Evolutionary Algorithms for Nurse Scheduling Problem

Ahmad Jan
Graduate School of Engineering,
Hokkaido University,
Sapporo, 060, Japan.
jan@complex.eng.hokudai.ac.jp

Abstract- Nurse scheduling problem (NSPs) rep-
resents a difficult class of Multi-objective opti-
mization problems consisting of a number of in-
terfering objectives between the hospitals and in-
dividual nurses. The objective of this research is
to investigate difficulties that occur during solu-
tion of NSP using Evolutionary Algorithms, in
particular Genetic Algorithms (GA). As the so-
lution method a population-less Cooperative Ge-
netic Algorithms (CGA) is taken into considera-
tion. Because contrary to competitive GAs, we
have to simultaneously deal with the optimiza-
tion of the fitness of the individual nurses and
also optimization of the entire schedule as the
final solution to the problem in hand. To con-
firm the search ability of CGA, first a simplified
version of NSP is examined. Later we will re-
port a more complex and useful version of the
problem. We will also compare CGA with an-
other multi-agent evolutionary algorithm using
pheromone style communication of real ants. Fi-
nally, we will report the results of computer sim-
ulations acquired throughout the experiments.

1 Introduction

Generally, we can divide NSP approaches to conven-
tional and Evolutionary Computation (EC) approaches,
respectively. Two typical conventional methods are goal
programming model[4], and mathematical programming
[3]. Concerning EC approaches for solution of NSP, there
have been only a few papers published so far. Yamamura
et al proposed a Cooperative Genetic Algorithm (CGA)
[2] and recently Yamamoto et al[5] proposed a collective
multi-agent approach using pheromone style communi-
cation of real ants for solution of NSP. In this paper, the
approach proposed by Yamamura et al [2] is taken into
consideration. CGA initializes its search with an ini-
tial feasible schedule and continues searching in feasible
search region only. This approach successfully generates
feasible schedules, however due to presence of strong con-
straints, and restricting the algorithms to search in the
feasible search region only, some optimization efforts are
necessary to be carried out. In CGA new candidate so-
lutions are created through application of an extended

Masahito Yamamoto
Graduate School of Engineering,
Hokkaido University,
Sapporo, 060, Japan.
masahito@complex.eng.hokudai.ac.jp

Azuma Ohuchi
Graduate School of Engineering,
Hokkaido University,
Sapporo, 060, Japan.
ohuchi@complex.eng.hokudai.ac.jp

Table 1: shifts and their corresponding assigned symbols

| Shift | Symbol |
day-shift (8:00 - 16:00) d
night-shift (16:00 - 24:00) n
late-night shift (00:00 - 08:00) l
off-days as nurses’ preference h

two-point crossover. Newly created candidate solutions
are evaluated and updated using Pareto ranking scheme.
Only non-dominated solutions are allowed to survive for
further competition and are introduced to the Pareto
rankl. From Pareto rank 1 of all non-dominated can-
didate solutions, only one solution is randomly selected
and replaced with the previous schedule. The first phase
of the search continues until the pre-defined objectives
are met or generation reaches its maximum. As our fu-
ture work, we are also interested to develop a second
phase of the CGA to support decision maker interac-
tion. In the second phase, we consider that the acquired
schedule should be presented for the decision maker so
that she can modify it as she wishes and as long as she
is not satisfied with the acquired schedule.

The organization of this paper is as following. In sec-
tion 2, we will briefly introduce NSP and problem defini-
tion. In section 3 hard and soft constraints. In section 4
fitness calculation including fitness factors of individual
In section 5 description of the CGA for NSP
and a brief description of a multi-agent approach for the

nurses.

same problem. In section 6 results of the computer sim-
ulations. In section 7 optimization results. Finally, in
section 8 we will discuss and conclude this work.

