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Abstract— Many bugs, even those that are known and
documented in bug reports, remain in mature software for
a long time due to the lack of the development resources to fix
them. We propose a general approach, R2Fix, to automatically
generate bug-fixing patches from free-form bug reports. R2Fix
combines past fix patterns, machine learning techniques, and
semantic patch generation techniques to fix bugs automatically.
We evaluate R2Fix on three projects, i.e., the Linux kernel,
Mozilla, and Apache, for three important types of bugs:
buffer overflows, null pointer bugs, and memory leaks. R2Fix
generates 57 patches correctly, 5 of which are new patches for
bugs that have not been fixed by developers yet. We reported all
5 new patches to the developers; 4 have already been accepted
and committed to the code repositories. The 57 correct patches
generated by R2Fix could have shortened and saved up to an
average of 63 days of bug diagnosis and patch generation time.

Keywords-automated bug fixing; automated program repair;
bug report classification; fix pattern study

I. INTRODUCTION

Everyday, an overwhelming number of bugs are reported.
For example, the Mozilla bug database [4], with a total
of 670,359 bug reports, receives an average of 135 new
bug reports daily. The corresponding bugs hurt software
reliability and security, which are not improved until the
bugs are fixed.

Upon receiving a bug report, developers diagnose the root
cause of the bug, produce a patch that can fix the bug,
and commit the patch to the source code repository. We
combine the first two steps (diagnosis and patch generation)
under the label of fixing a bug, which is the focus of this
paper. Developers’ bug-fixing process is primarily manual;
therefore the time required for producing a fix and its
accuracy depend on the skill and experience of individuals.

Figure 1(a) shows a Linux kernel buffer overflow/overrun
bug report. The developers first need to understand this
bug report by reading the relevant code together with this
report: the buffer state contains only 4 bytes, but 5 bytes,
“off \0”, was written to the buffer, where denotes one
space character and the single character ‘\0’ is needed to
mark the end of the string. The developers then need to
figure out how to fix the bug (e.g., by reading the relevant
code and using a debugger to observe and modify the
program execution). Why are more than 4 bytes assigned
to the buffer? Should 5 bytes be allocated instead; should
developers assign only 4 bytes to the buffer state; did the
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Bug 11975 - [net/mac80211/debugfs_sta.c:202]: Buffer overrun 
Description: The trailing zero (`\0’) will be written to state[4] which is out of bound.

linux/net/mac80211/debugfs_sta.c:
-        strcpy(state, "off␣");
+       strcpy(state, "off");

(a) Linux Kernel Bug Report

(b) Patch to Fix the Bug

Remove the 
space character

linux/arch/s390/kernel/early.c:
+   int hlen;
...  char defsys_cmd[DEFSYS_CMD_SIZE]; ...
-   sprintf(defsys_cmd, 
+  hlen = snprintf(defsys_cmd, DEFSYS_CMD_SIZE,

  "DEFSYS %s 00000-%.5X EW %.5X-%.5X SR %.5X-%.5X", ... );    ...
-   sprintf(defsys_cmd, "%s EW %.5X-%.5X", defsys_cmd,
+  hlen += snprintf(defsys_cmd+hlen, DEFSYS_CMD_SIZE-hlen, " EW %.5X-%.5X", 
                       sinitrd_pfn, einitrd_pfn); ...

Control the number of 
characters copied

(a) Patch for Linux Overflow Bug 12965 (b) Patch for Linux Nullptr Bug 13853

linux/drivers/net/ariadne.c:
-   if (dev == NULL) {
-      printk(KERN_WARNING "...");
-      return IRQ_NONE;
-   }

“dev” cannot be null.  Delete the 
unnecessary checking code.

Figure 1. Converting a bug report to a patch. “-” denotes a line to be
deleted; “+” denotes a line to be added; and “ ” is one space character.

developers forget to check if the array is long enough to hold
the content before the assignment; or was the bug caused by
more complex reasons? The developers then need to check
out the buggy version, modify the buggy code to fix the
bug, and generate the patch that can be applied to the shared
source code repository.

The result of this challenging and time-consuming process
by developers for bug 11975 is the patch in Figure 1(b). The
patch deletes the line that writes 5 bytes to buffer state

(denoted by - strcpy(state, "off ");), and adds a
new line to write only 4 bytes to state (+ strcpy(state,

"off");), which fixes the overflow bug.
Developers often need to fix more bugs than their time

and resources allow [6]. Although developers spend almost
half of their time fixing bugs [21], bugs take years to be
fixed on average [9], [19].

Therefore, support to make it easier and faster for de-
velopers to fix bugs is in high demand. The capability to
automatically generate patches (e.g., Figure 1(b)) from bug
reports (e.g., Figure 1(a)) could: (1) save programmers’
time and effort in diagnosing bugs and generating patches,
allowing developers to fix more bugs or focus on other
development tasks; and (2) shorten the bug-fixing time, thus
improve software reliability and security.

A. Ideal Goal Versus Realistic Goal

Ideally, we want to automatically generate patches for all
bug reports. Realistically, it is impossible. We found that
only 16.7–33.5% of bug reports in the Linux kernel, Mozilla,
and Apache bug databases are fixed. This is because, many
bug reports are invalid, unreproducible, incomplete, etc.
Even among bugs that can be fixed, some are too complex
to be fixed automatically because they require redesign of
the algorithm, addition of new features, etc.
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Therefore, a realistic goal is to automatically generate
patches for relatively simple bugs, e.g., Bug 11975 in
Figure 1. Such bugs are suitable candidates for automation
because the bug reports contain useful information, e.g., the
buggy file and the symptom, although the information is in
the form of a natural language.

As it may take less time for developers to fix simpler bugs,
the time savings of automatically generating patches may be
small (e.g., the bug in Figure 1 was fixed in about 20 hours
after the submission of the initial bug report). However, it
is still beneficial to automatically fix these relatively simple
bugs, because (1) many simple bugs have severe impact,
e.g., causing security vulnerabilities; and (2) any time and
effort saving in fixing bugs should be valuable.

Although we aim to fix simple bugs, the patches generated
to fix them are not limited to simple patches. Figure 3(a)
shows an automatically-generated complex patch.

