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Abstract—The inherent massive parallelism of cellular neural
networks makes them an ideal computational platform for kernel-
based algorithms and image processing. General-purpose GPUs
provide similar massive parallelism, but it can be difficult to
design algorithms to make optimal use of the hardware. The
presented research includes a GPU abstraction based on cellular
neural networks. The abstraction offers a simplified view of
massively parallel computation which remains reasonably effi-
cient. An image processing library with visualization software has
been developed to showcase the flexibility and power of cellular
computation on GPUs. Benchmarks of the library indicate that
commodity GPUs can be used to significantly accelerate CNN
research and offer a viable alternative to CPU-based image
processing algorithms.

I. INTRODUCTION

Cellular neural networks (CNNs) are an attractive platform
for parallel image processing due to their ability to perform
per-pixel operations in parallel. The research presented here
aims to target commodity graphics processing units (GPUs)
for efficient simulation and visualization of CNNs. GPUs are
readily available and provide a massively parallel platform
ideally suited to the simulation of CNNs. Simulating CNNs
on commodity GPU hardware allows for the straightforward
application of existing CNN image processing algorithms
without special CNN hardware. Additionally, CNN visual-
ization software provides a convenient platform for further
research on CNNs [13], [9] and similar networks, including
artificial neural networks and continuous cellular automata.

It is difficult to structure algorithms to take advantage of
massively parallel processors and GPUs. Cellular automata,
neural networks, and CNNs are abstract computing machines
which make use of networks of processing elements following
simple rules. Some of these systems can be implemented
efficiently in hardware, but it can be difficult to translate
their parallelism into an efficient software implementation for
simulation on commodity hardware.

CNNs have been shown to be especially adept at image
processing tasks. The increasing popularity of dedicated GPU
hardware prompts the following questions: Can we make use
of commodity GPU hardware to simulate CNNs for image pro-
cessing? Can a GPU-based cellular image processing library
outperform CPU-based image processing implementations like
OpenCV?

Simple GPU-based CNN simulations have been demon-
strated that run much faster than CPU-based CNN simulations
[7], [6]. The research presented here examines whether this

978-1-4244-3553-1/09/$25.00 ©2009 IEEE

topology
processing element
€Ommon uses

CNNs [
uniform 2D grid
dynamic equations
image processing

Table I
CNNS, ANNS COMPARED

ANNs |
usually feed-forward
nonlinear weighted sum
classification, control

improvement translates to faster image processing algorithms
compared to traditional CPU-based algorithms.

II. BACKGROUND INFORMATION
A. Cellular Neural Networks

Cellular neural networks (CNNs) are similar to well-known
artificial neural networks (ANNs) in that they are composed of
many distributed processing elements called “cells”, which are
connected in a network; however, there are several important
differences between CNNs and ANNs (see Table I). Instead
of the usual feed-forward, layered architecture seen in many
types of neural networks, CNNs were designed to operate
in a two-dimensional grid where each processing element
(cell) is connected to neighboring cells in the grid. The
cells comprising a CNN communicate by sending signals to
neighboring cells in a manner similar to ANNSs, but the signals
are processed by each cell in a unique way. Specifically, CNN
cells maintain a state which evolves through time due to
differential (or difference) equations dependent on the cell’s
inputs and feedback.

B. CNN Topology

CNNs are composed of many cells arranged in a grid, M.
To simplify discussion, we will assume these grids are always
square with dimensions m x m for m? cells. Each cell in the
grid is denoted v;; for 4, j € M. Thus each cell is labeled from
V11 tO Umm. We define two types of cell depending on their
location in the grid: inner cells and boundary cells. Boundary
cells occur near the edges of the grid; inner cells occur
everywhere else. Boundary cells necessarily have different
properties than inner cells because they are connected to fewer
neighboring cells.

Each inner cell is the center of a neighborhood N;; of nxn
cells. By this definition, 7 must be odd and is usually 7 = 3.
By convention, each cell in a given neighborhood is assigned
an index k from 1..n2, with k = 1 denoting the center cell, as
shown in Figure 1. Thus any given center cell v;; = v; belongs

730

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on May 21,2010 at 00:50:40 UTC from IEEE Xplore. Restrictions apply.



I I
G| |
el B e [ |
|UE b; Vgl |
&l
Ay A3
[y I_VL v |
e e e
Figure 1. CNN neighborhood

to the neighborhood N;; = N = {v1,vs,..v,2}, where we
have dropped the ¢, j indexes for cleaner notation.

