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a b s t r a c t

Estimation of distribution algorithms (EDAs) are stochastic optimization techniques that explore the
space of potential solutions by building and sampling explicit probabilisticmodels of promising candidate
solutions. This explicit use of probabilisticmodels in optimization offers some significant advantages over
other types of metaheuristics. This paper discusses these advantages and outlines many of the different
types of EDAs. In addition, some of themost powerful efficiency enhancement techniques applied to EDAs
are discussed and some of the key theoretical results relevant to EDAs are outlined.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Estimation of distribution algorithms [1–4] are stochastic op-
timization techniques that explore the space of potential solu-
tions by building and sampling explicit probabilistic models of
promising candidate solutions. This model-based approach to op-
timization has allowed EDAs to solve many large and complex
problems. EDAs were successfully applied to optimization of large
spin glass instances in two-dimensional and three-dimensional
lattices [5], military antenna design [6], multi-objective knap-
sack [7], groundwater remediation design [8,9], amino-acid alpha-
bet reduction for protein structure prediction [10], identification
of clusters of genes with similar expression profiles [11], economic
dispatch [12], forestmanagement [13], portfoliomanagement [14],
cancer chemotherapy optimization [15], environmental monitor-
ing network design [16], and others. It is important to stress that in
most of these applications no other technique was shown to be ca-
pable of achieving better performance than EDAs or solving prob-
lems of comparable size and complexity. This paperwill review the
basic principle of EDAs, and point out some of the features of EDAs
that distinguish these methods from other metaheuristics and al-
low them to achieve these impressive results in such a broad array
of problem domains.
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This survey aims to provide the readerwith enough information
to not only understand what an EDA is, but also to implement a
basic EDA. Compared to the past surveys on this topic [4,17], this
survey targets a broader audience, including readers who are not
familiar with genetic algorithms or evolutionary computation. In
addition, this survey covers many algorithms and methods that
have not been covered in previously published surveys on this
topic [4,17].

The paper is organized as follows. Section 2 describes the
basic EDA procedure. Section 3 gives a broad overview of many
example EDAs, divided into four broad categories. Section 4
discusses similarities of EDAs and some of the most closely related
stochastic optimization techniques. Section 5 reviews advantages
and disadvantages of EDAs compared to other metaheuristics.
Section 6 discusses the most common efficiency enhancements
that may be incorporated into EDAs to speed up their operation.
Section 7 gives a broad overview of some of the most important
theoretical results in the field of EDAs. Section 8 contains pointers
to additional information on EDAs for the interested reader, such
as the important journals and conferences in the field, as well
free software implementations. Lastly, Section 9 summarizes and
concludes the paper.

2. Estimation of distribution algorithms

Suppose a researcher was presented with a large number of
possible solutions to a problem and wished to generate new
and (hopefully) better solutions. One way that he or she might
approach this problem is to attempt to determine the probability
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Fig. 1. Two generations of a simple EDA using a probability vector to solve onemax.
distribution that would give higher probabilities to solutions in the
regionswith the best solutions available. Once this was completed,
one could sample this distribution to find new candidate solutions
to theproblem. Ideally, the repeated refinement of the probabilistic
model based on representative samples of high quality solutions
would keep increasing the probability of generating the global
optimum and, after a reasonable number of iterations, the
procedure would locate the global optimum or its accurate
approximation. In the rest of this section we discuss how EDAs do
this automatically.

2.1. General EDA procedure

Estimation of distribution algorithms (EDAs) [1–4] are stochas-
tic optimization algorithms that explore the space of candidate
solutions by sampling an explicit probabilistic model constructed
from promising solutions found so far. EDAs typically work with a
population of candidate solutions to the problem, starting with the
population generated according to the uniform distribution over
all admissible solutions. The population is then scored using a fit-
ness function. This fitness function gives a numerical ranking for
each string, with the higher the number the better the string. From
this ranked population, a subset of the most promising solutions
are selected by the selection operator. An example selection oper-
ator is truncation selection with threshold τ = 50%, which selects
the 50% best solutions. The algorithm then constructs a probabilis-
tic model which attempts to estimate the probability distribution
of the selected solutions. Once the model is constructed, new so-
lutions are generated by sampling the distribution encoded by this
model. These new solutions are then incorporated back into the old
population, possibly replacing it entirely. The process is repeated
until some termination criteria is met (usually when a solution
of sufficient quality is reached or when the number of iterations
reaches some threshold), with each iteration of this procedure usu-
ally referred to as one generation of the EDA. The basic EDA proce-
dure is outlined in Algorithm 1.

The important step that differentiates EDAs from many other
metaheuristics is the construction of the model that attempts to
capture the probability distribution of the promising solutions.
This is not a trivial task as the goal is not to perfectly represent
the population of promising solutions, but instead to represent a
more general distribution that captures the features of the selected
solutions that make these solutions better than other candidate
solutions. In addition,wehave to ensure that themodel can be built
and sampled in an efficient manner.
Algorithm 1 EDA pseudocode
g ← 0
generate initial population P(0)
while (not done) do

select population of promising solutions S(g) from P(g)
build probabilistic modelM(g) from S(g)
sample M(g) to generate new candidate solutions O(g)
incorporate O(g) into P(g)
g ← g + 1

end while

2.2. Solving onemax with a simple EDA

Let us illustrate the basic EDA procedure with an example of
a simple EDA solving the onemax problem. In onemax, candidate
solutions are represented by vectors of n binary variables and the
fitness is computed by

onemax(X1, X2, . . . , Xn) =

n−
i=1

Xi, (1)

where n is the number of variables and Xi is the ith variable in the
problem (ith position in the input binary string). This function has
one global optimum in the string of all 1s.

In this example our population size is set to N = 6, with n = 5
binary variables per solution. Truncation selection with threshold
τ = 50% is used to select the subset of the most promising solu-
tions (the 50% best solutions are selected). To estimate the proba-
bility distribution of these promising solutions, a probability vector
is used that stores the probability of a 1 in each position of the so-
lution strings. The probability vector provides a fast and efficient
model for solving the onemax problem and many other optimiza-
tion problems, mainly due to the fact that it is based on the as-
sumption that all problem variables are independent. To learn a
probability vector, the probability pi of a 1 in each position i is set
to the proportion of selected solutions containing a 1 in this posi-
tion. To generate a new binary string from the probability vector,
for each position i, a 1 is generated in this position with probability
pi. For example, if p3 = 0.6, we generate a 1 in the third position of
a new candidate solution with the probability of 60%. In each gen-
eration (iteration of the algorithm), N = 6 candidate solutions are
generated from the current model to create a new population of
size N = 6. The simulation is outlined in Fig. 1.

It is clear from the first generation that the procedure is
having positive effects. The offspring population already contains
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Fig. 2. Proportions of 1s in a probability vector of a simple EDA on the onemax
problem of n = 50 using a population of N = 100 candidate solutions.

significantlymore 1s than the original population and also includes
several copies of the global optimum 11111. In addition, the
probability of a 1 in any particular position has increased;
consequently, the probability of generating the global optimum
has increased. The second generation leads to a probability vector
that is even more strongly biased towards the global optimum
and if the simulation was continued for one more generation, the
probability vector would generate only the global optimum.

Even though the previous example was rather small, this
procedure works on larger problems. To show this in practice,
the probabilities of ones in each in different positions of solution
strings froman example run of an EDAon a bigger onemaxproblem
are shown in Fig. 2. In this case n = 50 and the population size is
N = 100. We see that the proportions of 1s in different positions
increase over time even in this experiment.While the probabilities
of 1s in some positions do fluctuate in value in the initial iterations,
eventually all the probability vector entries become 1.

Assuming that the population size is large enough to ensure
reliable convergence [18,19], the EDA based on the probability
vector model provides an efficient and reliable approach to solving
onemax and many other optimization problems. Nonetheless, is it
always the case that the probability vector is sufficient for solving
the problem?

2.3. Linkage learning EDAs: using an EDA to solve trap-5

To illustrate some of the limitations of EDAs based on the
probability vector, let us consider a more complex problem such
as the concatenated trap of order 5 (trap-5) [20,21]. In trap-5, the
input string is first partitioned into independent groups of 5 bits
each. The contribution of each group of 5 bits (trap partition) is
computed as

trap5(u) =

5 if u = 5
4− u otherwise, (2)

where u is the number of 1s in the input string of 5 bits. While the
trap-5 function has only one global optimum, the string of all 1s, it
also has (2n/5

− 1) other local optima, namely those strings where
all bits in at least one trap partition are 0 and all bits in each of the
remaining partitions are either 0 or 1. Trap-5 necessitates that all
bits in each group be treated together, because statistics of lower
order are misleading [22]; that is why trap-5 provides an excellent
example to illustrate the limitations of the probability vector as a
model.

The simple EDA shown in the previous simulation was run
on trap-5. The first few generations are shown in Fig. 3. Almost
immediatelywe see a problem: the fitness function ranks solutions
with many 0s higher than solutions with many 1s. By emphasizing
solutions with many 0s, the probability vector entries get lower
over the two generations. In otherwords, in each generation, while
our average population fitness is increasing, the strings are actually
getting farther and farther away from the global optimum.

