purposes of our experiments we will be using a fixed length timetable model to
avoid these problems. We will also experiment with modifications and enhancements for this method. Fig-
ure 1 shows how a set of events could be split into three subsets and then scheduled in three different
phases, where the darker portions of the graph represent how early on in the process that portion was fixed
in the timetable.

tiptj p 1+() cij dp p 1+() tiptj p 1–() cij dp p 1–()+
p 1=

P

∑ 5000ti P 1+()+
j i 1+=

E

∑
i 1=

E 1–

∑

tip
p 1=

P 1+

∑ 1 i 1 … E, ,{ }∈∀,=

tiptjpcij
p 1=

P

∑
j i 1+=

E

∑
i 1=

E 1–

∑ 0=

tipsi
i 1=

E

∑ S p 1 … P, ,{ }∈∀,≤

2 Problem Definition

The technique presented here was tested on an instance of the examination timetabling problem. At this
point we will introduce the notion ofhardandsoft constraints. Hard constraints are considered essential to
satisfy in terms of producing a practical timetable. Soft constraints on the other hand are regarded as desir-
able to satisfy, but not essential.

In this problem we haveE exams that must be scheduled inP periods withS examination seats available
for each period (whereE, P andS are non-negative integers). There are 3 periods in a day. Any two of the
exams mayconflict with each other, that is they have a number of students enrolled for both exams. When
scheduling the exams we can encounter two types of conflicts:

• First Order Conflicts. This term is used to describe situations where conflicting exams are sched-
uled in the same period. This is highly undesirable as it involves quarantining some students after
one exam so they may sit for the other exam after the main sitting. In all but the most difficult of sit-
uations tis is regarded as a basic hard constraint.

• Second Order Conflicts on the other hand are less important and represent situations where two
conflicting exams are not scheduled in the period, but are scheduled in periods too near to each
other. For instance we might not want students to have to sit for two exams in consecutive periods,
or to sit for two exams in the same day. To totally satisfy these constraints is often not practical, in
which case they are treated as soft constraints.

As well as avoiding these conflicts we must also adhere to the limitations on seating available for each
period.We can formally specify the problem mathematically by first defining:

 if exami is scheduled in periodp, 0 otherwise

 as the number of students taking both examsi andj

 is 3 if periodp is on the same day as periodq, 1 if they are on adjacent days and 0 oth-
erwise. This weights same day conflicts higher as they are more important to satisfy.

 is the number of students taking exami

To take account of the fact that a feasible timetable might not necessarily be possible we need an extra
period, the(P+1)th period, into which we can place any exams not yet scheduled in a valid period. There
are no constraints to prevent scheduling in this period, but it will need to be heavily penalised. Now we
need to minimise EQ 1 subject to EQ 2, EQ 3 and EQ 4 (all presented below). EQ 1 sums up occurrences
where students must attend 2 exams in consecutive periods and weights the number of unscheduled exams
by 5000 to strongly discourage incomplete timetables. If two consecutive periods are on the same day then
any adjacent conflicts are weighted by 3. If there is a single night between them the conflicts are weighted
by 1, otherwise any conflicts are ignored (for example when periods are split by a weekend). EQ 2 states
that every event should scheduled once, and only once in the timetable. EQ 3 specifies that no conflicting
events should be scheduled within the same period and EQ 4 enforces the condition that the total number
of seats required for any period is not greater than the number of seats available.

The problem can be presented formally as follows:

Minimise

tip 1=

cij

dpq

si

be the case that this would not cause any problems. Unfortunately limits on time and rooms often mean
that finding any feasible solution is a considerable task in itself and that no zero penalty solution will exist.

The timetable problem is known in general to be NP-complete[welsh67, karp72]. Of the many approaches
that have been applied to the timetable problem the earliest methods are those that utilise heuristics in
some way. A good example of this isheuristic sequencing [Foxl68], which involves using a heuristic to
estimate how difficult each event will be to schedule. If we then schedule the events we regard as most dif-
ficult before the other events we should produce a substantially better timetable than if we were merely
using a random ordering. A useful addition to this process isbacktracking, such as that used in [Cart94].
This deals with situations where there is no valid period available to schedule an event because of the
placements that have already been made. It does this by unscheduling the conflicting events from a chosen
period in order to allow the current event to be scheduled in that period. The unscheduled events are then
placed back in the ordering for later scheduling.