B. Challenges

Automatically generating patches from bug reports is ex-
tremely challenging. First, many bug reports do not contain
enough information for a developer to understand how to
fix the bug. A developer needs to read the relevant code
to find the exact cause and then generate a patch to fix
the bug. In order to automatically generate patches from
a bug report, we must automatically recover the missing
diagnostic information without consulting the developers or
the reporter. Second, in order to fix a bug, we need to know
its root cause. For example, we need to know that the bug
report in Figure 1(a) describes a buffer overflow bug.

C. Contributions

As a first step to address this challenging task, we pro-
pose R2Fix, a novel and general technique to automatically
generate bug-fixing patches from relatively simple free-form
bug reports. As different types of bugs require different
types of fixes, R2Fix generates bug fixes (also referred to
as patches) by bug type (e.g., buffer overflows, or memory
leaks). R2Fix analyzes bug reports, determines the bug types,
and generates patches for developers to verify. When R2Fix
cannot generate a patch for a bug report, developers can
follow the normal procedure of addressing the bug report,
in which case R2Fix adds no extra work to the developers.

We use novel techniques to address the challenges de-
scribed in Section I-B. First, to recover missing information,
we leverage past bug fix patterns to automatically diagnose
bugs and generate fixes. For example, if most buffer over-
flows are fixed by two common fix patterns, and we generate
two patches according to the two patterns for an overflow
bug, then one of the two patches is likely to be a correct
patch. In addition, R2Fix’s diagnostic capability can often
narrow the candidate set down to one patch, since often only
one fix pattern can be applied to a bug report. Our fix pattern
study confirms that many bugs are fixed by a few common

fix patterns. Second, we apply machine learning techniques
to automatically identify the root causes from bug reports.

We evaluate R2Fix on three large and popular software
projects—the Linux kernel, Mozilla, and Apache—for three
important types of bugs: buffer overflows, null pointer bugs,
and memory leaks. For bug reports that R2Fix can gen-
erate patches for, we compare the patches with developer-
generated patches if they can be identified. Otherwise, we
report the patches to developers for their confirmation.

In total, for 819 randomly sampled fixed and unfixed
bug reports, R2Fix automatically generates patches for 80
verifiable bug reports, 57 of which are patched correctly by
R2Fix, a precision of 71.3%. Among the 57 patches, 5 are
new patches generated for unfixed bug reports. After we
reported the 5 new patches to the developers, 4 are accepted
and committed to the source code repositories, while the
other awaits developer confirmation.

If developers had applied R2Fix as the 57 bug reports
were submitted, R2Fix could have shortened the bug-fixing
time by up to 63 days on average. The bug-fixing time,
consisting of diagnosis and patch generation time, is defined
as the time from when a bug report is opened to when a
correct patch to fix the bug is added to the bug report. As the
63 days does not include the time for developers to review
or commit the patch to the code repository, the potential
speedup of 63 days is a good approximation of how much
time R2Fix could have saved on fixing these bugs.

Among the 57 correct patches, 21 fix potential security
vulnerabilities (i.e., buffer overflow bugs), and 3 patches
fix confirmed security vulnerabilities in the Linux kernel
and Apache recorded in the National Vulnerability Database
(NVD) [5]. If R2Fix were applied to these security bugs,
their vulnerability window could have been shortened by up
to 24 days on average.

Although R2Fix automatically generates correct patches
for many bug reports, they constitute a small percentage
(<1%) of all fixed and unfixed bug reports in the evaluated
projects. We briefly discuss two reasons here, while Sec-
tion VIII-A presents a detailed discussion and Chapter IX
suggests approaches to increase this percentage. First, we
randomly sample 819 bug reports for evaluation. Second,
we evaluate R2Fix on three types of bugs only as a proof of
concept. Our coarse estimate suggests that we could extend
R2Fix to handle 17.2% of all fixed bug reports in the three
evaluated projects. Note that even 1% is amount to 19,600
bug reports; the time savings on fixing them would be highly
considerable.

This paper makes the following contributions:
• We propose to automatically generate patches from free-

form bug reports. As a proof of concept, our prototype,
R2Fix, automatically generates correct patches that are
directly applicable to the faulty software to fix bugs.

• Our prototype R2Fix currently handles three types of
bugs, which has significant impact: (1) R2Fix could have



shortened the bug-fixing time by up to 63 days on average
for the 57 simple bugs that R2Fix can fix; (2) R2Fix
fixed 21 potential security vulnerabilities, and 3 patches fix
confirmed security vulnerabilities, shortening vulnerability
window; and (3) some developers from the evaluated
projects consider that R2Fix could save their time in fixing
bugs. In addition, it is promising to extend R2Fix to handle
17.2% of all fixed bug reports in the evaluated projects.

• We perform a detailed bug fix pattern study and leverage
the results with R2Fix to automatically recover missing
diagnostic information in the bug reports for patch gener-
ation. Our study shows that a significant proportion (27.3–
86.6%) of buffer overflows, null pointer bugs, and memory
leaks are fixed by a few common fix patterns.

D. Outline

Section II describes our fix pattern study. Section III
provides a brief summary of R2Fix’s design and its three
components, whose details are described in Section IV, V,
and VI respectively. Section VII describes the experimental
methods and Section VIII presents our results. Section IX
discusses the applicability and generality of R2Fix, patch
validation using test cases, the little manual effort required
to use R2Fix, and the threats to validity. Section X discusses
the related work and Section XI concludes the paper.

II. THE STUDY OF BUG FIX PATTERNS

There are two main reasons to study bug fix patterns.
First, bug fix patterns affect the feasibility and applicability
of automatic patch generation from bug reports. If many
bug fixes share a small set of fix patterns, then it is feasible
to automatically generate patches based on the common
fix patterns. Second, fix patterns can recover diagnostic
information missing from a bug report because they are
learned from past developer-generated patches.

We study three important and dominant types of bugs—
buffer overflows, null pointer bugs, and memory leaks.
Buffer overflows are the single largest contributor to reported
security vulnerabilities [12]. Null pointer bugs and memory
leaks are the top two major types of memory bugs [23].
These bugs can cause crashes, corrupt persistent data, de-
grade performance, and open doors for security attacks.