To see if the same behavior can be observed on a larger
problem, an EDA with a probability vector was used to solve a
trap-5 problem of 50 bits with a population of size N = 100.
Fig. 4(a) shows the proportions of 1s in each position of the
solution strings. This example confirms that the proportions of 1s
in different positions of solution strings decrease over time. Some
entries increase for several iterations but the bias towards 0s at
any individual position is too strong to be overcome. Indeed, by
generation 27 the entire population has converged to all 0s. One
may hypothesize that the situationwould change if our population
was larger but, unfortunately, larger populations would only make
the continuous decrease in the proportion of 0s more stable.

To understand the reason for the failure of the EDA based on the
probability vector on trap-5, let us return to the onemax example.
For onemax, the average fitness of candidate solutions with a 1 in
any position is better than the average fitness of solutions with a 0
in that position. The selection is thus expected to give preference
to 1s and the learning and sampling of the probability vector will
ensure that these increased probabilities of 1s are reflected in the
new populations of candidate solutions. However this situation
is reversed for trap-5, for which the average fitness of solutions
Fig. 3. Two generations of a simple EDA using a probability vector to solve trap-5.
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(a) EDA based on the probability vector. (b) EDA based on a marginal product model with linkage
groups corresponding to trap partitions.

Fig. 4. Statistics from two runs of an EDA on trap-5 of n = 50 bits using probabilistic models of different structures.
with a 0 in any position is greater than the average fitness of
solutions with a 1 in that position [21], even though the optimum
is still located in the string consisting of all 1s. This leads to the
probability vector being strongly biased towards solutions with 0s
in all positions.

All is not lost, however. What if we can change the model to
respect the linkages between the bits in the same trap partition?
If it was possible for the algorithm to learn the structure of trap-
5, it could then treat all the bits in the same trap partition as a
single variable. That is, the model would store the probability of
each combination of 5 bits in any particular trap partition, and
new solutions would be sampled by generating 5 bits at a time
according to these probabilities. Since from the definition of trap-
5 the average fitness of candidate solutions with all bits in a trap
partition set to 1 is expected to be higher than the average fitness
of solutions with one or more 0s in that partition, we would
expect the proportions of trap partitions with all 1s to increase
over time. Bymerging the variables in each trap partition together,
the extended compact genetic algorithm (ECGA) [23] explained
further in Section 3.1.3 does just that. Probabilistic models that
combine groups of variables or bits into linkage groups and assume
independence between the different linkage groups are often
referred to as marginal product models [23].

To show the difference that the marginal product model for
trap-5 can make in practice, an EDA that uses this model was
applied to solve a 50-bit trap-5 problem. Fig. 4(b) shows the
proportions of blocks of five 1s in different trap partitions in the
population. These results show that with an appropriate marginal
product model the EDA performs similarly as it did on onemax,
with the entire population converging to the global optimum in
a little over 20 generations. This example illustrates that, in terms
of probability distributions, the main reason for the failure of the
probability vector based EDA on trap-5 is the assumption that the
problem variables are independent.

These examplesmake it clear that the class of allowablemodels
and the methods for learning and sampling these models are key
elements in EDA design. If the model built in each generation
captures the important features of selected solutions and generates
new solutions with these features, then the EDA should be able
to quickly converge to the optimum [24]. However, as we will
see later on, there is a tradeoff between the expressiveness of
probabilistic models and the complexity of learning and sampling
these models. Due to the importance of the class of models used in
an EDA, the type of probability models used in an EDA is often how
one EDA is differentiated from another.

3. EDA overview

Because of the key impact that the probabilistic models
used have on EDA efficiency and applicability, EDAs are usually
categorized by the types of distributions they are able to encode.
This section covers four broad categories of EDAs. Note that this is
not an exhaustive survey and only a few representative algorithms
are discussed for each category. For further information, please see
many of the individual papers for other examples.

In this section we assume the general structure of an EDA
as outlined in Algorithm 1. Rather than go over all the details
of every algorithm, instead we will point out what distinguishes
a particular algorithm from the others. Since in most cases the
primary differences between EDAs are found in the class of
probabilistic models used and the methods used for learning and
sampling these models, in the majority of this section we focus on
these EDA components and omit less important technical details.

Section 3.1 covers EDAs that can be used for problems using
discrete variables. Section 3.2 discusses EDAs for solving problems
where candidate solutions are represented by permutations.
Section 3.3 describes EDAs that address problemswhere candidate
solutions are represented by real-valued vectors. Section 3.4 covers
EDAs for problems in genetic programming.

3.1. Discrete variables

This section covers the first broad category of EDAs, those that
work on fixed-length strings of a finite cardinality (usually binary).
We start by describing EDAs that ignore all interactions between
variables and end with algorithms that are able to capture a broad
variety of possible interactions.

3.1.1. Univariate models
One of the simplest approaches is to assume that the problem

variables are independent. Under this assumption, the probability
distribution of any individual variable should not depend on the
values of any other variables. EDAs of this type are usually called
univariateEDAs. Fig. 5(a) shows an illustration of this type ofmodel.

Mathematically, a univariatemodel decomposes the probability
of a candidate solution (X1, X2, . . . , Xn) into the product of
probabilities of individual variables as
p(X1, X2, . . . , Xn) = p(X1)p(X2), . . . , p(Xn)

where p(Xi) is the probability of variable Xi, and p(X1, X2, . . . , Xn)
is the probability of the candidate solution (X1, X2, . . . , Xn). The
univariate model for n variables thus consists of n probability
tables and each of these tables defines probabilities of different
values of the corresponding variable. Since the probabilities of
different values of a variable must sum to 1, one of the proba-
bilities may be omitted for each variable. The probability vector
discussed earlier in Section 2.2 is an example univariate model ap-
plicable to candidate solutions represented by fixed-length binary
strings.
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(a) Independent. (b) ECGA. (c) Bayesian. (d) Markov.

Fig. 5. Examples of graphical models produced by different EDAs.
One example of a univariate EDA is the univariate marginal
distribution algorithm (UMDA) [25], which is the algorithm we
used to solve the onemax problem in Section 2. UMDA works on
binary strings and uses the probability vector p = (p1, p2, . . . , pn)
as the probabilisticmodel,where pi denotes the probability of a 1 in
position i of solution strings. To learn the probability vector, each pi
is set to the proportion of 1s in the population of selected solutions.
To create new solutions, each variable is generated independently
based on the entries in the probability vector. Specifically, a 1 is
generated in position i with probability pi.

While most EDAs work by keeping a population of candidate
solutions, incremental EDAs fully replace the population with the
probabilistic model. The model is first set to give a uniform
distribution over the solution space. Each generation, several
solutions are created and the most fit solution or several most fit
solutions are selected. The model is then slightly biased towards
solutions of this type. In this way the model is incrementally
improved over time, without the expense of storing large
populations each generation.

One incremental univariate EDA is the population-based
incremental learning (PBIL) [1] algorithm, which works on binary
strings. Like UMDA, PBIL uses the probabilistic model in the form
of a probability vector. The initial probability vector encodes
the uniform distribution over all binary strings by setting the
probability of a 1 in each position to 0.5. In each generation of
PBIL, the probability vector is sampled to generate a small set of
solutions using the same sampling procedure as in UMDA. The
best solutions in this set are selected and for each variable in each
selected solution, the corresponding entry in the probability vector
is shifted by

pi = (pi ∗ (1.0− LR))+ (LR ∗ vi)

where pi is the probability of generating a 1 in bit position i, vi is
the ith position in the solution string and LR is the learning rate
specified by the user. To prevent premature convergence, each
probability vector entry is also slightly varied each generation,
based on a mutation rate parameter.

The compact genetic algorithm (cGA) [26] is another incremen-
tal univariate EDA. Much like PBIL, cGA uses a probability vector
to represent the entire population of solutions encoded by fixed-
length binary strings. The main difference between cGA and PBIL
is in the way these EDAs update the probability vector in each
generation. In each generation of the cGA, two individuals are
generated and then evaluated to determine the best of the two
solutions (winner). If at any particular position the winning so-
lution’s bit is different from the losing solution’s bit, the corre-
sponding probability vector entry is shifted by 1/N towards the
winning bit, where N represents the theoretical population size
that would be required to solve the problem for a non-incremental
EDA. Note that unlike PBIL, cGA will not necessarily change all
probability vector entries each iteration. One of the primary ad-
vantages of PBIL, cGA and other incremental EDAs over other EDAs
is they have amuch smallermemory footprint, which can be useful
when trying to solve extremely large problems [27]; we return to
this topic in Section 5.

While the original versions of UMDA, PBIL and cGA assumed
that candidate solutions are represented by binary strings of
fixed length, it is straightforward to extend these algorithms to
solve problems where candidate solutions are represented by
fixed-length strings over any finite alphabet. Nonetheless, the
assumption that problem variables are independent will often
prevent efficient convergence to the optimum when problem
variables interact strongly (for example, when solving the trap-5
problem discussed in Section 2.3). The next section discusses one
approach to alleviate this problem.

3.1.2. Tree-based models
The algorithms in the previous section assumed independence

betweenproblemvariables. However, often the variables in a prob-
lem are related in someway. This section discusses EDAs capable of
capturing some pair-wise interactions between variables by using
tree-basedmodels. In tree-based models, the conditional probabil-
ity of a variable may only depend on at most one other variable, its
parent in a tree structure.