2 Nurse Scheduling Problem (NSP)

NSP as a scheduling task consists of assignment of
shifts and holidays to nurses for each day on the time
horizon, taking into consideration a variety of conflicting
interests or objectives between the hospitals and individ-
ual nurses. Given a number of nurses with specific skills
and working agreements, a contract may consist of gen-
eral constraints as there are restrictions on the number
of nurses for each shift; the maximum number of shifts
in a week, a month, etc. Moreover, a number of personal
wishes or desires representing nurses’ preferences are al-

Table 2: some typical examples of restriction conditions for real world NSPs

Classification of Constraints | Description

human related limitations

DAILY restrictions: 4)
5)
6)
7)
restriction on combination 8

of the late-night shifts

restriction on individual
nurses’ monthly schedule.

restrictions on the previous and next
month’s schedule

Nurses’ Preferences

1) chief nurse is exempted from night-shifts
2) those in birth leave or sick leave are exempted, too.
3) do not assign night shifts for unskilled nurses only

each nurse can work only one shift in a day
number of day shift nurses must be > required number of nurses for day shift
number of night shift nurses must be = required number of night shift nurses

number of late-night shift nurses must be = required number of late-night shit nurses

) consideration of the professional level of the nurses
9) do not combine those nurses, who are not in good relations with each other

10) number of legal holidays = assigned number of holidays
11) combination of the day shift and night shift is illegal
12) combination of the day shift and late-night shift is illegal

13) the interval between night-shift patterns must be at least > one week.
14) request for the holiday when the coming next day is due night shift, is illegal
15) request for the holiday when it is due night-shift is illegal.

16) the right for assignment of the desired day off.
17) the right for selection of the preferred partners.

lowed. For instance, a demand for the desired day off,
demand for doing certain shift on a certain day with a
certain nurse, etc. Conventionally, every nurse works on
three shifts, day shift, night shift, and late night shift and
has some holidays. Throughout this paper, these shifts
and holidays are denoted by symbols shown in table 1.
For an image of the complexity of NSP, in table 2 some
typical real world examples of the restriction conditions
for NSP are summarized.

2.1 Problem definition

To describe NSP mathematically, let N, M be the num-
ber of nurses and days; w one of the three shifts or day
off required to be scheduled, respectively. Then, NSP
represents a problem to decide a M x N matrix, so that
each X;;,, element of the matrix express that nurse i
works her w th shift on day j.

where
N : Max number of nurses to be scheduled

M : Max number of days to be scheduled

1
Xijw_{ 0

Generally, the objective of solution of NSP is to find
a schedule fulfilling a set of constraints representing the

(if Nurse ¢ works w shift on day j)
(otherwise)

objective of the hospitals. Moreover, it is desired to sat-
isfy as many wishes of the individual nurses as possible.

In this paper, the maximum numbers of nurses and days
to be scheduled is set to 15 nurses and 30 days, recep-
tively.

date -
1 Jjth day M'
1
Xypp =40}
Xipp =403
nurse X113 ={ o}
Xy =10}
—_— o —— e
X
X
nursei XU3
i
—————————————— I —
a2
Xnm2
X3
X
v NM4

Figure 1: mathematical description of NSP

3 Hard and Soft Constraints

Existing constraints are generally divided into two ma-
jor categories; hard and soft constraints. The hard con-
straints must always be satisfied. Violation of the hard
constraints means that the acquired schedule is no longer

w | shift
1 | n (night)
2 | 1 (late-night)
3
4

d (day)
h (day off)

feasible. Soft constraints are desired to be satisfied as
much as possible, however their violation does not lead
to generation of infeasible schedules.

3.1 Assignment of shifts and restriction condi-
tions

In this paper, from table 2, the following items are con-
sidered as the hard constraints (see also table 2 DAILY
restrictions , items 4, 5, 6, 7):

Ew: Xijw =1
k=1

(Vi,) (1)

N
> Xiji >Rd;=9 (¥)) (2)
i=1
N
i=1
N
Y Xijs =Rlj=2 (¥j) (4)
i=1
Where:
Rd... required number of nurses for day shift,
Rn... required number of nurses for night shift,
RIl... required number of nurses for late-night shift,
k... number of allowed shifts per day for nurse 2

As the nurses preferences, they are allowed to choose
their day offs as they wish.

4 Fitness Calculation

To evaluate each nurse, a fitness function denoted by F;
is calculated for each nurse. All nurses are assigned the
same fitness function. F; consists of three factors that
are described in the following subsections.