In addition to these heuristic methods a number of general search methods have also been applied to the
timetable problem. Such approaches include simulated annealing [Thom96], Tabu search [Hert91], and
variants on genetic algorithms [Burk95, Burk96b, Corn94, Paec95]. While most of these have shown
worth it is notable that many of the more successful methods employ some kind of ‘trick’ in the algorithm
to improve results for timetable problems. It logically follows that specialized timetabling algorithms may
function substantially better than those based on more general optimisation techniques.

For the interested reader more information on the examination timetabling problem and the methods that
have been applied can be found in two excellent surveys by Carter [Cart86] and (more recently) by Carter
and Laporte [Cart96] which go into considerable depth. For further information about the problem itself
please see the survey by Burkeet al.[Burk96a] of examination timetabling in universities throughout the
United Kingdom.

1.2 Memetic Timetabling

In [Burk96b] an approach was proposed for timetabling problems based on memetic algorithms. In
essence memetic algorithms are evolutionary algorithms that utilize local search to some extent. The con-
cept of memetics originates from Dawkins [Dawk76] who describes the meme as an idea or concept that is
passed around society. Individuals can then adapt ideas to suit their own environment, as opposed to genes
which are passed down whole and cannot be altered by the recipient. In the same way that memes were
related to genes by Dawkins, memetic algorithms were proposed as an alternative to genetic algo-
rithms[Davi91] by Moscato and Norman[Mosc91]. The main motivation of this approach is that by apply-
ing a hill-climbing operator after each of the genetic operators we can then treat the process as a search
through local optima, rather than the entire search space. Applying a local search operator like this will
clearly cause each generation to take considerably longer but this can of course be justified if sufficiently
more is achieved per generation than if local search were not used.

The memetic algorithm proposed in [Burk96b] uses a combination of mutation and local search to effec-
tively search the solution space. The mutation process actually consists of two separate operators, light and
heavy mutation. The light mutation operator merely shuffles a few individual events to other valid periods,
the purpose of this being to ‘nudge’ solutions away from local optima in order to find a new solution. The
heavy mutation operator, on the other hand, functions by targeting periods where large amounts of penalty
are arising. The algorithm then randomly reschedules the events in these periods to produce a new solution
that retains some of the (hopefully better) characteristics of the original solution. Neither of these operators
on their own achieves any substantial improvements in solution quality but when followed by an applica-
tion of a simple hill-climber the process becomes much more effective[Burk96b].

A Multi-Stage Evolutionary Algorithm for the Timetable
Problem

E. K. Burke
J. P. Newall

Automated Scheduling and Planning Group
Department of Computer Science

University of Nottingham
Nottingham
NG7 2RD

ABSTRACT

It is well known that timetabling problems can be particularly difficult to solve, especially when
dealing with particularly large instances. Finding near optimal results can prove to be extremely
difficult, even when using advanced search methods such as evolutionary algorithms (EAs). In
this paper we present a method of decomposing larger problems into smaller components, each
of which is of a size that the EA can effectively handle. We will show various experimental
results using this method to prove that not only can the execution time be considerably reduced
but also that the presented method can actually improve the quality of produced solutions.

1 Introduction

1.1 The Timetable Problem

 In essence the timetabling problem consists of allocating a number of events to a finite number of time
slots (or periods) such that the necessary constraints are satisfied. In general the nature of the constraints
varies between different instances of the timetable problem but most problems share the conditions that:

• No individual entity (e.g. person) should be required to attend two events simultaneously.

• For each period there should be sufficient resources (e.g. rooms) to service the events scheduled
within that period.

These constraints are fundamental to any timetabling problem and generally form the basis for afeasible
timetable but, as mentioned above, a number of other constraints may be introduced depending on the par-
ticular flavour of the timetable problem being considered. Often, these varying constraints can be at odds
with each other. For instance, when scheduling university examinations it is often considered undesirable
to have conflicting exams in adjacent periods. Alternatively when scheduling university lectures it is often
actually preferred for students to have two or three lectures in a row. Putting aside these differences for our
experiments we will be concentrating on an instance of the examination problem. While there are a num-
ber of possible side constraints for this problem the most difficult task to carry out (aside from producing a
feasible timetable at all) is often to minimise the number of conflicts between adjacent periods in order to
allow students time to recover between exams. If allocated a large number of periods it would most likely