A. Data Collection

To ensure the identification of correct fixes, we only
manually read closed fixed bug reports whose fixes can be
identified from the reports or the version control systems.
We first randomly sample 636 closed fixed bug reports
from the Linux Kernel and Mozilla bug databases, manu-
ally read them and identified 6 buffer overflows, 10 null
pointer bugs, and 11 memory leaks, which are too few
for a comprehensive study of fix patterns. Therefore, we
use keywords related to each bug type to collect additional
closed fixed bug reports. For example, the keywords used for

Table I
COMMON FIX PATTERNS. L IS LINUX AND M IS MOZILLA.

Pattern L(%) M(%)
LongerBuf 60.0 19.4
FewerByte 13.3 19.4
MdBound 13.3 9.7
Total 86.6 48.5

(a) Overflow

Pattern L(%) M(%)
AddCheck 47.6 53.3
MvCheck 4.8 10.0
RmCheck 9.5 6.7
Total 61.9 70.0

(b) Null Pointer

Pattern L(%) M(%)
AddFree 53.8 22.8
MvFree 0 4.5
Total 53.8 27.3

(c) Memory Leak

Table II
FIX PATTERN EXAMPLES. THE NUMBERS ARE THE TOTAL NUMBER OF

FIX PATTERNS FOR EACH BUG TYPE.

Pattern Subpattern Param

Overflow (6):
FewerByte

− s t r c p y (BUF, EXPR ) ;
+ s t r l c p y (BUF, EXPR, s i z e o f (BUF ) ) ;

none

+ i n t h l e n ;
. . .
− s p r i n t f (BUF,FMT, EXPR)
+ h l e n = s n p r i n t f (BUF, s i z e o f (BUF) ,FMT, EXPR ) ;
[ [ . . .
− s p r i n t f (BUF, ‘ ‘% s FMT2” ,BUF, EXPR2 ) ;
+ h l e n += s n p r i n t f (BUF+ hlen ,
+ s i z e o f (BUF)−hlen , ‘ ‘ FMT2” ,EXPR2 ) ; ] ] +

none

Nullptr (11):
AddCheck

+ i f ( PTR)
FNC ( . . . , PTR , . . . ) ;

FNC &
PTR

RmCheck TYPE I = PTR−>FLD ; . . .
− i f ( ! PTR) { . . .}

none

Leak (2):
AddFree

TYPE ∗PTR = . . . ; . . .
i f (EXPR)
+ { d e l e t e PTR ;

r e t u r n . . . ;
+ }

none

finding potential buffer overflows are “buffer”, “overflow”,
“overwrit”, “overrun”, “overlap”. We read these bug reports
to discover additional bugs. In total, we collect 51 buffer
overflows, 91 null pointer bugs, and 41 memory leaks.

B. Fix Pattern Study Results

Interestingly, Table I shows that many bugs are fixed by
a few simple fix patterns and the fix patterns for the same
type of bugs are the same in different software. Specifically,
Table I(a) shows that 48.5–86.6% of the buffer overflows in
the Linux kernel and Mozilla are fixed by three common
bug fix patterns—allocating a longer buffer (LongerBuf),
assigning fewer bytes to a buffer (FewerByte), and modi-
fying the bounds check conditions (MdBound). Table I(b)
demonstrates that 61.9–70.0% of the null pointer bugs are
fixed by adding a null check before dereferencing the pointer
(AddCheck), moving the null check before dereferencing the
pointer (MvCheck), and removing unnecessary null checks
(RmCheck). Note that null pointer bugs are not limited to
null pointer dereferences. We count unnecessary null check
as null pointer bugs as well. Therefore, RmCheck belongs to
the fix patterns for null pointer bugs. Table I(c) shows that
27.3–53.8% of the memory leaks are fixed by adding code to
free memory (AddFree) and moving the memory releasing
code so that it frees the memory in all paths (MvFree).

The results demonstrate the viability of (1) leveraging
these fix patterns to automatically generate patches from
bug reports; and (2) reusing the fix patterns to automatically
generate patches for other software. In fact, we use the



fix patterns learned from the Linux kernel and Mozilla
to effectively generate patches for Apache; and the same
fix patterns are used for all three projects (except that
PR_snprintf and PL_strncpyz are used for Mozilla,
which are Mozilla’s own versions of the standard snprintf

and strlcpy functions).
Table II shows examples of fine-grained bug fix patterns

(also referred to as fix subpatterns). For example, six (6)
subpatterns are used for buffer overflows, two of which
are shown in Table II. To use these fix patterns for patch
generation, we need to know the pattern parameters, such
as the pointer name, so that we know for which pointer we
need to add a null check. Therefore, each fix pattern is shown
with the pattern parameters required (column “Param”).
Other uppercase names represent what is extracted from the
code during the fix pattern matching process. For example,
the first FewerByte subpattern searches for strcpy(BUF,

EXPR) in the target code file, where ‘BUF’ matches a
program identifier and ‘EXPR’ matches an expression, and
replaces it with strlcpy(BUF, EXPR, sizeof(BUF)).
The first AddCheck subpattern means adding a check—
if (PTR), if identifier PTR is used as a function param-
eter. To map these fix patterns to all equivalent code by
semantic matching, ‘TYPE’ matches a valid type; ‘EXPR’
and ‘EXPR2’ match valid source code expressions; ‘BUF’,
‘I’, ‘PTR’, ‘FLD’, and ‘FNC’ match identifiers; and ‘FMT’
and ‘FMT2’ are format strings. ‘[[]]+’ indicates the content
should repeat one or more times.

III. R2FIX OVERVIEW

Upon receiving a bug report, R2Fix analyzes the bug
report, determines the bug type, and generates possible
patches to fix the bug. As bug reports describe bugs in
different software versions, R2Fix automatically identifies
the buggy version and generates patches for that version.