4.1 Fitness of the night shift pattern, in respect
to it’s order and length: F?

To evaluate the number of the consecutive night shift
patterns (as a vector value), four valid patterns and their
corresponding penalty values are assigned. These pat-
terns and their corresponding penalty values are shown
in table 3. Selected length and order of F} is ob-
served, and corresponding fitness values are assigned.
The more is the gap from the basic night patterns, the
more penalty is charged.

Table 3: Pre-assigned fitness values of working-patterns

Working Pattern | Assigned PenaltyF,
Ilnn 0

Iln -40

Inn -40

In -60

others -120

4.2 Number of consecutive night shifts, in re-
spect to its length: Ff

The aim of this evaluation factor is to observe the num-
ber of consecutive night shift patterns, regardless of their
order. Ff is formalized according to the following equa-
tion:

Ff = 100 x maz[cy, — 4] (5)
k

Where, counting from the beginning of the month, ¢
represents the length of the k& th night shift pattern. In
words, while the number of the consecutive night shifts
are less or equal to four consecutive shifts, no penalty
is assigned, otherwise corresponding penalty values are
assigned.

4.3 The interval between night shifts: F?

B Y) (©
b

Where, d; represents either of the j th number of
the consecutive day shifts or day offs, counting from the
beginning of the month. In words, if the interval between
night shifts (i.e., either of the consecutive day shifts or
day off) is exactly 11 days, it is considered as an ideal
interval, and thus no penalty is charged. Otherwise, a

penalty according to F is assigned.

4.4 Overall fitness of individual nurse: F;
Overall fitness of individual nurses, F; is calculated ac-
cording to equation 7.

F; = aF} + BF{ + yF} (7)

a, 3,~ are parameters, representing specific criterion of
the hospitals, chief nurses, etc. After all, the objective
function for the entire schedule is formalized as:

N
1
Maximize: avg — N ZF’
i=1

1 1
Minimize: dev = N gFf — m(; F;)?

Subject to: DAILY restrictions (see

subsection 3.1)

It is desired to attain maximization of the average of
the fitness of all nurses, and minimization of the variance
A schedule with avg = 0 and dev = 0

represents the desired absolute solution to the problem.

of all nurses.

Moreover, for individual nurses F; — 0 represents the
best fitness value. Since it is very difficult to predict
whether there ever exists a solution to a schedule with
the values of avg — 0 and dev — 0, thus it is desired
to attain the values of avg and dev as close to zero as

possible.

4.5 Multi-agent approach for NSP

In order to compare search performance of CGA with an-
other evolutionary approach for NSPs, a brief overview
of a multi-agent approach for solution of the same model
of NSP is described. Yamamoto et al [5] proposed an
algorithms for solution of NSP using pheromone style
communication of real ants. Search procedure of this ap-
proach begins with an infeasible initial schedule. Each
nurse tries to improve her own schedule using two kinds
of operators, namely ’swap’ and ’slide’ operators. The
pheromone information is used to resolve conflicts among
nurses. Unfortunately, this approach does not always
guarantee generation of feasible schedules, which is a se-
rious drawback in real NSPs.

5 Algorithmic Flow of CGA

Figure 2 shows the pseudo code of CGA for the exper-
iments reported in this paper. To begin with, let us
briefly describe search procedure of CGA . After initial-
ization of the initial feasible schedule and 15 days of the
history of the previous month, (see figure 3 top and fig-
ure 4 top), all nurses are evaluated according to their
fitness Fj;, including the 15 days of the history of the
previous month. To create a new schedule, from the cur-
rent schedule two nurses are selected, the first nurse with
the worst F; and the second nurse is randomly selected.
Moreover, two crossing points are selected so that all le-
gal children could be generated. As crossover progresses
new solutions (new_ch) are generated and updated if and
only:
if ((new_ch.avg>current.avg) &&
(new_ch.dev<current.dev))

Any candidate solution that is no longer non-dominated
is simply discarded from the list of candidate solutions
If and only if the new_ch is non-dominated, it can sur-
vive and is introduced to the rank 1 of the Pareto non-
dominated solution From rank 1 of all non-dominated
candidate solutions, only one solution is randomly se-
lected. The selected solution becomes the current sched-
ule. The first phase of the search continues until for all
nurses F; # 0 or generation< Max_generation. We also
consider a second phase of CGA for decision maker inter-
action. In the second phase of the search, the acquired