The mutual-information-maximizing input clustering (MIMIC)
[28] uses a chain distribution to model interactions between
variables. MIMIC works by using the population of promising
solutions to calculate the mutual information between all pairs
of variables. Then, starting with the variable with the minimum
conditional entropy, a chain dependency is added to the variable
with the maximum mutual information with the variable that
was added last. This process is repeated until all the variables
are selected. The resulting tree model consists of a single chain
of dependences, with each parent having exactly one child. Once
the structure of the model has been completed, the conditional
probability of each variable based on its parent is calculated from
the promising solutions. Given a permutation of the n variables in
a problem, π = i1, i2, . . . , in, MIMIC decomposes the probability
distribution of p(X1, X2, . . . , Xn) as

pπ (X) = p(Xi1 |Xi2)p(Xi2 |Xi3) . . . p(Xin−1 |Xin)p(Xin)

where p(Xij |Xij+1) denotes the conditional probability of Xij given
Xij+1 . New candidate solutions are then generated by sampling
the probability distribution encoded by the model. The sampling
proceeds by generating the variables in the reverse order with
respect to the permutation π , starting with Xin and ending with
Xi1 .

Baluja and Davies [29] use dependency trees to model promis-
ing solutions, improving the expressiveness of the probabilistic
models compared to the chain models of MIMIC. In dependency
trees, each parent can have multiple children. This incremental
EDA works by using a probability matrix that contains all pairwise
probabilities. The model is the tree that maximizes the mutual in-
formation between connected variables, which is the provably best
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tree model in terms of the Kullback–Leibler divergence with re-
spect to the true distribution [30]. The probability matrix is ini-
tialized so that it corresponds to the uniform distribution over all
candidate solutions. In each iteration of the algorithm, a treemodel
is built and sampled to generate several new candidate solutions.
The best of these solutions are then used to update the probability
matrix.

The bivariatemarginal distribution algorithm (BMDA) [31] uses
a model based on a set of mutually independent trees (a forest).
Each generation, a dependencymodel is created by using Pearson’s
chi-square statistics [32] as the main measure of dependence. The
model built is then sampled to generate new solutions based on
the conditional probabilities learned from the population.

3.1.3. Multivariate interactions
While the tree-basedmodels in Section 3.1.2 provide EDAswith

the ability to identify and exploit interactions between problem
variables, using tree models is often not enough to solve problems
with multivariate or highly overlapping interactions between
variables [33,31]. This section describes several EDAs that are
based on probabilistic models capable of capturing multivariate
interactions between problem variables.

The extended compact genetic algorithm (ECGA) [23] uses
a model that divides the variables into independent clusters
and each of these clusters is treated as a single variable. The
model building starts by assuming that all the problem variables
are independent. In each iteration of the model building, two
clusters are merged together that improve the quality of the
model the most. The quality of a model is measured by the
minimum description length (MDL) metric [34]. The model
building terminates when no merging of two clusters improves
the MDL score of the model. Once the learning of the structure
of the model is complete, a probability table is computed for each
cluster based on the population of selected solutions and the new
solutions are generated by sampling each linkage group based on
these probabilities. The model building procedure is repeated in
each generation of ECGA, so the model created in each generation
of ECGA may contain different clusters of variables. An example of
an ECGA model is shown in Fig. 5(b).

Many problems contain highly overlapping subproblems that
cannot be accurately modeled by dividing the problem into inde-
pendent clusters. The Bayesian optimization algorithm (BOA) [35]
uses Bayesian networks to model candidate solutions, which al-
low it to solve the large class of nearly decomposable problems,
many of which cannot be decomposed into independent subprob-
lems of bounded order. A Bayesian network is an acyclic directed
graph with one node per variable, where an edge between nodes
represents a conditional dependency. A Bayesian network with n
nodes encodes a joint probability distribution of n random vari-
ables X1, X2, . . . , Xn:

p(X1, X2, . . . , Xn) =

n∏
i=1

p(Xi|Πi), (3)

where Πi is the set of variables from which there exists an edge
into Xi (members of Πi are called parents of Xi), and p(Xi|Πi) is the
conditional probability of Xi given Πi. Fig. 5(c) shows an example
Bayesian network. The difference between Bayesian networks
and tree models is that in Bayesian networks, each variable may
depend on more than one variable. The main difference between
the marginal product models of ECGA and Bayesian networks is
that Bayesian networks are capable of capturing more complex
problem decompositions in which subproblems interact.

Themodel building in BOA starts with a networkwith no edges.
A greedy algorithm is then used to add edges to the network,
adding the edge that gives the most improvement according to
the Bayesian–Dirichlet (BD) metric [36]. Since the BD metric has a
tendency to favor overly complex models, usually an upper bound
on the number of allowable parents is set or a prior bias on the
network structure is introduced to prefer simpler models [37].
New candidate solutions are generated by sampling the probability
distribution encoded by the built network using probabilistic logic
sampling [38].

The estimation of Bayesian network algorithm (EBNA) [39] and
the learning factorized distribution algorithm (LFDA) [24] also use
Bayesian networks to model the promising solutions. EBNA and
LFDA use the Bayesian information criterion (BIC) [40] to evaluate
Bayesian network structures in the greedy network construction
algorithm. One advantage of the BIC metric over the BD metric is
that it contains a strong implicit bias towards simple models and
it thus does not require a limit on the number of allowable parents
or any prior bias towards simpler models. However, the BD metric
allows amore principledway to incorporate prior information into
problem solving, as discussed in Section 6.6.

Many complex problems in the real world are hierarchical in
nature [41]. A hierarchical problem is a problem composed of
subproblems, with each subproblem being a hierarchical problem
itself until the bottom level is reached [41]. On each level, the
interactions within each subproblem are often of much higher
magnitude than the interactions between the subproblems. Due
to the rich interaction between subproblems and the lack of
feedback for discriminating alternative solutions to the different
subproblems, these problems cannot simply be decomposed into
tractable problems on a single level. Therefore, solving these
hierarchical problems presents new challenges for EDAs. First, on
each level of problem solving, the hierarchical problem solver
must be capable of decomposing the problem. Second, the problem
solver must be capable of representing solutions from lower levels
in a compact way so these solutions can be treated as a single
variable when trying to solve the next level. Lastly, since the
solution at any given level may depend on interactions at a higher
level, it is necessary that alternate solutions to each subproblem be
stored over time.

The hierarchical Bayesian Optimization Algorithm (hBOA) [42]
is able to solve many difficult hierarchically decomposable prob-
lems by extending BOA in two key areas. In order to ensure
that interactions of high order can be represented in a feasible
manner, a more compact version of Bayesian networks is used.
Specifically, hBOA uses Bayesian networks with local struc-
tures [43,44] to allow feasible learning and sampling of more com-
plex networks than would be possible with conventional Bayesian
networks. In addition, the preservation of alternative solutions
over time is ensured by using a niching technique called restricted
tournament replacement (RTR) [45] which encourages competi-
tion among similar solutions rather than dissimilar ones. Com-
bined together these changes allow hBOA to solve a broad class
of nearly decomposable and hierarchical problems in a robust and
scalable manner [46].

Another type of model that can encode multivariate inter-
actions is Markov networks. The structure of Markov networks
is similar to Bayesian networks except that the connections be-
tween variables are undirected. For a given decomposable func-
tion, a Markov network that ensures convergence to the global
optimum may sometimes be considerably less complex than an
adequate Bayesian network, at least with respect to the number
of edges [47]. Nonetheless, sampling Markov networks is more
difficult than sampling Bayesian networks. In other words, some
of the difficulty moves from learning to sampling the probabilis-
tic model compared to EDAs based on Bayesian networks. Shakya
and Santana [48] uses Gibbs sampling to generate new solutions
from its model in the Markovianity based optimization algorithm
(MOA). MOAwas shown to have comparable performance to some
Bayesian network based EDAs on deceptive test problems. An ex-
ample of a Markov network model is shown in Fig. 5(d).
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The affinity propagation EDA (AffEDA) designed by Santana
et al. [49] starts by first generating a mutual information
matrix between all variables. An affinity propagation algorithm
is then used to obtain a partitioning of the variables into
independent clusters. Affinity propagation is a clustering algorithm
that, given a set of points and a measure of their similarity,
finds clusters of similar points and for each cluster gives
a representative example. Unlike many clustering algorithms,
affinity propagation does not require specifying the total number
of clusters beforehand. Once this model of independent clusters
is generated by affinity propagation, it can be sampled similarly
to ECGA. The resulting algorithm was shown to be much faster
than ECGAon simplified protein folding problems andondeceptive
non-binary problems [49].

Using a more expressive class of probabilistic models allows
EDAs to solve broader classes of problems. From this perspective,
one should prefer tree models to univariate ones, and multivariate
models to tree models. At the same time, using a more expressive
class of models almost always implies that the model building
and model sampling will be more computationally expensive.
Nonetheless, since it is often not clear how complex a problem
is before solving it and using even the most complex models
described above creates only a low-order polynomial overhead
even on problems that can be solved with simpler models, it is
often preferable to use themore general class ofmodels rather than
the more restricted one.

The algorithms in this section are able to cover a broad
variety of possible interactions between discrete variables in a
problem. However, none of these algorithms is directly applicable
to problems where candidate solutions are represented by
permutations, which are discussed in the next section.