C. The CNN Cell

Each cell vy is composed of the following variables:

a constant scalar parameter, independent of the

cell dynamics

state x(t) scalar variable which evolves over time with ini-
tial condition z(0)

output yx(xk(t)) scalar function of xy(t)

input uy

Additionally, each cell in the network is influenced by a scalar
bias parameter z, which is uniform throughout the network.
The input, bias, and initial condition x(0) are all independent
of the cell dynamics and are specified a priori. Using this
convention, the STATE EQUATION for center cell v; can be
described as follows:

T = —x1 + Zakyk+ Zbkuk—l-z
kEN kEN

©)

with coefficients aj and by as described in II-D. The OUTPUT
EQUATION for vy is defined as:

@

These equations alone are sufficient for finding the time
evolution of z(t) and yg(zx(t)) for each cell in the grid,
given initial conditions z(0) and parameters uy and z.

Boundary cells must be treated separately, in a manner
usually called the boundary condition of a given CNN. Several
types of boundary conditions exist, and the choice of boundary
condition may affect the behavior of the network as a whole
[4]; however, for the remainder of our discussion we will
assume a static boundary condition in which each boundary
cell performs no processing and maintains a constant state.
Specifically, for boundary cells v, we will define z;, = 0,
yp = 0 everywhere.

(i) = 5 i+ 1]~ o 1)

D. CNN Templates

The coefficients ax and by from (1) form vectors @ and b
of length n2. Each coefficient corresponds to a neighboring
cell vg. By arranging the coefficients according to the shape

of the neighborhood N (which is square), we get matrices
A and B, called CNN templates. For example, if n = 3 the
neighborhood is a 3 x 3 square, yielding templates as follows:

i az a4 Qp

A = az a1 ag 3
| @9 asg ar
[ b3 b4 bs

B = by b1 bg @)
| b b b7

The template A is called the FEEDBACK TEMPLATE because
it gates the feedback from the neighborhood’s previous states.
Similarly, B is called the FEED-FORWARD TEMPLATE because
it gates the constant input ug, which is known initially. The
templates A and B are similar to weights in the nomenclature
of ANNS in that they gate the signals sent between connected
cells. A larger ai or by signifies a “stronger” connection
between cells v; and vg. Unlike ANNs though, the templates
A and B associated with any inner cell are uniform across
all cells in the network. In other words, all inner cells use
the same templates A and B regardless of their location in
the network. This can be contrasted with ANNs, in which a
weight vector must be found for each neuron in the network.

The template matrices A and B, together with the bias term
z, specify the behavior of the CNN for a given set of initial
conditions and inputs. We can organize these parameters into
a single vector as follows:

&)

This vector is usually called a CNN gene, owing to the fact
that evolutionary algorithms can be employed to discover these
parameters.

G= (Z,(ll,(lg, wy Qs bla b23 "7bk:>

E. CNN-Based Image Processing

Image processing with CNNs is possible when the state
and input of each cell is interpreted as a pixel in an image. It
is easy to imagine the input and initial state images to have
visual information (as is usually the case with images) such
as colors and shapes. The output image might then be some
different form of visual information, such as an edge map or
distance transform. In this case, we can consider a CNN as an
image processor. Hardware “vision chips” have been designed
for this purpose [5], [8].

The ability to transform images in complex, nonlinear ways
makes CNNs ideal for many image processing and computer
vision tasks. In particular, spatially invariant image filters are
well-suited to CNN implementations because of the CNN’s
ability to apply a nonlinear function to every pixel in an image
simultaneously. However, spatially sensitive image processing
with CNNs is also possible due to the ability of signals to
propagate throughout the CNN. In other words, CNNs are
able to perform both local and global image operations. Some
image processing algorithms that have been implemented
for CNNs include contrast enhancement, edge detection, text
extraction, skeletonization, and smoothing [12], [15].
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III. CNN SIMULATION
A. Baseline Single Processor Implementation

CNNs were designed to be implemented with custom hard-
ware (vision chips); however, in order to experiment with
CNN-based algorithms, an easy way to test them is obviously
required. Hardware CNN implementations can be prohibitive
in cost and availability. Usually, a software simulator is used
to prototype and discover new CNN algorithms (via genetic
algorithms, for example).

CNNs have been implemented on many platforms, including
the PC [13], [9], cluster architectures [14], custom hardware
[5], [8], and GPUs. The current research aims to provide
a common software interface to some of these platforms,
allowing the same CNN algorithms to run with the same code
on single-core, multi-core, and graphics processors.

Largely as a basis for comparison, a serial CNN simulator
was developed for execution on a single processor. This
baseline implementation is derived directly from (1) and (2)
using the Euler method of numerical integration. At each time-
step, all cells are updated in succession according to Algorithm
1. The algorithm is run for a specified number of iterations,
allowing the cell states to settle into steady-state values.