Table 4: parameter settings for the experiments

time horizon 30 days
history of the previous month | 15 days
max number of nurses 15 nurses
max generation 10000
a=F=v 1.0

schedule is presented to the decision maker. If she is sat-
isfied, CGA terminates. While she is not satisfied, the
system asks her for entering a benchmark day[j-MAXD]
representing a point in the schedule where no more
changes are needed. For the remaining days (day[j+1] to
day[MAXD]) she is asked to enter nurse[n].shift[j] that
After re-
placement of the above mentioned shifts, CGA contin-

she wishes to replace with nurse[m].shift[j].

ues to search for n runs and search is restricted from
day[j+1] to day[MAXD]. The acquired schedule is pre-
sented for the decision maker and this process continues
until the decision maker is not satisfied. Currently we
work on the second phase of CGA and we will report the
acquired results in our future works.

6 Computer Simulations

6.1 Confirmation of the search ability of CGA

To confirm the search ability of CGA (without applica-
tion of mutation and escape, described in subsection 7.3),
some preliminary experiments were carried out. Table 4
shows parameter settings for the computer simulations
being reported. During these experiments day off was
not taken into consideration, i.e, the initial schedule
shown in figure 3(top) was initialized.

Figure 3 (bottom) shows the best observed schedule
obtained during the preliminary experiments. This ex-
periment revealed the existence of the absolute solution
for simplified version of the problem. However, the solu-
tion was observed only once out of each 12 independent
runs of the CGA. Later our experiments showed that af-
ter some optimization efforts it is possible to acquire the
best solution for the simplified version of the problem in
each run of the CGA, i.e, after application of the escape
operator, that is described in subsection 7.3.

6.2 Consideration of the day off

In this experiment, the schedule shown in figure 4 (top)
with addition of the day offs was initialized. However,
the absolute solution was not observed. Unfortunately it
is very difficult to predict whether the absolute solution
for this schedule ever exists. To investigate whether it
is possible to improve the search performance of CGA,
some experiments were carried out that are described in
the following subsections.

Figure 2: Co-operative GA for NSP

1. main(){ /* main function */
generation—==0; load initial feasible schedule and 15 days of the history of previous month;
sum=0; sqr_sum=0;
for(i=0; i<MAXN; i++){
for(j=0; j<MAXH; j++){ /* 15 days of the history of the previous month */
evaluate(nurse[i]); /* according to F; */
sum+—nurse[i|.fitness; sqr_sum+—nurse[i].fitness X nurse[i].fitness;

avg=sum/MAXN; dev=sqrt(sqrsum/MAXN-avg*avg);

do {
if(generation==mutation frequency) mutation();
else if (generation==escape frequency) escape();
else generation();
if(generation%250==0) print_current schedule(); /* print current schedule after each 250 generations */
} while (V F; # 0 or generation < Maz_generation);
} /* end of the main function */

2. description of the utility functions: /* MAXN, M AX D: Max number of nurses and days to be scheduled */
crossover(pl, p2, cl, c2, cpl, cp2){
for(j=0; i<MAXD; j++){
flag=TRUE;
if (nurse[n1].shift[j]==h | | nurse[n2].shift[j]l==h) flag=FALSE; /* replacement of h is illegal */
if (flag)
, if (j>epl && j<cp2){cl[il=p2[i}; c2[i]=p1[il;} else { c1[i]=p1[i]; c2[i]=p2[il;}

mutation(){
let n1, and n2 be two different nurses.
mpl=select(MAXD); mpl=select(MAXD); /* select mutation points */
flag=TRUE;
if (nurse[n1].shift{mpl]==h | | nurse[n2].shift[mp2]==h) flag=FALSE; /* replacement of h is illegal */
if (flag) swap(nurse[n1].shift[mp1], nurse[n2].shift(mp2]);

escape(){
let n1, and n2 be two different nurses.

