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ABSTRACT

This paper investigates the incorporation of restricted tour-
nament replacement (RTR) in the extended compact genetic
algorithm (ECGA) for solving problems with non-stationary
optima. RTR is a simple yet efficient niching method used to
maintain diversity in a population of individuals. While the
original version of RTR uses Hamming distance to quantify
similarity between individuals, we propose an alternative
substructural distance to enforce the niches. The ECGA
that restarts the search after a change of environment is
compared with the approach of maintaining diversity, using
both versions of RTR. Results on several dynamic decom-
posable test problems demonstrate the usefulness of main-
taining diversity throughout the run over the approach of
restarting the search from scratch at each change. Further-
more, by maintaining diversity no additional mechanisms
are required to detect the change of environment, which is
typically a problem-dependent and non-trivial task.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms

Algorithms, Experimentation, Performance

Keywords

Genetic algorithms, estimation of distribution algorithms,
restricted tournament replacement, niching, diversity
preservation, non-stationary environments.

1. INTRODUCTION

The extended compact genetic algorithm (ECGA) [9, 7]
replaces the standard crossover and mutation operators by
building a probabilistic model of promising solutions and
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sampling from the corresponding probability distribution.
This feature allows ECGA and other advanced estimation
of distribution algorithms (EDAs) [11, 14] to automatically
identify the problem decomposition and important prob-
lem substructures, leading to superior performance for many
problems when compared with EAs that use fixed, problem-
independent variation operators.

Despite the growing interest in EDAs, the application of
these algorithms to dynamic optimization problems (DOPs)
has been scarce [5, 1, 16, 23, 22, 21]. Moreover, most of
these works have been limited to univariate EDAs [5, 23,
22, 21], that use a probabilistic model of simple and fixed
structure which assumes each variable to be independent
from every other. The relevance of applying more powerful
EDAs has been highlighted in recent work [1, 16], where the
ECGA was modified in order to tackle problems with dy-
namic environments. While the previous approach is based
on increasing diversity after a change, in this paper we focus
on maintaining diversity throughout the run, removing the
need of predicting the changes of environment.

More precisely, we investigate restricted tournament re-
placement (RTR) [8] as the source of continuous diversity in
the ECGA. The original version of RTR uses genotypic dis-
tance to promote diversity in the population. Besides testing
the traditional RTR, we propose a substructural distance
that exploits model structural information. We compare
the ECGA that restarts the population with the approach
of maintaining diversity, testing both versions of RTR, when
solving several dynamic decomposable problems of bounded
difficulty [1, 20].

The paper is structured as follows. The next section pro-
vides a brief introduction to the ECGA, while Section 3 ana-
lyzes the application of ECGA to DOPs. Section 4 presents
the results obtained and corresponding discussion, and Sec-
tion 5 focuses on the generality of application of the pro-
posed approach to DOPs. The paper ends with major con-
clusions.

2. EXTENDED COMPACT GENETIC
ALGORITHM

Estimation of distribution algorithms [11, 14, 13] replace
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of variables of the problem to sample new solutions,

p(X) = [p(X1),
i=1
where X = (X1,X2,...,X¢) is a vector that contains all
the variables of the problem and I; is the index set that
contains the index of the variables that belong to the i*"
marginal distribution.

This kind of probability distribution belongs to a class
of probabilistic models known as marginal product models
(MPMs). For example, the following MPM, [1,3][2] [4],
for a 4-bit problem represents that the 1% and 3" variables
are linked, and the 2"¢ and 4*" variables are independent.

In ECGA, both the structure and the parameters of the
model are searched and optimized to best fit the data
(promising solutions). A greedy MPM search is performed
at each generation. The greedy search algorithm starts with
the simplest possible model, assuming that all variables are
independent, and then keeps merging groups of variables
whenever a certain score metric is improved. This process
goes on until no further improvement is possible.