3.2. Permutation EDAs

In many important real-world problems, candidate solutions
are represented by permutations over a given set of elements. Two
important classes of such problems are the quadratic assignment
problem [50] and the traveling salesman problem. These types of
problems often contain two specific types of features or constraints
that EDAs need to capture. The first is the absolute position of
a symbol in a string and the second is the relative ordering of
specific symbols. In someproblems, such as the traveling-salesman
problem, relative ordering constraints matter the most. In others,
such as the quadratic assignment problem, both the relative
ordering and the absolute positions matter. It is certainly possible
to use non-permutation based EDAs using specific encodings to
solve permutation problems. For example, onemay use the random
key encoding [51] to solve permutation-based problems using
EDAs for optimization of real-valued vectors [52,53]. Random key
encoding represents a permutation as a vector of real numbers.
The permutation is defined by the reordering of the values in
the vector that sorts the values in ascending order. The main
advantage of using random keys is that any real-valued vector
defines a valid permutation and any EDA capable of solving
problems defined on vectors of real numbers can thus be used
to solve permutation problems. However, since EDAs do not
process the aforementioned types of regularities in permutation
problems directly their performance can often be poor [52]. The
following EDAs attempt to encode both of these types of features
or constraints for permutation problems explicitly.

To solve problems where candidate solutions are permutations
of a string, Bengoetxea et al. [54] starts with a Bayesian network
model built using the same approach as in EBNA. However,
the sampling method is changed to ensure that only valid
permutations are generated. This approach was shown to have
promise in solving the inexact graph matching problem. In much
the same way, the dependency-tree EDA (dtEDA) of Pelikan
et al. [55] starts with a dependency-tree model and modifies the
sampling to ensure that only valid permutations are generated.
dtEDA for permutation problems was used to solve structured
quadratic assignment problems with great success [55]. Both
Bayesian networks as well as tree models are capable of encoding
both the absolute position and the relative ordering constraints.

Bosman and Thierens [56] extended the real-valued EDA to
the permutation domain by storing the dependences between
different positions in a permutation in the induced chromosome
element exchanger (ICE). ICE works by first using a real-valued
EDA as discussed in Section 3.3, which encodes permutations as
real-valued vectors using the random keys encoding. ICE extends
the real-valued EDA by using a specialized crossover operator. By
applying the crossover directly to permutations instead of simply
sampling the model, relative ordering is taken into account. The
resulting algorithm was shown to outperform many real-valued
EDAs that use the random key encoding alone [56].

The edge histogram based sampling algorithm (EHBSA) [57]
works by creating an edge histogram matrix (EHM). For each
pair of symbols, EHM stores the probabilities that one of these
symbols will follow the other one in a permutation. To generate
new solutions, EHBSA starts with a randomly chosen symbol. The
EHM is then sampled repeatedly to generate new symbols in the
solution, normalizing the probabilities based on what values have
already been generated. The EHM by itself does not take into
account absolute positional importance at all. In order to address
problems in which absolute positions are important, a variation of
EHBSA that involved templateswas proposed [57]. To generate new
solutions, first a random string from the populationwas picked as a
template. Newsolutionswere then generated by removing random
parts of the template string and generating the missing parts with
sampling from the EHM. The resulting algorithm was shown to be
better than most other EDAs on the traveling salesman problem.
In another study, the node histogram sampling algorithm (NHBSA)
of Tsutsui et al. [58] considers a model capable of storing node
frequencies at each position and again uses a template.

3.3. Real-valued vectors

EDAs discussed thus far were applicable to problems with
candidate solutions represented by fixed-length strings over a
finite alphabet. However, candidate solutions for many problems
are represented using real-valued vectors. In these problems the
variables cover an infinite domain so it is no longer possible to
enumerate variables’ values and their probabilities. This section
discusses EDAs that can solve problems in the real-valued domain.
There are two primary approaches to applying EDAs to the real-
valued domain: (1) map the real-valued variables into the discrete
domain and use a discrete EDA on the resulting problem, and (2)
use EDAs based on probabilistic models defined on real-valued
variables.

3.3.1. Discretization
The most straightforward way to apply EDAs in the real-valued

domain is to discretize the problem and use a discrete EDA on
the resulting problem. In this way it is possible to directly use
the discrete EDAs in the real-valued domain. However, a naive
discretization can be impractical as some values close to each
other in the continuous domain may become more distant in the
discrete domain. In addition, the possible range of values must
be known before the optimization starts. Finally, some regions
of the search space are more densely covered with high quality
solutions whereas others contain mostly solutions of low quality;
this suggests that some regions require amore dense discretization
than others. To deal with these difficulties, various approaches to
adaptive discretization were developed using EDAs [59–63]. We
discuss some of these next.
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Fig. 6. Example model generated by SHCLVND.

Tsutsui et al. [59] proposed to divide the search space of each
variable into subintervals using a histogram. Two different types
of histogram models were used: fixed height and fixed width. The
fixed-height histogram ensured that each discrete value would
correspond to the same number of candidate solutions in the
population; this allows for a more balanced discretization where
the areas that contain more high quality solutions also get more
discrete values. The fixed-width histogram ensured that each
discrete value corresponded to the interval of the same size. The
results showed strong performance on the two-peaks andRastrigin
functions, which are often difficult without effective crossover
operators.

Three different methods of discretization were tried (fixed-
height histograms, fixed-width histograms and k-Means cluster-
ing) and combined with BOA to solve real-valued problems by
Pelikan et al. [60]. Adaptive mutation was also used after mapping
the discrete values to the continuous domain. The resulting algo-
rithmwas shown to be successful on the two-peaks and deceptive
functions.

Another way to deal with discretization was proposed by Chen
and Chen [63]. Their method uses the ECGA model and a split-
on-demand (SoD) discretization to adjust on the fly how the real-
valued variables are coded as discrete values. Loosely said, if an
interval of discretization contains a large number of candidate
solutions and these variables are biased towards one side of the
interval, then that region is split into two to increase exploration.
The resulting real-coded ECGA (rECGA) worked well on a set
of benchmark test problems [62] designed to test real-valued
optimization techniques. In addition, rECGA was able to obtain
better solutions than the previously best known solutions obtained
by other algorithms on a 40-unit economic dispatch problem.

While the above EDAs solved problems with candidate
solutions represented by real-valued vectors, they manipulated
these through discretization and variation operators based on a
discrete representation. In the next section we cover EDAs that
work directly with the real-valued variables themselves.

3.3.2. Direct representation
The stochastic hill-climbing with learning by vectors of normal

distributions (SHCLVND) [64] works directly with a population
of real-valued vectors. The model is represented as a vector of
normal distributions, one for each variable. While the mean of
each variable’s distribution can be different, all the distributions
share the same standard deviation. Over time the means are
shifted towards the best candidate solutions generated and the
deviation is slowly reduced by a multiplicative factor. Fig. 6 shows
an example of this type of a model.

One disadvantage of SHCLVND is that it assumes that each
variable has the same standard deviation. Also, since it uses only
a single normal distribution for each variable, it is only able to
accurately capture distributions of samples that are all centered
around a single point in the search space. In addition, SHCLVND
assumes that all the variables are independent. The following
algorithms all attempt to alleviate one or more of these problems.

Sebag and Ducoulombier [65] extended the idea of using a
single vector of normal distributions by storing a different standard
deviation for each variable. In this way it is able to perform better
in scenarios where certain variables have higher variance than
others. As in SHCLVND, however, all variables are assumed to be
independent.

The estimation of Gaussian networks algorithm (EGNA) [66]
works by creating a Gaussian network to model the interactions
between variables in the selected population of solutions in each
generation. This network is similar to a Bayesian network except
that the variables are real-valued and locally each variable has its
mean and variance computed by a linear function from its parents.
The network structure is learned greedily using a continuous
version of the BDe metric [67], with a penalty term to prefer
simpler models.

In the IDEA framework, Bosman and Thierens [68] proposed
models capable of capturing multiple basins of attraction or
clusters of points by storing the joint normal and kernel
distributions. IDEA was able to outperform SHCLVND and other
EDAs that used a single vector of Gaussian distributions on a set
of six function optimization problems commonly used to test real-
valued optimization techniques.

Gallagher et al. [69] extended PBIL to real-valued spaces by
using an Adaptive Gaussian mixture model [70]. The Adaptive
Gaussian mixture model used a mixture of Gaussian distributions
that are gradually modified to improve the model as each new
solution is sampled. One of the strengths of this method is that
the complexity of the model can change over time, with additional
components added if the current model does not correspond
closely enough to the data [71].

The mixed iterated density estimation evolutionary algorithm
(mIDEA) [72] also used mixtures of normal distributions. The
model building in mIDEA starts by clustering the variables and
fitting a probability distribution over each cluster. The final
distribution used is then a weighted sum over the individual
distributions. To evaluate dependences between variables, the
Bayesian information criterion (BIC) [73] metric is used.

In EDAs described so far, the variables were treated either as
all real-valued or as all discrete quantities. The mixed Bayesian
optimization algorithm (mBOA) [74] can deal with both types of
variables. Much as in hBOA, the probability distribution of each
variable is represented as a decision tree. The internal nodes
of each tree encode tests on variables that the corresponding
variable depends on. For discrete variables, the branch taken
during sampling is determined by whether or not the variable in
thenode is equal to a constant. For continuous variables, the branch
taken is determined bywhether the variable corresponding to that
node is less than a constant. The leaves determine the values of
the sampled variables. For discrete variables, the leaves contain the
conditional probabilities of particular values of these variables. On
the other hand, normal kernel distributions are used for continuous
variables.