do{epl=select(MAXD); ep2=select(MAXD); /* select escape points */
while(epl==ep2){ep2=select(MAXD); } lag=TRUE;
for(i=epl; i<ep2; i++){if (nurse[nl].shift(ij==h | | nurse[n2].shift[il==h) flag=FALSE;}
} while(!flag);
if (flag) {
for(j=0; j<MAXD; j++){if (i>epl && j<ep2) swap(nurse[nl].shift[j], nurse[n2].shift[j]); }
}

pareto(){
V(new_ch.c) update, new_ch.avg and new_ch.dev according to:

if((new_child.avg > current.avg)&& (new_child.dev < current.dev))

generation(){
let matel, and mate2 be two different nurses.
sum—:nurse[matel].ﬁtness+nurse[mate2].ﬁtness;
sqr_sum—:nurse[matel].ﬁtness)(nurse[matel].ﬁtness+nurse[mate2].ﬁtnessXnurse[mate2].ﬁtness;
for(cp1=0; cp1<MAXD; cpl++){
for(cp2=cpl+1; cp2<MAXD; cp2++){
flag=TRUE;
for(i=cpl; i<ep2; i++){
if (nurse[matel].shift[ij==h | | nurse[mate2].shift[i|==h) flag=FALSE;}
if (flag){ new_ch.cl=nurse[matel]; new_ch.c2=nurse[mate2];
crossover(nurse[matel].shift, nurse[mate2].shift,new_ch.c2.shift, new_ch.c2.shift, cpl, cp2);
evaluate(new_ch.cl); evaluate(new_ch.c2); /* according to F; */
new_ch.avg:(sum-l—new_ch.c1.ﬁtness+new_ch.c2.ﬁtness)/MAXN;
new_ch.dev=sqrt(sqrsum+new_ch.cl.fitnessxnew_ch.cl.fitness+
new _ch.c2.fitnessxnew_ch.c2.fitness/MAXN-new_ch.avgXnew_ch.avg);
pareto();
generation—generation+1;

11213 415106 71819 M0oM1120340151 12 13 [4 15 [6 |7 18 |9 1011211314 15 1617 |18 (1920 (21|22 |23 |24 |25 |26 [27 |25 |29 |30 Fitness
Murses 1| 1l ininididididididididididid] L0l to b bbby el bbbt be bbb bbbl hi| -2720
Murse: 2 | di 1 lininidididididididididid] LE1s 1 PE TP DE e i Pl e i pie e i il i]il] 2721
Murse: 3 |didil::ninididididid:d:didid[n: ninin:nininin:in:ininininininin:n:ninin:n:ninin:n:ninin:in:n 2724
Murse:d [didid: [ilininididididididididlnin -2728
Murse: & |didididi |l ininididididididid|did:d 676
Murse: B |didididid: | lininidididididid|didididididid;didididididididididid:didididid;didid:dididid 625
Murse: 7 |dididididid: [ilininididididid|didididididididididididi didididididididididididididididid:id 578
Murse: B | dididididididi|ilininidididid|did;d:d -528
Murse: 9| didididididididi [lininididid|jdid:id -484
Murse1Of didididididididid: [! 1 ininidid|dididididididididididid i didididididididididid:didididid did =441
Mursesl|did;dididid;dididid; |1 nin;d|didididididididididid;d didididididid;idididid;dididid;didid -400
Murse12| didididididididididid: |ilinin|dididididididididididid i didididididididididididididididid:d -361
Mursed3|nidididididididididididil:lin]dididididid:ididididid:didid:dididid:id:idididid:ididid:id:idid;:d -441
Mursedd|ninidididid; didididididid: |;[]didididididid;dididididididididididididididid;didididididid -601
Murse15| lininididididididididididid! [|did -601
histary of the previous month current month ::?;;7170325
ot L] gen=0
11213 415106 71819 o1 p2p3t4015f1 12 13 [4 15 [6 |7 18 19 1011211314 151617 |18 (1920 (21|22 |23 |24 |25 |26 [27 |25 |29 |30 Fitness
Murge: 1| 1ilininididididididididididid] i lininidididididididididididi|ilininidididididid:ididid:d:id 0
Murse: 2 fdililininidididididid dididid|dililininididididididid didididililininidididididididid:did 0
Murse: 3 didililininididididididididid|didililininidididididididididididi|ilininididididididididid 0
Murse: 4 |didid: |ilininidididididididid|dididi|:|ininidididididididididididililininididididididid:d 0
Murse: & |didid:id; | | inin;didididididid|dididid: | lininidididid;didididididid: | lininididididid;d;:d 0
MurseiB |did:ididid: | lininidididididid|dididididi |:|ininidididididididididid:id! |{|innididid:ididid 0
Murse: 7 |dididididid; [ilininididididid|d i dididididiilininidid dididididididididi |l ininidididid:d 0
Murse: 8 |dididididididililininidididid|dididididididi|ilininididididididididididid!|{lininidididid 0
Murse: 8 |dididididididid! [ilininididid|dididididididid!|ilinin:dididididididididididi|lilininidid:d]
Murse 0| dididididid;dididi | lininidid|dididididididididi|ilininidididididididididididililininidid 0
MurseM|didididididididididi | lininid|didididididididididi il ininidididididididididididi[ilininid 0
Murse 12| dididididididididididi [ilinih|ldididididididididididi |l lininidididididididididid:dililinin 0
Murse13|nidididididididididididililin]nididididididididididid: lilininidididididididididididi|l:lin 0
Mursedd|ninididididididididididid: |il]ninidididididididididididil:|ininididididididididididid |i] 0
Murseids] lininididididididididididid! [|lininidididididididididididililininididididididididididid:]| 0
history of the previous month current month :\;%,:g'gg
ol Ll gen=7024