R2Fix uses common bug fix patterns to automatically
generate patches with high accuracies of 69.0–77.3%, even if
some diagnostic information is missing in the bug reports. In
addition, the above process enables R2Fix to diagnose a bug
report by narrowing down to one or two relevant patches. For
example, the second FewerByte subpattern does not generate
a patch for the bug report in Figure 1(a) because R2Fix
automatically detects that the relevant source code does not
contain a call to sprintf. R2Fix generates on average 1.33
patches per bug report, which is much lower than the number
of fix patterns used (6, 11 and 2 for the three bug types). The
results show that R2Fix is precise in generating patches, so
that developers do not need to wade through many R2Fix-
generated patches to find the correct patch.
R2Fix Architecture: Figure 2 shows that R2Fix has three
analysis steps: (1) Bug Classifiers, or Classifiers for short,
parse and classify bug reports according to the target bug
types, and retains only bug reports that are classified as the
target bug types, referred to as Candidate Bug Reports, for

Classifiers Extractor
Patch 

Generator

Bug Reports Candidate Bug Reports

Fix Patterns

 Source Code Reposistory

PatchesPattern Parameters

Figure 2. The Architecture of R2Fix

the next two steps; (2) A Pattern Parameter Extractor, or
Extractor for short, analyzes the candidate bug reports and
source code to extract pattern parameters—pointer names,
buffer lengths, etc.; and (3) A Patch Generator, or Generator
for short, uses the pattern parameters, the fix patterns for
each target bug type, and the source code repository to
automatically generate patches.

Bug Classifiers: Classifiers are built using a small training
set of manually labelled bug reports. We then apply the
classifiers on all bug reports to identify candidate bug
reports. The majority (94.2%) of the candidate bug reports
come from the unlabelled bug reports that are not used in
our training. One independent classifier is built for each bug
type; therefore, building classifiers for new bug types do not
affect the accuracy of the existing classifiers.

The effort of manually labelling bug reports is only
required once per bug type, because our results show that
classifiers trained on bug reports of some representative
software (Mozilla and the Linux kernel) can classify bug
reports of other software (Apache) with high accuracies
(96.6–98.8%) and precisions (86.0–90.0%). In contrast, the
effort of manually fixing a bug report is required for each
bug report. Therefore, R2Fix could save developers’ time in
fixing bugs in the long run.

Pattern Parameter Extractor: Although the pattern pa-
rameters are different for different types of bugs, some
parameters are common across different bug types, such as
pointer names and function names. R2Fix employs a general
technique that uses the source code and bug reports together
to extract pattern parameters.

Patch Generator: For a candidate bug report, the Patch
Generator applies all applicable fix subpatterns for the bug
type independently of the target version of the target file. Fix
patterns with parameters are applicable to a bug report, only
if the Extractor can extract the required parameters from
that bug report. In addition, a patch is generated only when
an applicable fix pattern can find a match in the target file.
These steps ensure that only relevant patches are generated
for a bug report for high patch generation accuracy. Patches
generated from multiple fix patterns for the same bug report
are independent. Developers will select the most appropriate
patch to fix the bug, which should be easy because (1) R2Fix
generates only 1.33 patches per bug report on average; and
(2) developers quickly selected the correct patch after we
reported them.



IV. BUG CLASSIFIERS

Keyword Search versus Classification A straightforward
approach to identify bug reports of a given bug type is to
search bug reports for keywords such as “buffer overflow”,
and “null pointer”. This approach has a low precision. For
example, only 19% of the bug reports with keywords such as
“buffer overflow” describe buffer overflow bugs. In addition,
this approach is not general, as different keywords may
be needed for searching for the same type of bug reports
in different software. R2Fix classifiers can identify buffer
overflow, null pointer, and memory leak bug reports with
much higher precisions (81.5–95.7%), thus generates much
fewer false positives in the candidate bug reports.
Bug Report Parsing and Classification A typical bug
report contains: a Summary, the Report Submission Time, the
Version of the buggy software, the Component, the Priority
and Severity, a free-form Initial Report of the bug, and zero
to many free-form Follow-up Reports following the Initial
Report. Users and developers can use follow-up reports to
discuss the bug, asking for additional information, etc.

R2Fix classifiers use all of the fields above except the
follow-up reports, because we want to apply R2Fix as soon
as a bug is reported to maximize the time that R2Fix can
save for developers in fixing bugs. If developers spend time
diagnosing and patching a bug, they may post the diagnostic
information in a follow-up report. While all results presented
in this paper are produced without using follow-up reports,
developers can always use R2Fix to analyze the entire bug
reports including all the follow-up reports to generate more
patches and more precise patches. Any bug report whose
initial report contains a patch attachment is filtered out in
this parsing step, as it is unnecessary to apply R2Fix if a
patch has already been generated by developers.

We use the same bug reports from Section II-A to
build the training sets. We use the bag-of-words model to
represent the summary and the follow-up reports. Two-level
classification usually yields a better accuracy because the
second-level classifier is applied on the filtered subset [20].
Thus we deploy a two-level classification approach, which
first determines whether the bug reports describe real bugs.
A second level classifier, built from the same bug reports
but with labels indicating the specific bug types, classifies
the bug reports into target bug types.
Two Classification Experiments. The first experiment com-
bines bug reports of the same type from all evaluated soft-
ware to form one training set to build precise classifiers. The
standard 10-fold cross-validation is used. We experiment
with three algorithms in Weka [33], i.e., Decision Tree,
Support Vector Machine (SVM), and Bayesian Logistic
Regression (BLR). We pick classifiers with the best preci-
sion from the cross-validation results. We then apply these
classifiers to the entire bug databases. Specifically, BLR is
used for classifying buffer overflows with threshold 0.4 and

tolerance 5.0E-4; SVM with a linear kernel is used for null
pointer bugs and memory leaks. The same algorithms and
parameters are used for all three projects.

To demonstrate that a model trained from representative
software can be used to classify bug reports in another
software project, we conduct cross-software classification
experiments. We use the model built from the Linux kernel
and Mozilla bug reports to classify Apache bug reports.

V. PATTERN PARAMETER EXTRACTOR

What pattern parameters to extract? Two types of pat-
tern parameters are essential for patch generation: generic
parameters and bug-type-specific parameters. Generic pa-
rameters, required for all bug types, include the file name
and the version number of the faulty software. Different
types of bugs need different bug-type-specific parameters,
which are shown in the column “Param” of Table II. For
example, the AddCheck fix pattern needs two bug-type-
specific parameters—“FNC” and “PTR”. “PTR” is the null
pointer passed as a parameter to the function “FNC”.
How to extract the pattern parameters? It is trivial to
extract the buggy version number from the version field.
If the version field is empty, R2Fix automatically extracts
the report submission time, and use the version control
system’s checkout-by-time function to retrieve the faulty
version. This simple analysis has an accuracy of 98.2%.
R2Fix uses regular expression matching to find source file
names that end with .c, .cpp, .h, etc. in a bug report.