The score metric used in ECGA is the minimum descrip-
tion length (MDL) metric [15], that penalizes both inac-
curate and complex models, thereby leading to a (locally)
optimal distribution. More precisely, the MPM complexity
is given by the sum of model complexity, Cy,, and com-
pressed population complexity, Cp. The model complexity,
C'n, quantifies the model representation in terms of the num-
ber of bits required to store all the marginal probabilities,

(1)

Cm =logy(n+1) > (2" — 1), (2)
i=1
where n is the population size, m is the number of linkage
groups, and k; is the size of the i'" group.
The compressed population complexity, Cp, which quan-
tifies the data compression in terms of the entropy of the
marginal distribution over all partitions, is given by

m 2ki

Cp=n > —pijlogs(pis),

i=1 j=1

®3)

where p;; is the frequency of the 4" gene sequence of the
genes belonging to the i*" partition.

After learning the probabilistic model, the offspring pop-
ulation is generated by randomly sampling substructures,
according to the probabilities stored in the MPM. More de-
tails about the pseudo-code of ECGA are given in the next
section.

3. ECGA FOR NON-STATIONARY
ENVIRONMENTS

In this section we review previous efforts on using ECGA
to solve DOPs and introduce a new methodology to tackle
these class of problems by maintaining diversity along the
run.

3.1 PreviousWork

Dynamic optimization problems have attracted significant
interest from the evolutionary computation community in
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ECGA with random restart

(1) Create a random population P of n individuals.
(2) Evaluate population P.
(3) If an environment change is detected:

(3.1) Re-initialize population P at random.

(3.2) Evaluate population P.
Select P’ individuals from P by tournament selection.

Model the selected individuals P’ using the greedy
MPM search procedure.

Sample a new population 0 according to the MPM
learned in step 4.

Replace all individuals in population P by those from
0.

If stopping criteria is not satisfied, return to step 2.

Figure 1: Steps of the extended compact genetic
algorithm (ECGA) with random restart of the pop-
ulation for non-stationary environments.

the last two decades [3, 10]. More recently, EDAs have been
also applied to DOPs, although a significant part of the work
has been focused in simpler univariate models [5, 23, 22, 21].

Abbass, Sastry, and Goldberg [1] were the first to intro-
duce ECGA [9, 7] to problems with dynamic environments.
Their approach is based on random restarts of the popula-
tion at each change so that diversity in the population can
be increased at the beginning of each new environment. This
work demonstrated the utility of learning possible structural
decompositions in changing environments.

The outline of the algorithm can be viewed in Figure 1.
The algorithm is similar to the original ECGA, but in or-
der to deal with DOPs, diversity is increased by resetting
the population when a change of environment is detected.
The change of environment was assumed to be known, so
that the authors could focus on the ECGA response behav-
ior to new environments when the population is restarted.
Additionally, Abbass et al. proposed a slightly different ap-
proach that used the MPM from the previous generation
when the population was to be restarted. Although for prob-
lems where the structure does not change with the environ-
ment this procedure is advantageous, when the environment
change is related to structural changes this procedure can
be harmful. Since we are interested in studying both fitness
and structural changes in DOPs, we use the more general
version for comparison with our approach.

The ECGA with random restart was later extended [16] to
include substructural niching [17]. In substructural niching,
niches are defined within the linkage groups rather than at
the individual level. After the corresponding schema average
fitness is calculated for each substructure [18], the sampling
probabilities are changed according with their associated fit-
ness. While this methodology can be used to maintain di-
versity in the population, Abbass et al. used as a way to
accelerate the growth ratio of highly-fit substructures, using
the random restart of the population as the main source of



diversity. Our approach is to maintain diversity throughout
the run so that ECGA can be able to respond to a change
without explicitly needing additional methods to detect new
environments.

3.2 Restricted Tournament Replacement

When handling DOPs with evolutionary algo-
rithms (EAs), the main approaches to deal with premature
convergence can be roughly grouped into four categories [10]:
increase diversity after an environment change, maintain
diversity throughout the run, memory-based approaches,
and multi-population approaches. While previous efforts
with ECGA [1, 16] have been done in the first category, this
paper follows the second approach by maintaining diversity
in the population with RTR.