Notice that an obvious optimization has been made in the
algorithm. All feedforward terms are calculated once at the
start of the algorithm as an extra initialization step. This
significantly reduces the run-time of the computation, since
it eliminates nearly half of the multiplies. The optimization is
possible because the input image and z are both constant for
the duration of the simulation. This fact allows us to rewrite
(1) as follows:

1 = z1+ Z aryk +c1 (6)
kEN
with
c1 = Z brug + 2 @)
keEN

The c¢; term for each cell is calculated at the start of the
algorithm, generating a feed-forward image.

The code has been implemented in C using the core data
structures provided by the Open Computer Vision Library
from Intel (OpenCV) [2]. The code is written as an extension
to the OpenCV library, since it requires no other dependencies
and forms the basis of an OpenCV-like CNN image process-
ing library. From OpenCV, the CNN simulator has inherited
the ability to operate on integer, floating point, and double
precision values with the same small codebase. Additionally,
the simulator can operate on four color channels in a single
pass, allowing for manipulation of color images. Processing a
four-channel image with the library is functionally equivalent
to processing four separate images with four identical CNNss.

The CNN simulator provides parameters for template size
n, time step AT, and end-time (settling time) 7', accommo-
dating a large number of standard CNN algorithms. The code
could be further generalized by adding support for additional
output equations yx(z), such as those corresponding to the

Algorithm 1 serial CNN simulator
—— initialize cell states
for each cell v[i,j] in M do
X[i,3] = X0[4i,7]
end
—-— calculate feed-forward image BUz
for each cell v[i,j] in M do
BUz [1i, 7]
for each neighbor v[k]
in N[i,j] do
BUz[i,]] =
end

= 2z

BUz[i, j]1+B[k]*U[k]

end
—— perform numerical integration
for t = 0 to T by DeltaT do
—-— calculate cell outputs
for each cell v[i,j] in M do
Y[i,3] = 0.5%(abs(X[i,]3]+1) -
abs (X[1i,73]1-1))
end
—— calculate cell state deltas
for each cell v[i,j] in M do
Dx[i,3] = -X[i,]J] + BUz[i,]]
for each neighbor vI[k]
in N[i,]J] do
Dx[1i, 3] += Al[k]
end
end
—-— update states (Euler method)
for each cell v([i,Jj] in M do
X[1i,3] += DeltaT =« Dx[i,]]
end

* Y[k]

end

“universal binary neuron” and “multi-valued binary neuron”
[1].

It should be noted that the CNN simulator has been designed
strictly for continuous-time CNNs. Other CNN derivatives
and variations, such as the generalized cellular automata, are
beyond the scope of this research; however, modification of
the source for these purposes would be straightforward.

A few simple CNN algorithms were run using the baseline
CNN simulator code to verify that the implementation is
correct and working. One such algorithm was taken from [15]
and performs edge detection on the input image (see Figure
2).

B. Multi-Core Implementation

A second implementation was made, based on the first, to
parallelize the simulation on multiple processors, specifically
multi-core processors. The implementation relies on shared
memory and the POSIX standard thread model (pthreads).
Interestingly, no mutual exclusions (mutexes), semaphores, or
other synchronization methods were required, making for a
very simple implementation.
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b)

c)

Figure 2.

edge detector output

a) input image;

b) steady-state output of CNN inner edge detector described
in [15];

c) output of OpenCV’s Laplace transform for comparison

The multi-core implementation relies on the concept of a
kernel function, a simple function executed in many parallel
instances, each with different inputs. For example, kernel
functions might be used to increment every integer in a list,
saturate each pixel in an image (applying the sat function),
or update each cell in a CNN.

The implementation uses four kernel functions:

o the feed-forward kernel, which computes the feed-
forward image from U, B, and z according to (7),

Algorithm 2 kernel launch function
function launch_kernel (
kernel_function,

inputs

)

—-— array to store thread handles
local threads = {}

—-— array to store results

local outputs = {}

—— launch threads

for 1 = 1, N_CORES do
threads [i] = pthread_create (
kernel_function, inputs [i]
)
end
—— wait for threads to terminate
for i = 1, N_CORES do
outputs [i] = pthread_join (
threads [1i]
)
end
return outputs

end

« the feedback kernel, which computes 1 from y;(¢), A,
and the feed-forward image,

« the feedback integration kernel, which uses Euler inte-
gration to compute z1(t) from z1(0) and 1,

« and the output kernel, which computes y; (t) from z; (¢).

Each instance of a kernel operates on one cell at a time.
Conceptually, there is one kernel instance for each cell, and
when a kernel function is “launched”, each kernel instance
executes in parallel on its respective cell. In this way all cells
are updated simultaneously using the same kernel function.
The kernels are launched by a generic “kernel launch function”
described by Algorithm 2.