The real-coded Bayesian optimization algorithm (rBOA) [75]
tries to bring the power of BOA to the real-valued domain. rBOA
uses a Bayesian network to describe the underlying structure of
the problem and a mixture of Gaussians to describe the local
distributions. The resulting algorithm was shown to outperform
mIDEA on several real-valued deceptive problems.

Recently a new approach to developing EDAs to solve real-
valued optimization problem has been developed that is based
on copula theory [76]. Copulas are a way to describe the
dependence between random variables, and according to copula
theory a joint probability distribution can be decomposed into n
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Fig. 7. Example of two different models used in EDA-GP.
marginal probability distributions and a copula function. Copula-
based EDAs [77–79] use this to their advantage, as the marginal
distributions and the dependences between variables can be
studied separately. These EDAs start by calculating the marginal
distribution of each variable separately. The algorithms then pick
a particular copula to construct the joint distribution. Given the
marginal distributions and a copula, it is then possible to generate
new candidate solutions.

3.4. EDA-GP

After numerous successes in the design of EDAs for discrete
and real-valued representations, a number of researchers have
attempted to replicate these successes in the domain of genetic
programming (GP) [80]. In GP the task is to evolve a population of
computer programs represented by labeled trees. In this domain,
some additional challenges become evident. To start with, the
length of candidate programs is expected to vary. Also, small
changes in parent–child relationships can lead to large changes
in the performance of the program, and often the relationship
between operators is more important than their actual physical
position in candidate programs. However, despite these additional
challenges, even in this environment, EDAshave been successful. In
the remainder of this section, we outline a few attempts to design
EDAs for GP.

The probabilistic incremental program evolution (PIPE) [81]
uses a probabilistic prototype tree (PPT) to store the probability
distribution of all functions and operators at each node of program
trees. Initially the probability of all the functions and operators
is set to represent the uniform distribution and used to generate
the initial population. In each generation the values of the PPT are
updated from the population of promising solutions. To generate
new solutions, the distribution at each node is sampled to generate
a new candidate program tree. Subtrees that are not valid due
to invalid combination of operators or functions at the lowest
level in the tree are pruned. Fig. 7 shows an example PPT for
PIPE. While PIPE does force positional dependence by using
specific probabilities at each node, it does not take into account
interactions between nodes. Nonetheless, due to the simplicity
of the model used, the learning and sampling procedure of PIPE
remains relatively fast compared to many other approaches to
EDA-based GP.

An extension of PIPE is the extended compact genetic program-
ming (ECGP) [82]. Motivated by ECGA, ECGP splits nodes in the
program trees into independent clusters. The algorithm starts by
assuming that all nodes are independent. Then it proceeds by
merging nodes into larger clusters based on theMDLmetric similar
to that used in ECGA. The individual clusters are treated as a single
variable and the tree is used to generate new candidate solutions.
Fig. 7 shows an example model generated by ECGP.

Due to the chaotic nature of program spaces, finding an accurate
problem decomposition can be difficult over the entire search
space of candidate programs. The meta-optimizing semantic
evolutionary search (MOSES) [83] deals with this problem by first
dynamically splitting up the search space into separate program
subspaces called demes that aremaintained simultaneously. hBOA
is then applied to each individual deme to generate new programs
within that deme, which can also lead to new demes being created.

Several EDAs were developed for GP using probabilistic models
based on grammar rules. One such EDA is the stochastic grammar-
based GP (SG-GP) [84], which starts by using a fixed context-free
grammar and attaching default probabilities to each rule. Based
on the promising solutions sampled during each generation, the
probabilities of rules that perform well are gradually increased.
While in the base algorithm, no positional information is stored,
it is also possible to extend the algorithm to keep track of the level
where each rule is used.

Further extending the idea of representing the probability dis-
tribution over candidate programs using probabilistic grammars,
the program evolution with explicit learning (PEEL) [85] attaches
a depth and location parameter to each production rule. It starts
with a small grammar and expands it by transforming a general
rule that works at all locations into a specific grammar rule that
only works at a specific depth and location. A metric based on ant
colony optimization is used to ensure that rules are not excessively
refined.

All the aforementioned algorithms based on grammatical evo-
lution used a fixed context-free grammar. Grammar model-based
program evolution (GMPE) [86] goes beyond context-free gram-
mars by allowing the algorithm itself to generate completely new
grammar rules. GMPE starts by generating a random initial popu-
lation of program trees. Then aminimal grammar is generated that
is only able to generate the initial set of promising solutions. Once
this is done, using the work based on theoretical natural language
analysis, operators are used to create new rules andmerge old rules
together. The minimummessage length (MML) [87] metric is used
to compare grammars. This algorithm is very adaptable, being able
to generate a broad variety of possible grammars. However, com-
paring competing grammars is computationally expensive.

3.5. Multi-objective EDAs

Most EDAs discussed so far were designed to solve problems
with one objective. However, many real-world problems contain
competing objectives. For example, when optimizing a car engine,
onemaywant tomaximize power and, at the same time, minimize
environmental impact and fuel consumption. One way to solve
multi-objective problems is to transform the multiple objectives
into a single objective by weighing the objectives in some way.
However, it is often more desirable to find an optimal tradeoff
between the objectives in the form of a diverse set of Pareto
optimal solutions [88,89]. In short, a solution is Pareto optimal
if it outperforms any other solution in at least one objective. In
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this section, we review several EDAs that aim to find diverse
sets of Pareto optimal solutions for multi-objective optimization
problems.

For these types of problems, it is no longer possible to find
one solution that maximizes all the goals simultaneously. Instead,
the ultimate goal is to find a broad distribution of Pareto-optimal
solutions.

The Bayesian multi-objective optimization algorithm (BMOA)
[90] uses a special selection operator, ϵ-archive [91], to both
ensure that Pareto-optimal solutions are maintained over time
and that diversity is maintained so that an approximation of
the entire Pareto set is preserved. The selection operator works
by maintaining a minimal set of solutions that ϵ-dominates
all other solutions generated so far, with ϵ being a problem
specific parameter that stands for the relative tolerance allowed
for different objective values. Results showed that the resulting
algorithm was able to find a good model of the Pareto set for
smaller instances of the 0/1 multi-objective knapsack problem.
Essentially, BMOA combines themixed BOA [74] and the improved
strength Pareto evolutionary algorithm (SPEA2) [92].

The naive mixture-based multi-objective iterated density-
estimation evolutionary algorithm (MIDEA) [93] extended the
IDEA framework to multi-objective optimization. A special selec-
tion operator was used to ensure preservation of diversity along
the Pareto front, guided by a single parameter δ. The population
is then clustered using the leader algorithm [94], with the leader
algorithm selected due its speed and the lack of any requirement
to specify the number of clusters beforehand. A univariate model
is built for each cluster and sampled to generate new candidate
solutions.

The multi-objective Bayesian optimization algorithm (mBOA)
[95] uses the selection operator from the non-dominated sorting
algorithm-II (NSGA-II) [96] to maintain a diverse set of solutions
along the Pareto-optimal front. This selection operator gives each
solution in the population a rank and a crowding distance. The
rank provides pressure to maximize all objectives whereas the
crowding distance provides pressure to maintain diversity and
broad coverage of the Pareto front. Solutions compete in binary
tournaments. If the ranks of the two competing solutions differ, the
winner of a tournament is the solution with a better rank; if the
ranks are equal, the crowding distance is used to determine the
winner. A Bayesian network model is then built for the selected
solutions and the resulting network is sampled to generate new
candidate solutions for the next generation. The multi-objective
BOA outperformed the NSGA-II on several interleaved deceptive
problems.

The multi-objective hierarchical BOA (mohBOA) [97] extended
hBOA to the multi-objective domain by combining hBOA, NSGA-
II [96] and clustering. mohBOA uses the non-dominated crowding
of NSGA-II to rank candidate solutions and assign crowding
distances. This information is then used to select promising
solutions using the same procedure as in NSGA-II and mBOA. After
selecting the promising candidate solutions, k-means clustering
is used to obtain a clustering of the promising solutions. hBOA
creates a separate Bayesian network model for each cluster and
each created Bayesian network is used to generate the same
number of new candidate solutions. New candidate solutions are
incorporated into the old population using RTR to form the next
generation’s population. The results showed that mohBOA was
able to solve the onemax–zeromax and trap5–invtrap5 in low-
order polynomial time. Similar modifications were also tested in
combination with marginal product models of ECGA in Ref. [98].