Figure 3: top: simplified version of the initial schedule, bottom: acquired final schedule

7 Optimization Efforts

7.1 Increasing the number of mates for crossover

In an attempt to generate more candidate solutions and
explore in a wider portion of the solution space, the fol-
lowing experiments with GA operators were performed.
Firstly, we increased the number of the selected mates
for crossover, from 2 to 4 and to 6 mates, respectively.
With more mates for crossover, considerable results were
not acquired. In addition, comparing to the selection of
two mates for crossover, with more mates computational
cost of CGA gets higher as expected.

7.2 Diversification of the solution space

Since CGA is a population-less approach, consideration
of other ranks rather than rank 1 and the use of some
kind of niching techniques to keep CGA from converg-
ing to a single point on the front (as suggested by Gold-
berg [1]) is not applicable. As an alternative, to enable
CGA for more exploration of the search space, in sub-
section 7.3 we will introduce a simple technique called
Yescape” operator.

7.3 Application of the mutation and escape oper-
ators

As the second attempt we applied mutation. During ap-
plication of traditional mutation, two nurses ¢ and 7 and

two mutation points are randomly selected. Then, their
corresponding shifts are interchanged. According to the
results of simulations shown in table 6, and figure 6, tra-
ditional mutation fails to to improve search performance
of CGA. as the probability of selection of day shifts are
very high. As an escape strategy from the local min-
ima and a hope for exploration of larger portion of the
search space, we developed a very simple operator that
is called escape operator. During application of the es-
cape operator, two nurses i and j are randomly selected
and a block-wise exchange of shifts between the selected
nurses is carried out. Detailed explanation of the es-
cape operator is given in figure 2. The best observed
frequency of application of the mutation and escape op-
erators are shown in table 5. Tt was observed that the
best frequency of application of the escape operator is
after each 10 generations.

Table 5: best observed frequency of mutation and escape

Max generation 10,000
Max run 100
Best observed mutation frequency | 1950
Best observed escape frequency 10

Figure 4 (bottom) shows a typical view of the final ac-
quired schedule after application of the escape operator
after each 10 generations.