Most of the bug-type-specific parameters are program
identifiers, e.g., function names, buffer names, etc. To extract
such identifiers, for each word in a bug report, the Extractor
searches the word in the source code to see whether it
is a function name, a buffer name, etc. This approach is
general and independent of bug types or the format of
the bug reports. In addition, if a buffer declaration, e.g.,
int a[10], is found in the bug report using our regular
expression matching, we consider it as a buffer name. If
multiple function names and file names are extracted, our
Extractor keeps only the first file name and the first two
function names. These heuristics are not perfect, but they
work well in practice.

VI. PATCH GENERATOR

To ensure patch generation accuracy, the fix patterns are
only applied to the target file, not to the entire code base. In
particular, if generic parameters, i.e., file name and version
information, cannot be extracted by the Extractor, no patch
is generated for the bug report.

We use examples to explain how the Patch Generator
automatically generates patches. Given the bug report in
Figure 1(a), which has been classified as an overflow bug,
the Generator applies all applicable overflow fix subpat-
terns to the target version of the target file, linux/net/-
mac80211/debugfs sta.c. For example, both overflow sub-
patterns in Table II are applicable for this bug report since



Table III
EVALUATED SOFTWARE. BR IS THE TOTAL NUMBER OF BUG REPORTS,

AND LOC IS LINES OF CODE.

Software BR Fixed BR Open BR LOC Description
Linux 16.4K 5.5K 2.6K 11.9M Operating System
Mozilla 599.8K 189.1K 67.1K 5.0M Browser Suite
Apache 5.4K 0.9K 1.0K 0.3M Web Server

no pattern parameters are required. However, only the first
subpattern finds a match in debugfs sta.c.

In the target file, the Generator searches for
strcpy(BUF, EXPR);, where strcpy matches a function
whose name is exactly strcpy, BUF matches any program
identifier, and EXPR matches any code expression. When a
match strcpy(state, "off "); is found, the Generator
will generate the following patch, which is semantically
equivalent to the patch in Figure 1(b):
- strcpy(state, "off ");

+ strlcpy(state, "off ", sizeof(state));

Some fix subpatterns, e.g., the AddCheck subpattern in
Table II, require pattern parameters. If two bug-type-specific
parameters, the pointer name reply_msg and the function
name c2_errno, are extracted for a bug report, the concrete
fix pattern for the AddCheck subpattern is:
+ if (reply_msg)

c2_errno(..., reply_msg, ...);

where ... matches any code segment.
Although adding a null check before a pointer dereference

is a known way to fix null pointer bugs, it is impractical to
add a null check before all pointer dereferences due to the
high runtime overhead. Our fix patterns are applied only to a
reported bug; therefore, R2Fix is unlikely to add unnecessary
null checks.

Due to code isomorphisms and the differences in spacing,
regular expression based matching is insufficient to identify
all equivalent code segments. We leverage a successfully
used tool Coccinelle [26] to perform semantic match of
the fix patterns. For example, the RmCheck subpattern in
Table II needs to search for if (!PTR). A regular expres-
sion search will miss the semantically equivalent code if

(PTR==NULL), while our Coccinelle-based matching can
identify it as a match.

VII. EXPERIMENTAL METHODS

Evaluated Software. We apply R2Fix on all bug reports in
the bug databases [1], [3], [4] of three projects (Table III)
to automatically fix three important types of bugs. Mozilla
is a mix of C and C++, while the other two are purely in C.
Closed Fixed Bug Reports and Open Bug Reports.
We apply R2Fix on all bug reports in the evaluated bug
databases. We first apply R2Fix on all closed fixed bug
reports to evaluate its accuracy by comparing the generated
patches against the developer-generated patches. In addition,
we run R2Fix on all open bug reports so that we can submit
the patches to the developers to save their time and effort.

Many open bug reports contain correct developer-generated
patches, but simply are not marked as closed yet. Therefore,
we separate open unfixed bug reports from these open fixed
bug reports: for open unfixed bug reports, we report R2Fix-
generated patches to the developers for their verification.
Evaluation Measures. We define the patch precision PPre-
cision as:

PPrecision = Total Number of Correctly Patched Bug Reports
Total Number of Verifiable Patched Bug Reports

Patched bug reports are bug reports that R2Fix can generate
at least a patch for. We consider a bug report correctly
patched if at least one of the R2Fix-generated patches
is identical or semantically equivalent to the developer-
generated patch. Therefore, we can only evaluate the PPre-
cision on patched bug reports whose developer-generated
patches can be found, referred to as verifiable patched bug
reports. For an open unfixed bug report, we consider it
verifiable if two authors independently consider the R2Fix-
generated patch correct by looking at the bug report and
relevant source code. We still report the patches to develop-
ers for their confirmation.

For classification, we measure the standard accuracy,
precision, recall and F1. Accuracy is defined as:

Accuracy = Total Number of Correctly Classified Bug Reports
Total Number of Bug Reports Given for Classification

Precision is defined as (P = T+

T++F+
), recall is (R =

T+

T++F−
), and F1 is (F1 = 2PR

P+R ), where T+, T−, F+ and F−
are, true positives, true negatives, false positives and false
negatives respectively.
Preliminary Developer Feedback. To obtain feedback
about the usability and benefits of patches automatically
generated by R2Fix, we sought answers to two questions:

Q-1 Would a patch automatically generated by R2Fix
save developers’ time in fixing the bug?

Q-2 Would a patch automatically generated by R2Fix
prompt a quicker response to the bug report?

We send to developers emails that contain a link to a
bug report, the corresponding R2Fix-generated patch, and
the two questions above (including possible answers and
space for the participants to write their own answers). The
bug reports are randomly sampled from what R2Fix can
correctly generate a patch for. We queried developers who
discussed the bug report and the top committing developers.
This is our initial attempt to seek developers’ feedback, and
we would like to conduct a full survey in the future.