In practice, multi-core processors have too few cores to
execute all kernel instances in parallel, so instead of spawning
one thread per kernel instance, the implementation spawns
one thread per core and divides kernel instances among these
threads. Each thread is responsible for executing its set of
kernel instances in series. Since each core has its own thread,
the processor is saturated without introducing unnecessary
context switches.

C. CUDA Implementation

Lastly, a GPU-based CNN simulator was implemented
using the CUDA platform from NVIDIA. CUDA’s cellular
architecture and data-parallel programming model is perfectly
suited to simulation of CNNss, since each cell can be processed
by a dedicated thread. CUDA can process thousands of threads
efficiently, and therefore can processes many of the cells in a
large CNN simultaneously [3]. Additionally, the fast shared
memory available on CUDA GPUs enables neighboring cells
to communicate as required.
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[ cvLaplace | CPU CNN | dual-core CNN | CUDA GPU |
[ 010s | 7mins | 5 mins [ 011s ]

Table II
RUN-TIME COMPARISON OF 5X5 KERNEL EDGE DETECTION ALGORITHMS

CNNs have been implemented using GPUs in the recent
past using shaders to modify the GPU’s rendering pipeline
[7]. This is a significantly less convenient approach, requiring
the programmer to formulate the algorithm in terms of pixels,
textures, vertexes, and other graphics primitives. CUDA offers
a much more flexible platform, which allows for a CNN
implementation which follows directly from the multi-core
version discussed above.

Currently, CUDA GPUs only support single-precision float-
ing point operations. This limitation severely restricts the
CUDA implementation of the simulator compared to the
single- and multi-core implementations, which operate on
several different data types. This discrepancy has necessitated
that the CUDA implementation be developed separately from
the single- and multi-core versions, though the basic algorithm
remains the same. Also, the CUDA implementation does not
use OpenCV’s data structures since they are not supported by
the hardware. The CUDA implementation can still be used
alongside OpenCV, but only single-precision floating point
arrays can be passed to the GPU; therefore, any OpenCV
data structures must be converted accordingly. As a side effect
of this departure from OpenCV, the CUDA implementation
only operates on one channel at a time. Color images must be
sliced and processed one channel at a time. It is hoped that the
improved run-time of the CUDA implementation compensates
for these shortcomings.

The GPU implementation uses kernels that are functionally
equivalent to the multi-core kernels described in the previous
section. The CUDA library includes kernel launching func-
tions that replace Algorithm 2. Otherwise, the multi-core and
GPU implementations are very similar in structure. This is a
testament to how easy it can be to move from a multi-core
program to a GPU-based program, especially compared to the
prior use of shaders.

IV. RESULTS

None of the three implementations describe above are par-
ticularly optimized; in most cases, simplicity and readability
of the code were emphasized rather than speed of execution. In
this regard, it is somewhat superficial to compare the run-times
of these implementations with other CNN simulators; however,
it is instructive to compare between the three implementations,
since we hope to see that GPUs have helped significantly
without changing the CNN algorithm.

Images approximately 195x195 in size were used to com-
pare the three implementations. While relatively modest in
size, these images illuminate the shortcomings of CPU-based
CNN simulation and image processing. The results in Table
II illustrate two significant points: first, that CNN simulation
on CPUs is indeed problematic, even at modest image sizes;

and second, that GPUs enable CNN simulation at a pace
comparable to even the simplest image processing algorithms.
Thus, the library presented here gives CNN-based image
processing research a chance to catch up with traditional CPU-
based research. Since the CUDA implementation has a run-
time on the same order of magnitude as the equivalent CPU-
based algorithm, we can rightly assume that a more optimized
CUDA implementation (and a faster GPU) could potentially
outpace the CPU algorithm. Indeed, current research suggests
that GPUs will get faster in the coming years while CPUs
have largely reached their maximum speed potential, so a tie
between CPU and GPU for a particular algorithm today might
very well mean a win for the GPU in a year or so [10], [3],
[11].

The implementations demonstrated here focused on simplic-
ity and strove for a similar structure on all three platforms.
Despite this, the GPU-based implementation is surprisingly
fast. Optimization of the GPU-based CNN simulator is re-
quired, but GPU optimization is rarely straightforward with the
current technology. Incidentally, the implementation presented
here exhibits similar run-times as another GPU-based CNN
simulator, which claims to be optimized for the hardware
[6]. Clearly, further research is required to find effective
optimization techniques applicable to CNN simulation.

V. CONCLUSION

The GPU-based CNN simulation library presented here
offers a significant performance gain over CPU-based sim-
ulators. More importantly, the foregoing discussion indicates
that GPU-based CNN simulation has immense potential for
image processing, especially as GPU throughput increases in
the months and years to come. Further optimizations need
to be made for this CNN image processing library to be an
attractive alternative to highly optimized CPU-based image
processing libraries like OpenCV; however, the initial results
presented here are encouraging.
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