Shah and Reed [99] compared three different multi-objective
evolutionary algorithms when solving the multi-objective d-
dimensional knapsack problem. Their results showed that the
ϵ-hBOA [16] was able to outperform both the strength Pareto
evolutionary algorithm (SPEA2) [92] and the ϵ-NSGA-II [100]. The
ϵ-hBOA uses the selection operator in NSGA-II to select promising
candidate solutions each generation. hBOA is then used to generate
a Bayesian networkmodel and sampled to generate new candidate
solutions. ϵ-nondominated archiving [91] is then used to form a
new population from the candidate solutions, with this archive
used as the population for subsequent generations. Essentially, ϵ-
hBOA combines the operators of hBOA, NSGA-II and SPEA2

4. Related algorithms

All stochastic optimization algorithms guide their search for
the optimum using probabilistic models. In most optimization
algorithms, the models are defined implicitly by the current state
of the search and the set of operators. On the other hand, in
EDAs, explicit probabilistic models such as probability vectors
and Bayesian networks are built from samples of high quality
solutions and these models are then sampled to generate new
candidate solutions. Nonetheless, EDAs and most other stochastic
optimization techniques share many similarities, and this section
will review some optimization methods that are most closely
related to EDAs.

Evolutionary algorithms use operators of selection and vari-
ation to update a population of candidate solutions or a single
candidate solution. For example, in genetic algorithms [101], bi-
nary tournament selection may be used to select promising so-
lutions from the current population and the new population may
be created by applying one-point crossover and bit-flip mutation
to the selected parents. Selection and variation operators together
with the current population of candidate solutions define the prob-
ability distribution over the populations of candidate solutions,
and the new population of candidate solutions can be seen as a
sample from that distribution. The main difference between most
evolutionary algorithms and EDAs is that in EDAs the probability
distribution used to generate new candidate solutions is defined
explicitlywhereas inmost evolutionary algorithms the distribution
is defined implicitly.

In some evolutionary algorithms, the distribution used to
generate new candidate solutions is in fact defined explicitly,
just like in EDAs. For example, in evolution strategies [102], new
candidate solutions are often generated from a single normal
distribution centered around the best-so-far candidate solution
or from a mixture of normal distributions centered around a
population of high-quality solutions found so far. Similarly, many
ant colony optimization (ACO) methods [103] and particle swarm
optimization methods (PSO) [104] use models that explicitly
define a probability distribution over candidate solutions. From
this perspective, many evolutionary algorithms may be viewed as
‘‘true’’ EDAs.

Developed independently of EDAs, the cross-entropy method
(CE) [105] is probably the most closely related approach to EDAs
and sees search much in the same way as EDAs. Similarly to EDAs,
CE generates a random data set and then creates a model based
on this random data set. Each iteration CE updates the model
to increase model quality and ensure that it will generate better
candidate solutions over time. Ideally, after a reasonable number
of iterations, the model should generate the global optimum with
high probability.

5. Advantages and disadvantages of using EDAs

Viewing optimization as the process of updating a probabilis-
tic model over candidate solutions provides EDAs with several
important features that distinguish these algorithms from evolu-
tionary algorithms and other, more conventional metaheuristics.
This section reviews some of these important features. Section 5.1
covers some of the important advantages that EDAs have over
othermetaheuristics. Section 5.2 then discusses some of the disad-
vantages that EDAs have when compared to other metaheuristics.
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5.1. Advantages of EDAs

Adaptive operators. One of the biggest advantages of EDAs over
most other metaheuristics is their ability to adapt
their operators to the structure of the problem. Most
metaheuristics use fixed operators to explore the space
of potential solutions. While problem-specific operators
may be developed and are often used in practice, EDAs
are able to do the tuning of the operator to the problem
on their own. This important difference allows EDAs to
solve some problems for which other algorithms scale
poorly [5,7,19,106,107]. However, adaptation in EDAs is
usually limited by the initial choice of the probabilistic
model. As a consequence, adaptive EDAs [108,109] have
been proposed that dynamically change the type of
model used while solving a problem.

Problem structure. Besides just providing the solution to the prob-
lem, EDAs also provide optimization practitioners with a
roadmap of how the EDA solved the problem. This roadmap
consists of the models that are calculated in each gener-
ation of the EDA, which represent samples of solutions
of increasing quality. Mining these probabilistic mod-
els for information about the problem can reveal many
problem-specific features, which can in turn be used to
identify promising regions of the search space, depen-
dency relationships between problem variables, or other
important properties of the problem landscape. While
gaining a better understanding of the problem domain is
useful in its own right, the obtained information can be
used to design problem-specific optimization techniques
or speed up solution of new problem instances of similar
type [110–113].

Prior knowledge exploitation. Practical solutions of enormously
complex optimization problems often necessitates that
the practitioners bias the optimization algorithm in
some way based on prior knowledge. This is possible
evenwith standard evolutionary algorithms, for example
by injecting specific solutions into the population of
candidate solutions or by biasing the populations using
a local search. However, many approaches to biasing the
search for the optimum tend to be ad-hoc and problem
specific. EDAs provide the framework formore principled
techniques to incorporate prior knowledge. For example,
Bayesian statistics can be used to bias model building in
EDAs towards instances that appear to more likely lead
to the global optimum or towards probabilistic models
that more closely correspond to the structure of the
problem being solved. This can be done in a statistically
meaningful way as will be demonstrated in Section 6.6.

Reduced memory requirements. Incremental EDAs reduce memory
requirements by replacing the population of candidate so-
lutions by a probabilistic model. This allows practitioners
to solve extremely large problems that cannot be solved
with other techniques. For example, Sastry et al. [27]
shows that solving a 225 (over 33 million) bit onemax
problem with a simple genetic algorithm takes about
700GBbut the cGAdescribed in 3.1.1 requires only a little
over 128 MB.

5.2. Disadvantages of EDAs

Building explicit probabilistic models is often more time
consuming than using implicit models defined with simple search
operators, such as tournament selection and two-point crossover.
That is why it may sometimes be advantageous to use implicit
models of conventional evolutionary algorithms instead of explicit
ones of EDAs. However, doing this is only practical when search
operators are available that allow scalable solutions of the target
problem class; otherwise, the time complexity of learning a model
is a small price to pay. Furthermore, the discovery of such operators
may not be straightforward and it also comes at a cost.

It is important to note that sometimes it is difficult to learn an
adequate probabilisticmodel and in some cases it is possible to cre-
ate problems that render some model building algorithms ineffec-
tive. For example, many EDAs (such as BOA and ECGA) use a greedy
algorithm to build probabilistic models and it has been shown that
there exist problems for which the greedy algorithm often leads
to an inadequate model. Specifically, Coffin and Smith [114] pro-
posed the concatenated parity function (CPF) for which pairwise
correlations between variables cannot be easily detected using
only marginal statistics. One can envision several ways to alleviate
this problem, such as limited probing [115] and linkage identifica-
tion by non-monotonicity detection [116]. However, it is question-
able whether the ability to solve such a special class of problems
will outweigh the disadvantages of giving up the use of Bayesian
statistics in learning the probabilistic models. Furthermore, it was
shown [117] that the difficulties of EDAs when solving CPF are
mainly due to spurious linkages; therefore, using methods to re-
duce spurious linkages may provide yet another solution to this
problem.

6. Efficiency enhancement techniques for EDAs

While EDAs provide scalable solutions to many problems
that are intractable with other techniques, solving enormously
complex problems often necessitates that additional efficiency
enhancement (EE) [19,17,42] techniques are used. There are
two main computational bottlenecks that must be addressed by
efficiency enhancement techniques for EDAs: (1) fitness evaluation
and (2) model building.

Efficiency enhancements for EDAs can be roughly divided into
the following categories [42]:

1. Parallelization.
2. Evaluation relaxation.
3. Hybridization.
4. Time continuation.
5. Sporadic and incremental model building.
6. Incorporating problem-specific knowledge and learning from

experience.

In the remainder of this section we will briefly review each of
these approaches, with an emphasis on efficiency enhancement
techniques that are specific to EDAs.

6.1. Parallelization

To enhance efficiency of any optimization technique, one may
often parallelize the computation in some way. The most common
approach to parallelization in EDAs and other metaheuristics is to
parallelize fitness evaluation [118]. However, in the case of EDAs it
is often also advantageous to parallelizemodel building. One of the
most impressive results in parallelization of EDAs is the efficient
parallel implementation of the compact genetic algorithm, which
was successfully applied to a noisy optimization problem with
over one billion decision variables [27]. Several approaches to
parallelizing model building in advanced EDAs with multivariate
models have also been proposed [119–121].

6.2. Evaluation relaxation

Aspreviously discussed, onemethod to help alleviate the fitness
bottleneck is parallelization. Nonetheless, to further improve
performance of algorithms with expensive fitness evaluation, it is
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sometimes possible to eliminate some of the fitness evaluations
by using approximate models of the fitness function, which
can be evaluated much faster than the actual fitness function.
Efficiency enhancement techniques based on this principle are
called evaluation relaxation techniques [19,122–125].

There are two basic approaches to evaluation relaxation:
(1) endogenous models [122–125] and (2) exogenous models
[126,127]. With endogenous models, the fitness values for some
of the new candidate solutions are estimated based on the fitness
values of the previously generated and evaluated solutions. With
exogenous models, a faster but less accurate surrogate model is
used for some of the evaluations, especially for those early in the
run. Of course, the two approaches can be combined to maximize
the benefits.