VIII. RESULTS

A. Patch Generation Results

Table IV shows R2Fix’s automatic patch generation re-
sults. “Candidate” is the number of bug reports that are
classified as one of the three bug types. As thousands of
Mozilla bugs are classified as candidate Nullptr and Leak



Table IV
OVERALL RESULTS. AVG DENOTES THAT THE NUMBER IN THE CELL IS THE AVERAGE.

Closed Fixed Bug Reports Open Bug Reports
Type Software Candidate

/Sample
Patched
Re-
ports

Verifi-
able
Patched

Corr-
ect

PPrecis-
ion

Patches-
Per-
Bug

Candidate
/Sample

Patched
Reports
(Fixed/
Unfixed)

Verifiable
Patched
(Fixed/
Unfixed)

Correct
(Fixed/
Unfixed)

PPrecis-
ion

Patches-
Per-
Bug

Overflow
Linux 33/33 13 10 7 70.0% 1.15 13/13 6(5/1) 5(4/1) 4(3/1) 80.0% 1.16

Mozilla 89/89 6 5 5 100.0% 1.00 27/27 4(2/2) 3(2/1) 2(1/1) 66.7% 1.00
Apache 9/9 3 3 1 33.3% 1.33 5/5 1(1/0) 1(1/0) 1(1/0) 100.0% 1.00

NullPtr
Linux 56/56 11 11 7 63.6% 1.82 48/48 8(4/4) 7(3/4) 6(3/3) 85.7% 2.00

Mozilla 969/100 6 6 3 50.0% 1.50 188/100 4(4/0) 3(3/0) 2(2/0) 66.7% 2.00
Apache 21/21 2 2 1 50.0% 1.50 2/2 0 0 0 0 0.00

Leak
Linux 40/40 20 20 15 75.0% 1.00 35/35 3(3/0) 3(3/0) 2(2/0) 66.7% 1.00

Mozilla 1,568/100 1 1 1 100.0% 1.00 483/100 0 0 0 0 0.00
Apache 18/18 0 0 0 0 0.00 23/23 0 0 0 0 0.00

Total 2,803/466 62 58 40 69.0%
AVG

1.26
AVG

824/353 26(19/7) 22(16/6) 17
(12/5)

77.3%
AVG

1.50
AVG

Closed + Open 3,627/819 88 80 57 71.3%
AVG

1.33
AVG
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Bug 11975 - [net/mac80211/debugfs_sta.c:202]: Buffer overrun 
Description: The trailing zero (`\0’) will be written to state[4] which is out of bound.

linux/net/mac80211/debugfs_sta.c:
-        strcpy(state, "off␣");
+       strcpy(state, "off");

(a) Linux Kernel Bug Report

(b) Patch to Fix the Bug

Remove the 
space character

linux/arch/s390/kernel/early.c:
+   int hlen;
...  char defsys_cmd[DEFSYS_CMD_SIZE]; ...
-   sprintf(defsys_cmd, 
+  hlen = snprintf(defsys_cmd, DEFSYS_CMD_SIZE,

  "DEFSYS %s 00000-%.5X EW %.5X-%.5X SR %.5X-%.5X", ... );    ...
-   sprintf(defsys_cmd, "%s EW %.5X-%.5X", defsys_cmd,
+  hlen += snprintf(defsys_cmd+hlen, DEFSYS_CMD_SIZE-hlen, " EW %.5X-%.5X", 
                       sinitrd_pfn, einitrd_pfn); ...

Control the number of 
characters copied

(a) Patch for Overflow Bug 12965 (b) Patch for Nullptr Bug 13853

linux/drivers/net/ariadne.c:
... *lance = ... dev->base_addr; ...
-   if (dev == NULL) {
-      printk(KERN_WARNING "...");
-      return IRQ_NONE;
-   }

“dev” cannot be null.  Delete the 
unnecessary checking code.

Figure 3. R2Fix automatically generated the two patches, both of which have been accepted and committed to the code repository by the kernel developers
after we reported them. The generated patches are directly applicable to the faulty code, but are simplified for illustration.

bug reports, we randomly sampled 100 from each to verify
the accuracy of R2Fix in patch generation. The sample sizes
are shown in column “/Sample”. “Patched Report” is the
number of bug reports that R2Fix can generate at least a
patch for. “Verifiable Patched” is the number of verifiable
patched bug reports (defined in Section VII). “Correct”
is the number of bug reports for which R2Fix generates
at least a correct patch. “PatchesPerBug” is the average
number of patches that R2Fix generates for a bug report.
“(Fixed/Unfixed)” shows the breakdown into open fixed bug
reports and open unfixed bug reports. Row “Closed + Open”
sums up the numbers for closed fixed and open bug reports.

R2Fix automatically generates correct patches for 57 bug
reports with a precision of 71.3%, 40 of which are generated
for closed fixed bug reports, and 17 of which are for open
bug reports. On average, R2Fix generates 1.33 patches per
bug report. The results show that R2Fix is effective, accurate,
and precise in automatically generating patches.

R2Fix successfully generated 5 new patches for open
unfixed bug reports, 4 of which have been accepted and
committed to the code repositories after we reported. R2Fix
shortened the bug-fixing time for these bugs, as these
bugs would not have been fixed as fast had we not re-
ported the R2Fix-generated patches. This is because de-
velopers respond quicker to a bug report with a patch
attached [31], which is confirmed by developers’ feedback

(Section VIII-C), and our experience that several bugs that
were open for over a year were fixed right away after we
reported our automatically-generated patches. In addition,
if developers had applied R2Fix to bug reports as they are
being reported, R2Fix could have shortened the average
fixing time by up to 63 days and could have saved developers
time and effort in diagnosing and fixing these bugs.

Among the 57 correct patches, 21 fix potential security
vulnerabilities (buffer overflow bugs), including 3 patches
fixing confirmed security vulnerabilities in NVD [5]. If
R2Fix were applied to these security bugs, their vulnerability
window could have been shortened by up to 24 days on
average.