1234516 [F 1819 NOMIN2130401611 |2 13 |4 5 |6 |7 18 19 MO 213114 15 16 [17 18 (1912021 |22 |23]24 |25 [26 |27 |28 |29|30| Fitness
Murse D) L ldinsnsdididididididid;didid] o0l b ihihd Pl bi b bbb bbbl iho b il -2041
MNurse: 2 |d: T lininidididididididididid] 110 Tii i ihihi [l fi L L bi i b i i [l lilelililil -2322
Murse: 3 |didil:l:ninididididid:d:didid|ln:ininin:|:linil:l:ninin:h:hinin:n:ninin:n:ninil:in:inininin:n -2325
Murgecd [dididililininididididididididlnininininininthin -2448
MWursee B |didididi | ilininidididid dididldidididininidininidididininidididihihididididinidididididid 768
MWursee B |didididid: i lininididididididldidid didididinidididididididididididididididih hididididid -365
Wurge: 7 |didididididi | ilininididididid]ldididi dididididididididididididididididididihidi hididididid 576
Murge: B | dididididididi il ininididididjdidid dididididididihididid:id:idididid didid:id:didididididid -529
Murse: 9 | didididididididililininidididjdihihididididididid -484
Murse1Ofdid:idididididididi [P lininidid]dididididididididididididihididididid hidid:idididididididid =441
MWursedl|did;dididididididid; [Pl inin;dldidid; dididididihih;didididididididididididid;id dididididid -400
Murse12|didididididididididid: | lininldidididididididididididididihididididididididid:id:idididid:d -361
MWursed3|nididididididididididid |:1:inldidididididididididid:ididid: dididih:h:ididid:didididid:ididid -441
Wursedd|ninididididididididididid: | l)didididididididihihidididididididididididididid dididididid 601
Murse18] | ininidididididididididididi||Jdidihid 601
history of the previous month current month 3\;?;799850'525?
ot o gen=0
11213 415106 71819 1011203141501 12 13 [4 15 |6 |7 18 |9 10111213 14 |15 |16 17 [18 [19 |20 |21 |22 |23 |24 [25 |26 |27 |25 |29 |30 |Fitness
Murses 1| |ilininididididididididididid|didididihih:|ilininididididididididid:|!|ininihidididididid -40
Murse: 2 |dililininidididididididididid] | lininidididihihididid dididid:|:lininididid;dididididid:d -2
Murse: 3 |didililininididididididididid] | ininidididididididididihihi|i|ininidididididididididid:d;l -44
Murse: 4 |didid: [ilininidididididididid|dililininididihidididididididi|ilininidididididididididid:d -5
Murse: & |didididi il ininididididididid|did:i|:lininidididididididididididih:hid!|[{linnidididididid -13
Murge:B[dididididi | lininidididididid]dididididi il ininidididididididididililininidihihididididid -4
Murse: 7 [didididididi il ininididididid|didididi l[ilininididididididididididididididihidihi|ilininid -40
Murse: B dididididididililininididididjdididililintinidididihididididididililininidididididididid:d =17
Murse: 8 |didididididididi |l ininididid|didididididididi|ilininidididididididididihihi|lilininididid i}
Murse 10| did;dididid;didid: | 1ininidid|didididididid;did! |[;lin nithidididididihidid: | linin;didid:d -4
Mursecdl|dididid:ididididididi|: | ininid]ldidididididididihihidid:[:lininididididididididid:ididid:[:] R
Murse 12| dididididididididididi |ilinin|dididididididi |ilininidididihididididididi|ilininidididid:d 17
Mursed3|nidididididididididididi ||l in|dididididididididid: il ininidididihihidididididi|i{lininidid -42
Mursedd|ninidididididididididididi|![]nidididididididihihid: | lininididididididididididid:[ilinin -41
Murse:15) | ininidididididididididididi [|ninihididididididididididililininididididididididididililin -41
history of the previous month current month 3;11%1202?
P Lo er=6355

Figure 4: top: initial schedule

As is shown in figure 5 applying escape operator CGA
is given a greater chance to explore in a larger portion
of the search space. As expected, some improvement is
also acquired. Figure 5 shows distribution of the solution
space prior to and after application of the of the escape
operator.

Figure 6 shows comparison of the effect of application
of the mutation after each 1950 generations and applica-
tion of the escape operator after each 10 generations(the

average of 100 runs of CGA).

7.4 Effect of the number of generations

To confirm whether CGA can explore better results
with more generations, the Max_generation was set to
100,000 generations. Best observed results of 100 inde-
pendent runs of CGA are summarized in table 6. Ac-
cording to the acquired data, increasing the number of
generations CGA can explore better results. All exper-
iments were carried out on a PC with CPU Pentium 2
Processor 300 MHz. The total of the execution time for
10000 generations of CGA was 49 seconds.