Sastry et al. [128] incorporated endogenous models in the
UMDA algorithm discussed in Section 3.1.1. To estimate fitness,
the probability vector was extended to also store statistics on
the average fitness of all solutions with a 0 or a 1 in any string
position. These data were then used to estimate fitness of new
solutions. However, EDAs provide interesting opportunities for
building extremely accurate yet computationally efficient fitness
surrogate models that go way beyond the simple approach based
on UMDA, because they provide the practitioners with detailed
information about the structure of the problem. The endogenous-
model approach when used with ECGA [125] and BOA [124] can
accurately approximate even complex fitness functions due to the
additional information about the problem structure encoded in the
EDAmodel, yielding speedups of several orders of magnitude even
for onlymoderately sized problems [124]. This type of information
is not available at all to other types of metaheuristics.

6.3. Hybridization

Inmany real-world applications, EDAs are combinedwith other
optimization algorithms. Typically, simple and fast local search
techniques—which can quickly locate the closest local optimum—
are incorporated into an EDA, reducing the problem of finding the
global optimum to that of finding only the basin of attraction of the
global optimum. As an example, consider the simple deterministic
hill climber (DHC),which takes a candidate solution representedby
a binary string and keeps performing single-bit flips on the solution
that lead to the greatest improvement in fitness [129].

While even incorporating simple local search techniques can
lead to significant improvements in time complexity of EDAs,
sometimes more advanced optimization techniques are available
that are tailored to the problem being solved. As an example,
consider cluster exact approximation (CEA) [130], which can be
incorporated into hBOA [5] when solving the problem of finding
ground states of Ising spin-glass instances arranged on finite-
dimensional lattices. Unlike DHC, CEA can flip many bits at once,
often yielding solutions close to the global optimum after only a
few iterations.

Incorporating local search is relatively straightforward in most
metaheuristics. However, the use of probabilistic models of EDAs
in optimization opens the door to the design of more advanced
and powerful model-directed hybrids. Specifically, by exploiting
the problem structure encoded by the probabilistic model, it
is possible to design specialized local search techniques which
can significantly outperform more conventional approaches to
local search by using neighborhood operators that more closely
correspond to the structure of the problem. For example, if two
variables are strongly correlated and the value of one of them is
modified, then it would make sense to consider modifying the
value of the other variable as well. This idea was the motivation
behind the building-block mutation operator used by Sastry and
Goldberg [131] to speed up problem solving in ECGA. This operator
worked by taking the best individual from the population and
trying different combinations of bits in one of the independent
linkage groups discovered by the model building phase, while
leaving all the other linkage groups fixed; this was then repeated
for each linkage group. This type of structural local search is simply
not available to other metaheuristics.

Local search was also used to speed up the performance of
BOA and hBOA by using information from Bayesian networks by
Lima et al. [132]. In this work, substructural neighborhoods were
defined as a variable and all its parents in the Bayesian network
model were discovered by BOA. Hillclimbing in the substructural
space was then used on a proportion of the population. However,
this technique did not take into account the context of possible
overlapping interactions. Lima et al. [132] also discussed other
possible neighborhood structures that could be extracted from
Bayesian networks. In a similar approach, Handa [133] started
with bit mutation in EBNA, but then resampled any variables
that depended on mutated bits depending on the conditional
probability of the new parent variable’s value.

To perform advanced local search based on Bayesian networks,
Mendiburu et al. [134] proposed the use of loopy belief propaga-
tion [135] to generate the most likely instance from the Bayesian
network learned in each iteration of EBNA. A similar approach has
later been studied by [136], who also used loopy belief propagation
but instead of conditional probabilities, the loopy belief propaga-
tion was driven by fitness statistics incorporated into the model in
hBOA. Related approaches have also been studied in the context of
other probabilistic models [137–141].

6.4. Time continuation

In time continuation, the goal is to maximize performance
of evolutionary algorithms by exploiting the trade-off between
making more runs with a small population size and making fewer
runs (or even only a single run) with a larger population size
[142,143,19]. For example, sometimes it is possible to solve a
problem in one single generation with a large enough population
size, but it may also be possible to solve this problem in
many generations with a smaller population. Which is the most
effective method is not always readily apparent: the goal in
time continuation is to pick the method most efficient for a
particular problem, either to maximize solution quality given a
fixed computational budget or to minimize time to achieve a
solution of a given quality.

Problem information encoded in probabilistic models of
EDAs creates opportunities for using this information to design
more efficient optimization techniques by exploiting the time
continuation tradeoffs. For example, Sastry and Goldberg [144]
showed that for ECGA on separable problems of bounded difficulty,
if the population was large enough for an accurate model of the
underlying problem structure, an ECGA hybrid was able to solve
these problems in a single generation by using a local searcherwith
the neighborhood structure based on the ECGA model. However,
for problems with substantial amounts of noise, running the ECGA
hybrid for a number of generations was preferable.

6.5. Sporadic and incremental model building

Model building in ECGA, hBOA and other similar EDAs usually
consists of two parts: (1) learning the structure and (2) learning
the parameters of the identified structure. Typically, learning
the model structure is much more complex than learning the
parameters [145,42]. However, since the model structure is
expected to not change much between consequent iterations, one
way to speed up model building is to use sporadic model building,
in which the structure is updated only once in a while [146].

Since the model structure is expected to not change much over
time andmaking incremental changes tomodel structure is usually
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much simpler than building the structure from scratch, it may also
be advantageous to change themodel structure only incrementally
without rebuilding the model from scratch in every iteration. This
is the basic idea of incremental model building [39].

6.6. Incorporating problem-specific knowledge and learning from
experience

EDAs typically do not require any information about the
problem being solved except for the representation of candidate
solutions and the fitness function. Nonetheless, if problem-specific
information is available, it may be possible to use this information
to improve performance of these algorithms significantly. There
are two basic approaches to speed up EDAs by incorporating
problem-specific knowledge: (1) bias the procedure for generating
the initial population [113,147,148] and (2) bias or restrict
the model building procedure [113,149,112]. For both these
approaches, we may either (1) hard code the modifications based
on prior problem-specific knowledge [111–113] or (2) develop
automated procedures to improve EDA performance by learning
from previous EDA runs on problems of similar type (learning from
experience) [110].

One technique used to bias the initial population towards good
solutions (and, consequently, to also improve model quality) is
called seeding [113,148,147]. Seeding works by inserting high-
quality solutions into the initial population. These high-quality
solutions can be either obtained from previous runs on similar
problems, provided by a specialized heuristic [113,148], or created
in someway fromhigh-quality solutions of smaller instances of the
same problem [147].

While seeding can work with many types of algorithms, EDAs
offer us a wealth of new options for using prior information in a
principled way. One of the earliest attempts to bias model building
in EDAs based on prior problem-specific knowledge was made
by Schwarz and Ocenasek [113], who biased BOA model building
in graph bipartitioning by giving those edges contained in the
underlying graph a higher priority than other edges. Mühlenbein
and Mahnig [149] also considered graph bipartitioning but in this
case only allowed edges in the underlying graph. Baluja [112] also
only allowed edges in the underlying graph in his work on graph
coloring.

To develop a method that was more broadly applicable,
Hauschild et al. [111] proposed two different methods to restrict
or penalize the allowable edges in hBOA model building. The first
method used a distance metric defined in such a way that the
greater the distance between two variables in the problem, the less
expected interaction between these variables. Using a parameter
to specify the maximum allowable distance to still consider an
edge, this method was able to cut down on the number of edges
considered during model building. The second method was based
on the percentage of runs in which an edge was encountered in
hBOA models. Using hBOA to solve a small number of sample
problem instances, the resulting data were then used to speed
up hBOA model building in subsequent runs on newer problem
instances. Thisworkwas later extended [110] to bias the BDmetric
itself based on theprobability that an edgewasused in the previous
runs.

7. EDA theory

While most of this paper has focused on the practical
applications of EDAs in solving optimization problems, it is of
equal importance that these algorithms have a strong theoretical
background. The stronger our theoretical understanding about
how these algorithms work, the easier it should be to develop new
algorithms and efficiency enhancements, and to successfully apply
these algorithms to new problems. In this section we will review
some of the most important theoretical results in the field of
EDAs.We divide these theoretical results into fivemain categories:
(1) convergence proofs, (2) population sizing models, (3) diversity
loss, (4) memory complexity, and (5) model accuracy.

7.1. Convergence proofs

Some of the most important theoretical results in EDA theory
focus on the conditions that allow EDAs to provably converge to
a global optimum. The convergence of the factorized distribution
algorithm (FDA) on separable additively decomposable functions
(ADFs) was explored by Muhlenbein and Mahnig [150], who
developed an exact formula for convergence time when using
proportional selection. Since in practice proportional selection
is rarely used, truncation selection was also examined and an
equation was derived giving the approximate time to convergence
from an analysis of the onemax function.

In the aforementioned study [150], no overlap between the
subfunctions in an additive decomposition of the objective func-
tion was assumed. In [151], the authors studied the convergence
of FDA on ADFs where subproblems were allowed to interact. In
this work, an infinite population was used and the effects of three
different selection schemes on convergence were examined. The
results showed that EDAs converged under all selection schemes
examined as long as the probability distribution represented by the
population after sampling themodel was identical to the probabil-
ity distribution of the population after selection (which was used
to build the model). The authors also defined sufficient conditions
for provable convergence of multivariate EDAs on ADFs, although
these conditions are often not practical.

