
Speeding Up Model Building for ECGA on CUDA Platform

Chung-Yu Shao
Department of Electrical Engineering

National Taiwan University
r00921046@ntu.edu.tw

Tian-Li Yu
Department of Electrical Engineering

National Taiwan University
tianliyu@cc.ee.ntu.edu.tw

ABSTRACT

Parallelization is a straightforward approach to enhance the
efficiency for evolutionary computation due to its inherently
parallel nature. Since NVIDIA released the compute unified
device architecture (CUDA), graphic processing units have
enabled lots of scalable parallel programs in a wide range of
fields. However, parallelization of model building for EDAs
is rarely studied. In this paper, we propose two implemen-
tations on CUDA to speed up the model building in the
extended compact genetic algorithm (ECGA). The first im-
plementation is algorithmically identical to original ECGA.
Aiming at a greater speed boost, the second implementa-
tion modifies the model building. It slightly decreases the
accuracy of models in exchange for more speedup. Empiri-
cally, the first implementation achieves a speedup of roughly
359 to the baseline on 500-bit trap problem with order 5, and
the second implementation achieves a speedup of roughly
506 to the baseline on the same problem. Finally, both of
our implementations scale up to 9,800-bit trap problem with
order 5 on one single Tesla C2050 GPU card.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming - Parallel programming

General Terms

Algorithms, Performance, Experimentation

Keywords

CUDA, GPU, Estimation of Distribution Algorithms,
ECGA, Model Building, Efficiency Enhancement

1. INTRODUCTION
The extended compact genetic algorithm (ECGA) [5] be-

longs to one of the evolutionary computations (ECs) called
the estimation of distribution algorithms (EDAs) [1, 10, 8].
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EDAs are stochastic optimization techniques that utilize the
relations among genes to guide the search process via prob-
abilistic models. Probabilistic models summarize the infor-
mation of related genes from the promising candidate so-
lutions. EDAs then generate offspring via sampling these
models.

EDAs have been regarded as competent [4] that solve
boundedly difficult problem in subquadratic number of func-
tion evaluations. However, for large-scale problems, the
subquadratic number of function evaluations can still be
time consuming. Therefore, efficiency enhancement tech-
niques [18] are developed for large-scale, complex prob-
lems. Since ECs are inherently parallel, parallelization is
a straightforward approach to enhance the efficiency [2].

Nowadays, the graphic processing unit (GPU) is a widely
affordable parallel processor to solve massively parallel com-
putation tasks. Since NVIDIA released the compute unified
device architecture (CUDA) in 2007 [16], lots of scalable par-
allel programs have been developed in a wide range of fields.
CUDA is not only a minimal extension of the C/C++ pro-
gramming, but also a parallel computing platform that uni-
fies graphics and general-purpose parallel computing appli-
cations. Developers write serial program that calls parallel
kernel functions. When called, the kernel function is exe-
cuted T times in parallel, where T is the number of CUDA
threads defined by the programmer. The remaining por-
tion of program is then executed sequentially on the central
processing unit (CPU). Therefore, CUDA facilitates a het-
erogeneous computing between CPUs and GPUs. Although
CUDA is friendly for a programmer familiar with C to start
with, the performance of the program relies on the compre-
hension of several software and hardware properties, which
are defined by CUDA’s compute capability.

Researchers have implemented many ECs on CUDA, such
as differential evolution [7], genetic algorithm (GA) [21,
11] and particle swarm optimization [13]. However, to the
best of our knowledge, there are comparatively fewer re-
searches related to EDAs with CUDA. Munawar et al. [12]
proposed CUDA-based parallel Bayesian optimization algo-
rithm (BOA). In their implementation, the Bayesian net-
work construction in BOA [17] is implemented on CUDA,
and the implementation speeds up a 192-bit test problem 13
times.

In this paper, we propose two CUDA-based implementa-
tions aiming at speeding up model building for ECGA. We
first introduce a table-lookup method to speed up the pro-
cess of counting the occurrences of schemata. This technique
is then implemented on GPU with maximum utilization of
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Figure 1: The GPU device lunches a grid with di-
mension (2, 4, 1) of thread blocks. In each thread
block, there are 256 threads, which are divided into
8 warps.

available shared memory. Based on the first implementa-
tion, the second implementation modifies the greedy model-
searching algorithm to obtain more speedup. The remainder
of the paper is divided into five sections. In Sections 2 and 3,
we describe the background of CUDA and ECGA in greater
detail and review previous work on parallelism on ECGA.
The proposed implementations are described in Section 4,
and the empirical results are discussed in Section 5. Finally,
we conclude this paper in Section 6.

2. GPU AND CUDA
In this section, the background of CUDA is discussed,

followed by the programming model of CUDA. The CUDA
design constraints are emphasized because these constraints
affect how we design our algorithms. The section is mainly
reorganized and summarized from [14, 15, 16].