Although R2Fix generates correct patches for many bug
reports, they constitute a small percentage (<1%) of all
closed fixed and open bug reports in the evaluated projects
for the following reasons. First, we only evaluate R2Fix on
three types of bugs as a proof of concept (see Section I-C).
Second, we randomly sampled 819 out of the 3,627 candi-
date reports (22.6%), because it is time-consuming to find
developer-generated patches to verify the R2Fix-generated
patches. Note that this manual patch process of identifying
developer-generated patches is only for evaluation purposes.
We could generate and verify more patches for the rest of the
bug reports given more time. Third, R2Fix can only generate
patches for a portion of the bugs of the three bug types



(10.7% = 88/819 in Table IV), as other bug reports do not
contain enough information, require fixes not covered by
our fix patterns, etc. Lastly, for some bug reports R2Fix can
generate a patch, the bug reports and the code repositories do
not contain enough information for us to find the developer-
generated patches, so that we cannot evaluate the correctness
of R2Fix; hence, these are excluded from our evaluation.
Note that this is not a limitation of R2Fix; if the developer-
generated patches are available, we could have evaluated
our R2Fix-generated patches against them. All these reasons
combined contribute to the small percentage. Nonetheless,
our technique generate 57 correct patches with a precision
of 71.3%.

More Patch Examples. Figure 3(a) shows a relatively com-
plex R2Fix-generated patch. After we reported the patch, the
Linux kernel developers accepted the patch and committed
it to the kernel git repository. Although the bug report
missed describing one location of the bug, i.e., one misused
sprintf, R2Fix was able to automatically find the missing
misuse of sprintf and fix it, which is an advantage of
R2Fix over manually generating patches.

This bug was detected by the Cppcheck tool [2]. However,
R2Fix’s fix patterns and semantic-based patch generation
process are still needed for fixing tool-detected bugs. In
addition, as most reported bugs in bug databases are not
detected by a tool and 27 out of the 57 bugs that R2Fix
fixes correctly are not detected by a tool, it is mandatory for
R2Fix to analyze bug reports written in natural language to
automatically generate patches.

Mozilla developers have also accepted and committed an
R2Fix-generated patch for a buffer overflow bug. In addition,
R2Fix automatically generated a Linux kernel patch to
remove an unnecessary null check because the pointer dev
cannot be null (Figure 3(b)). For the same bug report,
R2Fix generates an additional patch that moves the null
check before the dereference of dev. After we reported both
patches to the Linux kernel mailing list, the developers were
able to quickly identify the patch shown in Figure 3(b)
as correct. The bug report contains code to point out how
to fix the bug, which suggests this is likely to be an easy-to-
fix bug; however, the bug has not been fixed for more than
a year since its submission. After we sent the patches, the
Linux developers fixed it within a day, which suggests that
the bug is important enough that the developers fixed it, and
that R2Fix shortened its bug-fixing time.

Incorrect Patches. R2Fix may incorrectly generate a patch
if an irrelevant buffer name is extracted from the bug report.
However, these inaccuracies may be masked, e.g., if no
code regarding the irrelevant buffer matches with any fix
patterns, no patch will be generated. Our coarse estimation
shows that the average number of buffer/pointer names in
bug reports that contain a file name is 0.66, which indicates
that the probability of an irrelevant buffer/pointer name is

Table V
CLASSIFICATION RESULTS. ACC IS ACCURACY; SIZE IS THE TRAINING
SET SIZE; AND POS IS THE NUMBER OF POSITIVE BUG REPORTS (BUG

REPORTS OF THE CORRESPONDING BUG TYPE) IN THE TRAINING SETS.

Type Acc(%) P(%) R(%) F1 Size Pos
Overflow 95.7 90.3 47.5 0.62 794 59
NullPtr 92.6 81.5 53.0 0.64 801 100
Leak 99.2 95.7 88.2 0.92 994 52

low. Since incorrect patches may waste developers’ time on
verifying them, we would like to apply semantic analysis on
bug reports to reduce such inaccuracies in the future.

Note that even incorrect tool-generated patches can
shorten the bug-fixing time [10], [31]. In addition, 14.8–
24.4% of developer-generated patches are incorrect [34].

B. Classification Results

Table V shows that R2Fix can identify different types of
bug reports automatically with high accuracy (92.6–99.2%)
and high precisions (81.5–95.7%). The recalls are lower,
meaning that the R2Fix classifiers miss some candidate bug
reports. Our design goal is to favour precision over recall
so that patches generated are accurate and precise. If R2Fix
misses a candidate bug report, and does not generate any
patch for it, R2Fix adds no extra work for the developers.

Using a relatively small set of manually identified posi-
tive bug reports (column “Pos”), R2Fix can discover over
thousands of candidate bug reports (column “Candidate” of
Table IV). Numbers in column “Pos” are positive bug reports
from all evaluated projects, therefore are bigger than the cor-
responding numbers in Section II-A, which are for Mozilla
and the Linux kernel only. The cross-software classification
results have already been discussed in Section III.

C. Developer Feedback Results

More than half (4 out of 7) of the developers answered that
the R2Fix-generated patches would save their time (Q-1) in
(1) understanding the bug; and (2) fixing the bug (including
generating the patch using diff, etc.). Almost all (6 out of
7 ) developers answered that they would respond quicker
to a bug report with a R2Fix-generated patch attached (Q-
2). A concern from the negative answers is about R2Fix’s
accuracy. This concern can partially be attributed to that
we forgot to provide the high accuracy of R2Fix to the
developers.

Although the respondents may not represent all develop-
ers, the positive responses from these real developers demon-
strate that some developers find R2Fix-generated patches
could save their time in fixing bugs and they are likely
to respond faster to the corresponding bug reports. These
respondents should represent a large number of developers.

IX. DISCUSSION AND THREATS TO VALIDITY

Applicability and Generality of R2Fix: To understand the
applicability of R2Fix, we want to know what percentage
of bug reports contain detailed information that R2Fix can



leverage. Our coarse estimate shows that 17.2% of fixed
bug reports in the evaluated projects contain detailed infor-
mation, i.e., buffer names, line numbers, function names,
or file names, but no patch is attached within one hour
of bug report submission. This result suggests that R2Fix
has significant applicability to be extended for new types of
bugs. Adding new bug types does not increase the number of
R2Fix-generated patches per bug report, as fix patterns are
tied to a bug type. Specifically, our preliminary study shows
that it is promising to extend R2Fix to off-by-one and integer
overflow bugs. In addition, we can add more fix patterns to
fix more bugs at the cost of increasing the average number
of patches per bug report. Semantic analysis of bug reports
and bigger training sets can also help.