8 Conclusion

The objective of this research was to investigate prob-
lems that occur during solution of NSP using Evolution-
ary Computation approaches, in particular, GAs. As a

with day off being added, bottom:

acquired final schedule

Table 6: comparison of the effect of the number of gen-

erations

Max gene- | state best gene- | best best times

ration ration avg. dev. found

10,000 CGA 2112 -41.73 | 25.64 | 123
mutation | 1105 -43.4 26.08 | 122
escape 9774 -32.27 | 22.71 | 159

100,000 CGA 44648 -32.40 | 24.91 | 138
mutation | 1106 -43.4 26.08 | 122
escape 54224 -13.47 | 20.00 | 184

max-step multi- -17.71 | 22.94

200,000 agent

case study CGA was applied to NSP. During the pre-
liminary experiments the best solution for the simplified
version of the problem was found only once out of 12
independent runs of CGA. The presence of strong con-
straints and limiting CGA to search only in feasible so-
lution space required some optimization efforts. In an
attempt to improve the search performance of the CGA,
the number of selected mates for crossover were changed
from two to more mates. However, there was not a con-
siderable improvement acquired, in addition computa-
tional cost of CGA was increasing. According to re-
ported results, application of the conventional mutation

150 7

125

100

P
RIS

. e abt

stadard deviation

50

LU

25

0 25 50 75 100 125 150

average

150 7

standard deviation

0 25 50 75 100 125 150

average

Figure 5: distribution of the solution space: prior to
(top) and after (bottom) application of the escape oper-
ator

alone itself was not sufficient. Since the original CGA
represents a population-less approach, consideration of
other ranks rather than rank 1 and the use of some kind
of niching techniques to keep CGA from converging to
a single point on the front was not applicable to CGA.
As an alternative, a so called escape operator was taken
into consideration. Application of the escape operator
enables CGA to explore in a larger portion of the solu-
tion space, moreover as expected some performance im-
provement is also acquired. Therefore for the moment we
consider application of escape operator as the best choice
for improvement of the search ability of CGA, because
of it’s simplicity and efficiency. Comparing to the multi-
agent approach, CGA always satisfies hard constraints
successfully i.e., required number of nurses for each shift
is always satisfied. Moreover, after application of the es-
cape operator and increasing the number of generations,
CGA outperforms the multi-agent approach. In the cur-
rent model of NSP from the table 2 the most important
restriction conditions have been taken into consideration,
i.e., the required number of nurses for each shift and as
the nurses preferences they are given the right to select
their day offs as they wish. CGA can find reasonable
final schedules satisfying all predefined hard constraints.
However, from the practical scheduling point of view, it
is necessary to investigate the degree of satisfaction of
the desicion maker regarding the acquired schedule. For
this purpose we are considering a second phase of CGA

Max_generation=10,000

80 ~

60

50 141.73 -
a

407 3227}

301 25.64 26.08 28.06 L ev

20 1 —

best observed values

10 4 —

CGA Only Mut Only Escape Only Mut and Escape

Figure 6: comparison of CGA and the effect of applica-
tion of mutation and escape operators

for decision maker interaction. This is another topic that
we would like to consider in our future studies of the
problem. Besides, the F' values (figure 4 bottom) are
negative values. In the current model of NSP it is de-
sired to optimize the fitness of individual nurses as much
as possible. However, as they represent soft constraints,
they can be violated. Regarding problem definition and
design of the fitness function of the individual nurses, it
is noted that the problem is not described realistically.
For example, the length of consecutive day shifts is con-
sidered too long, the same fitness function is assigned for
all nurses, etc. However, for evaluation purpose the def-
inition of the problem is sufficient enough. In our future
studies of practical scenario of NSP, we will reconsider
the discussed difficulties and alter the present approach
accordingly.

Bibliography

[1] Goldberg, D., Genetic Algorithm in Search,
Optimization and Machine Learning, Addison-

Wesley, Reading, MA 1989.

[2] Kitano, H. Genetic Algorithm vol 3, Sangyou
Tosho, pp.89-126 in Japanese, May, 1995.

[3] D.Michael, Scheduling Nursing Personnel Ac-
cording To Nursing Preference: A Mathemat-
ical Programming Approach Duke University,
Durham, North Carolina, 1977.

[4] I.Ozkarahan, (1987) Goal Programming Model
Subsystem of Flexible Nurse Scheduling Sup-
port System Pennsylvania State University,
Behrend College, School of business.

[6] M, Yamamoto et al, Collective Approach to
Optimization Problems, Proceedings of ITC-
CSCC 98, pp 1479-1482