2.1 Background
GPU was originally designed to support graphics ren-

dering tasks. Specifically, a program for one thread drew
one vertex or shaded one pixel fragment. Thousands of in-
dependent threads executed concurrently in a fine-grained,
data-parallel sense on GPU. Because GPU was specialized
for such highly parallel tasks with intensive computation,
more transistors were devoted to data processing rather than
caching and flow control.

The design made GPU well-suited to problems that could
be expressed as data-parallel computations. The memory
access latency could be hidden by many data elements that
were executed at the same time. Traditionally, researchers
had to explore a mapping between the non-graphics com-
putations and the graphics rendering in order to utilize the
resource of GPU. The need for general purpose computation
on GPU hence motivated NVIDIA to develop CUDA.

2.2 CUDA Programming Model
Three key abstractions form the core of the CUDA pro-

gramming model: (1) a hierarchy of thread groups, (2)
shared memories, and (3) barrier synchronization. The hi-
erarchy of thread groups enables programmers to control all
the threads launched by kernel function, which is illustrated
in Figure 1. A kernel executes across a set of threads par-
allely, and the set of threads is organized as a hierarchy of

grid of thread blocks. Specifically, a grid is formed by several
three-dimensional thread blocks. Each thread block con-
tains a three-dimension of threads. Each thread in a given
thread block has its unique thread index number. Threads
in same thread block cooperate through the per-block shared
memory and synchronize with syncthreads(). Threads
in different blocks cooperate through the global memory and
synchronize through terminating the current kernel.

When a kernel launches, GPU automatically distributes
the thread blocks to the streaming multiprocessors (SMs).
SM creates, manages, schedules, and executes threads in
warp, which is a group of 32 parallel threads. When given
one or more thread blocks to execute, SM partitions each
block to warps. Each warp is then scheduled by a warp
scheduler for execution. A warp executes one common in-
struction at a time, which is called the single instruction
multiple threads parallel programming model. The com-
pute capability of the device defines the maximal number of
resident warps on a SM. The resident blocks on a SM are
divided into resident warps, and the resident warps are exe-
cuted concurrently. When blocks terminate, GPU launches
new blocks on the vacated SMs.

2.3 Design Constraints
There are many constraints for CUDA programming due

to the GPU architecture. Below we describe three con-
straints in greater detail. The first constraint is the memory
latency issue. As previously mentioned, threads in same
block communicate through the on-chip shared memory.
Due to the GPU architecture, the shared memory is ex-
pected to be a low-latency (few cycles) memory near each
SM which provides high performance communication. In
contrast, threads in different blocks or sequentially depen-
dent grids communicate via the high-latency (hundreds of
cycles) global memory. Nevertheless, if consecutive threads
access consecutive memory addresses, all of the threads in a
half-warp access the global memory at the same time. This
process is called coalesced memory transaction.

The second constraint is the memory bandwidth. GPU
has hundreds of cores that provide high arithmetic through-
put. However, memory traffic in the global memory hap-
pens because we can’t keep the input coming to GPU fast
enough to sustain such high rates of computation. Specif-
ically, when too many threads are acquiring data from the
global memory, GPU might prevent all but few of threads
from accessing. Many SMs are therefore idle. To evaluate
the efficiency of how we utilize the limited bandwidth, the
compute to a global memory access (CGMA) ratio is defined
as the number of floating-point calculations performed for
each access to the global memory within a region of a CUDA
program. For example, the peak computation of NVIDIA
GeForce 8800 GTX is 367 GFLOPS, and the memory band-
width is 86.4GB/s. A program achieves the peak computa-
tion of this GPU until CGMA is above 367×4

86.4
≃ 16.99.

The last constraint with lower optimization priority is to
maintain sufficient number of active threads per SM so that
GPU can hide the memory latency. The ratio of the number
of active warps per SM to the maximum number of possible
active warps per SM is defined as the occupancy metric. This
occupancy metric shows the degree to which we keep GPU
busy. Unfortunately, a trade-off exists between occupancy
and the resource of the shared memory per block. Table 2.3
indicates that to achieve full occupancy on a Tesla C2050
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GT8000 Tesla C2050
Compute capability 1.1 2.0
Shared memory size per MP (byte) 16K 48K
Maximum # resident blocks per SM 8 8
Shared memory when full occupancy 2K 6K

Table 1: The shared memory for 2 architecture of
GPUs with 100% occupancy.

GPU card, one block only has 6,000 bytes of the shared
memory. For a GPU card with lower compute capability,
the amount of the shared memory per block is less.

To conclude, five policies are keys for high-performance
CUDA program: (1) using the shared memory instead of
the global memory, (2) using the global memory as coalesced
as possible, (3) minimizing data transfer through the global
memory between CPU and GPU, (4) keeping CGMA high,
and (5) trying to keep GPU busy so that the latency can be
hidden. For further information, please refer to [14, 15, 16].