For bug reports that do not contain enough details, we may
leverage techniques such as BugRedux [18] to reproduce
the bugs and collect additional information to help R2Fix
generate patches. Although R2Fix may not be directly
applicable to some bug types due to the complexity of their
fix patterns (e.g., concurrency bugs [16], [25]), R2Fix is
effective in generating correct patches for many important
bugs (including security bugs).

Patch Validation: Developers often need to validate the
correctness of a patch (e.g., through testing and code review)
before they commit the patch. We successfully validated the
R2Fix-generated patch for Mozilla bug 523216 by using the
test case attached with the bug report. The test case fails on
the buggy version and passes after the patch was applied.
We could not conduct a large scale validation experiment
because Mozilla, Apache, and the Linux kernel do not have
readily available test cases written by developers. Note that
whether developer-written test cases are available varies
from project to project, and it is not a limitation of our
approach. In fact, it reveals an advantage of R2Fix: R2Fix
can generate patches automatically without test cases, while
the previous work [10], [32] cannot without test cases.
In the future, we could leverage automatic test generation
techniques for patch validation.

Little Manual Effort Required: It can be fully automatic
to use R2Fix to generate patches for buffer overflows, null
pointer bugs, and memory leaks in other software. This is
feasible because our results show that (1) the same type
of bugs share similar fix patterns in different software;
and (2) classifiers trained from representative software can
accurately classify bug reports in other software. If a project
uses special functions, such as PR_snprintf for snprintf
in Mozilla, the developer needs to supply them to R2Fix. Ex-
tending R2Fix for other types of bugs requires new training
data and fix patterns. In the future, we could automatically
extract fix patterns from developer-generated patches and
their corresponding bug reports.

Threats to Validity: The 63 days of average fixing time does
not take into account the time for developers to select the

correct patch if multiple patches are generated. In addition, it
may contain time when developers are not actively working
on the bug reports. However, the 63 days should be a good
approximation of how much time R2Fix can save developers.
First, it took us only about 5 minutes on average to select the
correct patch, and developers should be able to do it faster.
Developers were able to quickly pick the correct patch in
Figure 3(b) from the two patches we sent. On the other
hand, for 67 bug reports, R2Fix generates only one patch
with a precision of 65.7%. Developers can choose to use
R2Fix only for these bug reports. Second, for 54% of the
bug reports, the developers have been actively discussing the
bugs (at least once per month) until the bugs are fixed.

Another threat to the 63 day time savings is the cosmetic
differences between R2Fix-generated patches and developer-
generated patches (e.g., an additional blank line) for 12 out
of the 57 correct patches. Certain cosmetic changes may
be strongly preferred to follow a certain coding style for a
project. We could update our fix patterns to accommodate
some style requirements in the future.

X. RELATED WORK

We are unaware of any prior work that analyzes textual
bug reports to automatically generate patches.
Fault Repair. Many techniques fix a faulty program by
modifying the program to satisfy the violated specifications
or test cases [8], [10], [14], [31]. In contrast to these
techniques which require often unavailable specifications
or test cases, R2Fix does not require any specifications or
test cases. Recent techniques [17], [24] automatically patch
atomicity violations. Sun et al. propagate bug fixes to all
applicable locations [30]. Hussain et al. focus on the repair
of complex data structures [15]. Lazaar et al. automatically
correct constraint programs [22]. They did not analyze free-
form bug reports to generate patches; some [17], [24] require
the output of bug detection tools as input.

Dynamic and hybrid techniques [28], [29] are proposed to
survive software failures and security attacks. While these
techniques fix failures on a per execution basis, R2Fix is
different because it (1) fixes the code for all future execu-
tions, and (2) fixes reported bugs described in English text.
Users and developers will continue to report bugs despite
the existence of these dynamic tools because (1) dynamic
bug detection tools cannot detect all bugs; and (2) the
monitoring and detection overhead is not justifiable for many
software systems. R2Fix complements these techniques in
improving software dependability. In addition, R2Fix is safe
as patches are not applied until developers have confirmed
the correctness of the patches.
Failure Diagnosis and Fault Localization. Many tech-
niques [7], [35], [36] find the root causes and other diagnos-
tic information of software failures. We take the diagnosis
process one step further to directly generate patches with
no developer involvement required. R2Fix complements



previous work by leveraging free-form bug reports to help
developers diagnose and fix bugs when run-time information
and execution traces are unavailable.
Fix and Fix Pattern Studies. Compared to the fix pattern
study by Pan et al. [27], our fix pattern study is finer-grained
with a focus on the fix pattern semantics, so that our fix
patterns are suitable for bug fixing. In addition, we study
C/C++ code fix patterns of different bug types separately,
while the previous work analyzed fix patterns of different
bug types aggregately for Java code. A few of our overflow
fix patterns are covered by previous work [13]; this paper
covers more bug types and more fix patterns.
Bug Report Prioritization. While prioritizing which bugs
to be fixed [11] can potentially prompt a quick response to
bug reports, developers still need to generate the patches
themselves. In contrast, R2Fix’s results are actionable: de-
velopers can verify and apply the patches.
Bug Report Classification. The prior work [23] automat-
ically identifies memory and semantic bug reports. That
work [23] cannot accurately classify bug reports to fine-
grained bug types, e.g., buffer overflows, because random
sampling does not produce sufficient training data. R2Fix’s
bug classifiers address this issue by combining random
sampling with keyword search.

XI. CONCLUSIONS AND FUTURE WORK

This paper proposes a general approach, R2Fix, to au-
tomatically fix bugs by analyzing free-form bug reports.
R2Fix has generated 57 correct patches with high precision,
5 of which are new patches generated for unfixed bug
reports. We reported all 5 new patches, 4 have already
been accepted and committed to the code repositories. Our
detailed bug fix pattern study finds that a significant amount
of buffer overflows, null pointer bugs, and memory leaks are
fixed by a few simple fix patterns. We build classifiers to
automatically identify these types of bug reports, which can
be used for other purposes such as evaluating bug detection
tools, studying the evolution of certain types of bugs, etc. In
the future, we plan to generate patches for new types of bug
reports, and extend R2Fix to take the output of existing bug
detection tools as input to improve the effectiveness of patch
generation. Given that patches share common fix patterns,
we would like to build fix pattern databases and use them
to guide future bug fixes.
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