The restricted tournament replacement (RTR) [8] is a
niching method that has been used successfully in the hi-
erarchical Bayesian optimization algorithm (hBOA) [13]. In
RTR, each new solution X is incorporated in the original
population using the following procedure:

1. Select a random subset of individuals W with size w
from the original population.

2. Let Y be the solution from W that is most similar to
X, in terms of genotypic distance.

3. Replace Y with X if X is better, otherwise discard X.

The window size w is set to the problem size, as suggested
elsewhere [13]. The ECGA that uses RTR to address DOPs
is outlined in Figure 2. After sampling the offspring popula-
tion, the new individuals are incorporated one by one back
into the original population using RTR. To make a fair com-
parison with the restart approach, we first assume that we
know when the change of environment occurs, but later on
(Section 5) we remove this assumption to further demon-
strate the usefulness of maintaining diversity in the popula-
tion. At each change, the original population is reevaluated
before RTR takes place, so that fitness values are updated
and subsequent comparisons are made correctly.

As mentioned before, RTR uses genotypic distance to
measure similarity between individuals, which for the case
of binary-coded strings is simply the Hamming distance. We
propose an alternative similarity metric based on substruc-
tural distance. The substructural distance between two in-
dividuals is defined as the number of substructures in which
they differ, according to the MPM structure.

Consider the following example, with the MPM
(1,2,3,41(5,6,7,8]1[9,10,11,12]:
Offspring 1111 1111 1111
Parent1 0111 1011 1110 di1 =3 d2=3
Parent2 0000 1111 1111 di1 =4 d2 =1

The individual Offspring is compared with two parents
(w = 2) to decide to which to compete for a place in the pop-
ulation. Using the traditional similarity measure of RTR,
the Hamming distance (di1), the closest parent is Parentl.
However, if we use substructural distance (dz2), Parent?2 is
the closest individual to 0ffspring. While Parent2isd; =4
bits away from Offspring, the different bits belong all to the
same substructure, meaning that these individuals only dif-
fer in one substructure. Therefore, and substructural-wise,
these two individuals belong to the same niche.
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ECGA with RTR
(1)

Create a random population P of n individuals.

(2) Evaluate population P.
(3) Select P’ individuals from P by tournament selection.
(4) Model the selected individuals P’ using the greedy

MPM search procedure.

Sample a new population 0 according to the MPM
learned in step 4.

If an environment change is detected, reevaluate pop-
ulation P.

Insert individuals from population 0 back into P using
the restricted tournament replacement.

If stopping criteria is not satisfied, return to step 3.

Figure 2: Steps of the extended compact genetic
algorithm (ECGA) with restricted tournament re-
placement (RTR) for non-stationary environments.

By using substructural distance in RTR, the niches are
maintained at the substructural level rather than at the in-
dividual level. In this way, the problem decomposition ca-
pability of EDAs is also exploited for diversity maintenance.
This method is based on the same principle of substructural
niching [17]. However, in that work explicit substructural fit-
ness information is used, while in our case the choice between
good and poor substructures is implicitly made through the
individual’s overall fitness.

In the next section, we present the results obtained for
several test functions with both versions of RTR in ECGA
and compare them to the restart approach [1].

4. EXPERIMENTS
4.1 Experimental Setup

In this paper, we use the same experimental setup as used
elsewhere [1] to be able to compare the different approaches.
Abbass et al. [1] used dynamic versions of adversarial prob-
lems with bounded difficulty [6, 20], where the identification
of the underlying problem substructure is crucial for GA
success. Obviously, the solver should not have any previous
knowledge about the problem structure. One such class of
problems are the m-k additively decomposable problems [6],
which consists of m additively separable functions of size k
each, resulting in a total problem size of £ = m - k. The fit-
ness is simply given by the sum of the fitness contribution of
all subfunctions. Like in [1], experiments are performed for
three different subfunctions. The subfunctions are defined
over unitation u (number of ones) and can be visualized in
Figure 3. The changes in the environment are assumed to
be cyclic, where two different cycles of length 5 and 10 gen-
erations are tested.