Zhang [152] examined two different EDAs, the FDA which
uses higher-order statistics, and the UMDA using only first-order
statistics. After developing limit models of UMDA and FDA, the
authors show that in the case of a general objective function,
the limit model of FDA has a better chance of obtaining the
global optimum than UMDA. The authors then proved this on an
additively decomposable objective function, showing that at least
for some problems the chance of converging to the global optimum
is indeed increased by using higher order statistics.

7.2. Population sizing

The convergence proofs mentioned in the previous subsec-
tion assumed infinite populations in order to simplify calculations.
However, in practice using an infinite population is not possible.
The population size in EDAs is closely related to the reliability and
complexity of the search, similarly as for other population-based
evolutionary algorithms [153,154,18]. Using a population that is
too small can lead to convergence to solutions of low quality and
inability to reliably find the global optimum. On the other hand,
using a population that is too large can lead to an increased com-
plexity of building and sampling probabilistic models, evaluating
populations, and executing other EDA components. That is why
choosing an adequate population size is crucial. Similar to GAs,
EDAs must have a sufficient population size such that the initial
supply of raw building blocks [153] is sufficient and that good de-
cisions are made between competing partial solutions [153]. How-
ever, the population must be large enough for EDAs to make good
decisions on variable interactions.

To examine this topic, Pelikan et al. [155] explored the
population size required for BOA to solve decomposable problems
of bounded difficulty with uniformly and nonuniformly scaled
subproblems. The results showed that the population sizes
required grew nearly linearly. The results also showed that
the approximate number of evaluations grew sub-quadratically
for uniformly scaled subproblems but was quadratic on some
nonuniformly scaled subproblems.
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Yu et al. [156] refined the model of Pelikan et al. [155] to
provide more accurate bounds for the adequate population size
in multivariate EDAs and also examined the effects of selection
pressure on population size. The work focused on entropy-based
EDAs and started by assuming an infinite population. Then, for a
finite population size, the distributions of the sampled entropywas
investigated.

7.3. Diversity loss

It is possible for stochastic errors in population sampling to
lead to a loss of diversity. If this loss of diversity continues
over time (by producing simplified models), it is possible for the
population to no longer contain enough information to solve the
problem. Shapiro [157] examined the susceptibility of UMDA to
diversity loss and discussed how it is necessary to set the learning
parameters in such a way that this does not happen.

Bosman et al. [158] examined diversity loss in EDAs for
solving real-valued problems and the approaches to alleviating this
difficulty. The results showed that due to diversity loss some of the
state-of-the-art EDAs for real-valued problems could still fail on
slope-like regions in the search space. The authors proposed using
anticipated mean shift (AMS) to shift the mean of new solutions
each generation in order to effectively maintain diversity.

7.4. Memory complexity

Another factor of importance in EDA problem solving is the
memory required to solve the problem. Gao and Culberson [159]
examined the space complexity of the FDA and BOA on additively
decomposable functions where overlap was allowed between
subfunctions. Gao and Culberson [159] proved that the space
complexity of FDA and BOA is exponential in the problem size even
with very sparse interaction between variables.While these results
are somewhat negative, the authors point out that this only shows
that EDAs have limitations and work best when the interaction
structure is of bounded size.

One way to reduce the memory complexity required in
multivariate EDAs is to use incremental EDAs. The incremental BOA
(iBOA) [160] starts with a simple univariatemodel that is gradually
increased in complexity. Each generation, several solutions are
generated and the best and worst fit individuals are used to
determine whether to increase the complexity of the model by
adding an edge between nodes, with the parameters of the model
also slowly updated over time. To limit the required memory
complexity, iBOA stores only the marginal probabilities for the
currentmodel and any thatwould be required after adding an edge
between nodes. The resulting multivariate EDA has less memory
complexity than BOA but was still able to scalably solve deceptive
trap problems.

7.5. Model accuracy

Model accuracy studies examine the accuracy of the models
in EDAs that successfully solve a problem. By understanding the
structure and complexity of the models and how they relate
to the underlying problem structure, researchers should be able
to develop new theoretical models and design new efficiency
enhancement techniques.

Hauschild et al. [161] analyzed the models generated by hBOA
when solving concatenated traps, random additively decompos-
able problems, hierarchical traps and 2D Ising spin glasses. The
models generated were then compared to the underlying problem
structure by comparing the number of spurious and correct edges
added (given a perfect model). The results showed that the models
did closely correspond to the structure of the underlying problems
and that the models did not change significantly between conse-
quent iterations of hBOA.
The relationship between the probabilistic models learned by
BOA and the underlying problem structure was also explored by
Lima et al. [162]. The accuracy of the models was defined as
the ratio of the edges found in a perfect model over the total
number of edges in the network. One of the most important
contributions of this study was to demonstrate the dramatic
effect that selection has on spurious dependences. The results
showed that model accuracy was significantly improved when
using truncation selection compared to tournament selection.
Motivated by these results, the authors modified the complexity
penalty of BOA model building to take into account tournament
sizes when using binary tournament selection. This new s-penalty
was found to significantly improve the model structural accuracy
of BOA even when tournament selection is used.

Echegoyen et al. [163] also analyzed the structural accuracy
of the models, this time using EBNA on concatenated traps, two
variants of Ising spin glass and MAX-SAT. In this work two vari-
ations of EBNA were compared, one that was given the complete
model structure based on the underlying problem and another that
learned the approximate structure. The authors then examined the
probability at any generation that the models would generate the
optimal solution. The results showed that it was not strictly neces-
sary to have all the interactions that were in the complete model
in order to solve the problems. It was also discovered that in order
for the algorithm to reach a solution, the probability of an optimal
solution must always exceed a certain threshold.

Finally, the effects of spurious linkages on EDA performance
were examined by Radetic and Pelikan [164]. The authors started
by proposing a theoreticalmodel to describe the effects of spurious
(unnecessary) dependences on the population sizing of EDAs.
This model was then tested empirically on onemax and the
results showed that while it would be expected that spurious
dependences would have little effect on population size, when
niching was included the effects were substantial.

8. Additional information

This section provides pointers to additional sources of informa-
tion on EDAs.

8.1. Software

The following list contains some free EDA implementations
available online:
• Implementations of BOA, hBOA and dtEDA:

http://medal.cs.umsl.edu/software.php
• Implementation of ECGA in Matlab and C++:

http://illigal.org/category/source-code/
• Implementations of sequential and parallel mixed BOA and

adaptive mixed BOA:
http://jiri.ocenasek.com/#Download
• Matlab toolbox for EDAs and several implementations:

http://www.sc.ehu.es/ccwbayes/members/rsantana/software/
Software.html
• Implementation of the Adapted Maximum-Likelihood Gaus-

sian Model Iterated Density Estimation Evolutionary Algorithm
(AMaLGaM-IDEA):
http://homepages.cwi.nl/~bosman/source_code.php
• Source code for RM-MEDA and several other EDAs and test

problems:
http://cswww.essex.ac.uk/staff/qzhang/mypublication.htm
• Implementations of Real-coded BOA and multi-objective Real-

coded BOA:
http://www.evolution.re.kr/

8.2. Journals

The following journals are key venues for papers in EDAs and
often contain papers on the cutting edge of research in EDAs:

http://medal.cs.umsl.edu/software.php
http://illigal.org/category/source-code/
http://jiri.ocenasek.com/#Download
http://www.sc.ehu.es/ccwbayes/members/rsantana/software/Software.html
http://www.sc.ehu.es/ccwbayes/members/rsantana/software/Software.html
http://homepages.cwi.nl/~bosman/source_code.php
http://cswww.essex.ac.uk/staff/qzhang/mypublication.htm
http://www.evolution.re.kr/
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• Evolutionary Computation (MIT Press):
http://www.mitpressjournals.org/loi/evco
• IEEE Transactions on Evolutionary Computation (IEEE Press):

http://www.ieee-cis.org/pubs/tec/
• Swarm and Evolutionary Computation:

http://www.elsevier.com/wps/find/journaldescription.cws_
home/724666/description#description
• Genetic Programming and Evolvable Machines:

http://www.springer.com/computer/ai/journal/10710

8.3. Conferences

The following conferences are the primary ones that publish
papers in the EDA field:

• ACM SIGEVO Genetic and Evolutionary Computation Conference
(GECCO):
• Parallel Problem Solving in Nature (PPSN):
• IEEE Congress on Evolutionary Computation (CEC):

9. Summary and conclusions

EDAs are among the most powerful evolutionary algorithms
currently available, and there are numerous applications where
EDAs have been shown to solve problems unsolvable with
other existing techniques. Nonetheless, EDAs are capable of not
only solving many difficult problems, but they also provide
practitioners with a great deal of information about how the
problem was solved. The ability to provide practitioners with
useful information about the problem landscape is a feature that
is highly desirable yet not offered by virtually any other general
optimization technique. In addition, most EDAs offer additional
advantages over the more conventional evolutionary algorithms
and other metaheuristics, such as the ability to represent the
population more efficiently using a probabilistic model or include
prior information of various forms in a rigorous manner.

EDAs use a large variety of probabilistic models, ranging
from probability vectors to Bayesian and Markov networks. This
diversity allows practitioners to solve a great variety of problems,
from the simple to the complex, from the real-valued domain to
the discrete one. Given almost any problem, it should be possible
for practitioners to select an EDA that can solve it. The key is to
ensure that the class of probabilistic models used allows EDAs to
effectively capture features of high quality solutions that make
these solutions better.
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