The first function is the well-know deceptive trap func-
tion [2, 4] adapted to dynamic environments by switching
between the two versions plotted in Figure 3 (a). At the be-
ginning of the run and for odd cycles, the fitness is calculated
according to the standard trap function, with the optimal
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Figure 3: (a) Trap, (b) modified trap, and (c) switching trap subfunctions.

solution at 1111 and the local optimum at 0000. For even
cycles, the trap is inverted so that the optimal and local
optima switch their location. While the function plotted is
for k = 4, we test this function with different subfunction
sizes, k = 3,4, 5, to analyze the behavior of the algorithms
for increasing problem difficulty.

The second test function is a modified version of the previ-
ous trap function to break the symmetry in the attractors [1].
This function can be visualized in Figure 3 (b). In this case,
the location of both local and optimal solutions for odd cy-
cles does not tell anything about the optima location for the
even cycles and vice-versa, therefore the algorithms cannot
take advantage from previous local optima information.

The third function, called switching trap [1], promotes a
more severe change between environments by changing both
optima location and subfunction size. As can be seen in
Figure 3 (c), the environment changes between a modified
trap k = 3 and an inverted modified trap with k& = 4.

For all experiments, the population size is set to n = 5000
and the tournament selection to s = 16 [1]. Each run ter-
minates when the algorithms reach ¢ = 100 generations. All
the results presented through the paper are averaged over
30 independent runs.

4.2 Resultsand Discussion

Figures 4 and 5 present the results for the dynamic ver-
sion of the trap function (Figure 3(a)). Clearly, ECGA that
maintains diversity performs much better than the restart
approach. Although for k = 3,4, the restart approach is able
to find the optimum for all problem sizes, with k = 5 it can-
not reach the global solution for the larger problem. Even
for ¢ = 10, where enough time is given, the algorithm gets
stuck in local optima. Eventually, ECGA with the restart
approach could have solved this problem, but would require
a larger population size to do so. On the contrary, ECGA
with RTR benefits from diversity to require smaller popula-
tion sizes for correct model building.

However, different behavior can be observed for the two
RTR approaches. While the standard RTR responds quite
fast to the environment change, keeping most of the times
the global solution for both environments in the population,
the substructural RTR takes slightly more time to respond.
Nevertheless, the standard RTR does not scale as well as
its substructural counterpart regarding problem difficulty,
adjusted through the subfunction size k. This can be seen
for K = 5 and m = 20, where it fails to obtain the best
solution for the first environment. Indeed, allowing more
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time between environment changes (¢
performance.

While convergence is delayed by using standard RTR, not
all local optima can be preserved. Note that for a problem
with m subfunctions there are a total of 2™ local optima.
On the contrary, when using substructural RTR the main-
tenance of substructures is more tractable since only 2 - m
different locally optimal substructures need to be preserved.

The results for the modified trap with k& = 4 are shown
in Figures 6 and 7. The function setup is now adequate to
break the symmetry of the attractors [1]. Again, ECGAs
that use RTR outperform the restart approach. However,
for t = 10, the standard RTR fails to obtain the optimal
solution for the second environment. Contrary to the pre-
vious problem, substructural RTR is now able to maintain
the global optima after reaching it, but does not suffer from
the difficulties of the standard RTR, when the time between
changes increases to t = 10.

The last function considered switches between two modi-
fied trap functions of different size, the first with £k = 3 and
the second with k = 4. The problem sizes ¢ = 24, 48,72, 96
are chosen to be compatible with both subfunction sizes.
Given that for the same total problem size, a switch in the
environment means a change in the number of subfunctions,
the fitness of the optimal solution for each environment dif-
fers, as can be easily verified in Figures 8 and 9. For the
ECGA with restart, the outcome is similar to previous prob-
lems, the algorithm being slower than diversity-based ap-
proaches, and failing to get the optimal solution for t = 5
and £ = 96. The behavior of both RTR approaches is some-
what similar, responding relatively fast to the change of en-
vironment.

10) deteriorate the

5. BLACK-BOX OPTIMIZATION IN NON-
STATIONARY ENVIRONMENTS

Black-box optimization algorithms need little or no in-
formation about a problem when solving it. These type of
algorithms has often been regarded as incompatible with no
free lunch (NFL) theorems [19]. However, in practice we are
not interest in solving all possible problems, but a much nar-
row subset that focus on a particular domain of interest (or
problems under certain bounds of difficulty). In fact, evo-
lutionary algorithms (EAs) themselves are more adequate
for problems where some sort of structure can be exploited,
whether by recombining different good solutions or through
small variations of good solutions (mutation). EDAs are no
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exception and take advantage of their mechanisms in prob-
lems where identifying the problem decomposition and im-
portant problem substructures is crucial to solve them effi-
ciently. For example, consider a problem with size ¢ = 100
solely composed by a trap function with k& = 100. For this
problem, random search will be on average as good as any
EDA or EA in finding the global optimum (obviously with-
out previous knowledge on the problem), simply because
there is no decomposition or substructure that can be ex-
ploited.

The same argument can be made for environment changes
in DOPs. If the number of environments or the period be-
tween changes varies unboundedly, on average no method
(without previous knowledge) will outperform the random
restart of the population at each change. Therefore, we
recognize that diversity maintenance approaches are more
suitable if these changes are bounded in a certain way. On
the other hand, using a restart approach to ensure diver-
sity requires the solver to have an efficient method to de-
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tect changes, which often depends on the problem itself and
might not be a trivial task. On one way or the other, there is
some cost associated with each approach, and in some sense
a particular domain of application.

In the previous section we have assumed to know the oc-
currence of environment changes, as was done in previous
related work [1, 16]. Here, we remove this assumption to
further demonstrate the utility of using RTR to maintain di-
versity. Specifically, we make a simple change to the ECGA
described in Figure 2. Step (6) is removed, and a new step
is performed between steps (7) and (8). The step consists
simply in evaluating again all individuals in population P
that were not replaced by offspring at step (7). By doing
this we keep the fitness of the preserved solutions updated
and only need to reevaluate a proportion of the population.

We have performed experiments for the same problems
and both versions of RTR,, which demonstrated similar per-
formance to the case where the change was assumed to
be known. For example, Figure 10 shows the behavior of
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ECGA with substructural RTR for the switching modified
trap problem with ¢ = 5. The corresponding proportion of
reevaluated individuals in the population is also plotted. As
can be observed, the algorithm behaves very similar to the
case where the changes were assumed to be known. The pro-
portion of reevaluations increases when the niches stabilized
around the optima for both environments. Despite the extra
cost of reevaluating a proportion of the population, the di-
versity maintenance reduces the population size required to
solve the problems when compared with the ECGA without
niching.

For a complete presentation of the results obtained under
this setting the reader is referred elsewhere [12].

6. CONCLUSIONS

This paper addressed restricted tournament replace-
ment (RTR) in the extended compact genetic algo-
rithm (ECGA) to tackle dynamic optimization problems.
Apart from the original version of RTR that uses Hamming

distance to quantify similarity between individuals, we have
proposed an alternative metric based on substructural nich-
ing [17]. These approaches were compared with the ECGA
that randomly restarts the population after an environment
change. Results on several dynamic decomposable test prob-
lems demonstrated the usefulness of maintaining diversity
in the population over the approach of restarting the search
from the beginning at each change. Additionally, substruc-
tural RTR was shown to be more robust than the original
version. Finally, by maintaining diversity along the run, no
additional mechanisms are required to detect a change of
environment, which is known to be a demanding task.
Although results are encouraging, further investiga-
tion needs to be done on the scalability of the RTR
approach for increasing number of different environments.
A combination of substructural niching with a restart
mechanism based on model information may achieve a more
robust performance. This is currently topic of ongoing work.
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