3. ECGA
The section first describes EDAs and ECGA. ECGA, one

of EDAs, models the population with the marginal product
model. The model is decided by the combined complexity
criteria that represents the description length of the model.
The overall model building in ECGA and a previous work
on ECGA with parallelism are described in greater detail.

3.1 Introduction to EDAs and ECGA
In the GA field, the term linkage refers to the relations

among variables. A group of related variables can be seen as
a building block (BB). Since Holland [6] addressed the im-
portance of BBs, many different linkage-learning techniques
have been developed for GAs. Studies have shown that los-
ing linkage results in disruptive mixing and decreases the
success of GAs dramatically [19]. Linkage learning capabil-
ity is therefore a key that makes GAs competent [4].

EDAs, a branch of GAs, do not adopt the crossover opera-
tor and the mutation operator. The core idea behind EDAs
is to build a probabilistic model that represents the promis-
ing solutions found so far. The offspring is then generated
based on the model. The way that EDAs model the linkage
significantly influences the complexity and the performance.

ECGA [5], one of EDAs, models the linkage as groups of
variables and assumes that each group is mutually indepen-
dent. This model, known as the marginal product model
(MPM), consists of two components: (1) a partition that
defines mutually independent groups over all variables, and
(2) a probabilistic distribution for each group. Assumptions
behind ECGA are that a good probability distribution is
equivalent to the linkage learning and the ‘good’ distribution
is based on two criteria. The criteria are the compressed rep-
resentation of the population under the given distribution,
and the distribution’s representation given the problem’s en-
coding. These two criteria form the combined complexity
criteria (CCC), which is expressed as

CCC = N
∑

i

Entropy(Mi)+log2(N+1)
∑

i

(2Si−1), (1)

where N is the population size and the i-th group of an
MPM has Si variables with marginal distribution Mi over
this group. Entropy(Mi) is defined as

∑

k
−pk log2(pk),

where pk is the probability of observing the k-th outcome.

The entropy of each group means the average number of bits
it takes to represent these Si genes in the population with
optimal compression. Therefore, the first term is named the
compressed population complexity. The second term repre-
sents the memory required to store the MPM structure. It is
called the model complexity because, given the MPM struc-
ture, one has to record (2Si − 1) frequency values, and each
value requires log2(N+1) bits. The sum of two terms can be
regarded as the description length of the MPM model. To
prevent from over-fitting, the minimum description length
principle is taken under the philosophy of Occam’s razor.
To sum up, the overall objective is to find an MPM model
that minimizes CCC to represent the selected population.
ECGA uses a greedy algorithm as the search approach to de-
cide the MPM model. The algorithm for model building is
listed as Algorithm 1. The complexity of the model-building
algorithm is Θ(ℓ3), where ℓ is the problem size. Using a
cache structure that records CCC for each pair of groups,
the complexity for model building is reduced to Θ(ℓ2 log ℓ),
as implemented by Lobo et al. [9]

Algorithm 1: Model building in ECGA

1 begin
2 Each variable is mutually independent. MPM has ℓ

groups, each group contains one variable, where ℓ is
the problem size.

3 while Exist a pair that reduces CCC do
4 Greedily find the best pair that reduces CCC

most
5 Merge the best pair

3.2 Previous Work on ECGA with Parallelism
Verma et al. [20] divided ECGA into three MapRe-

duces [3]. The first Map phase evaluated the population
and finished selection in the Reduce phase. In the model-
building step, they partitioned individuals among multiple
mappers. Each mapper calculated the marginal probability
for every possible pairs of groups and sent the values to the
reducers. A single reducer aggregated all the marginal prob-
abilities, greedily found the best pair to merge and updated
the model to a file for next model-building MapReduce. Af-
ter building the model, the third MapReduce was applied to
generate offspring. They performed the MapReduce-based
ECGA on a cluster of 62 nodes, each with dual Intel Quad
cores (8 cores), 16GB RAM and 2TB hard disks. The imple-
mentation scaled up to the 1,024-bit trap problem [4] with
order 4 under the constraint of memory required to main-
tain marginal probability. However, the speedup between
the MapReduce-based ECGA with cache structure and the
sequential version of ECGA with cache structure was not
mentioned in the paper.

4. CUDA-BASED ECGA
This section introduces the proposed implementations. A

technique that speeds up the process of counting the oc-
currences of schemata is first described. The way that we
utilize the technique to our implementations on GPU and
the algorithm of our implementations are then introduced.
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Figure 2: Counting schemata in the second and the
fifth loci for the population

4.1 A Table-look-up Method to Speed Up
Counting Distribution

A bit-wise table-look-up method is utilized in our imple-
mentation to count the occurrences of schemata in the pop-
ulation. For convenience, we call the method FastCount.
The core of FastCount is a pre-calculated counting table.
The counting table of x-bit binary string records the num-
ber of ones in each enumerated value that the x-bit binary
string generates. For example, 2-bit binary string generates
{0, 1, 2, 3}, and the corresponding ones are stored to the ta-
ble as {0, 1, 1, 2}. For convenience, the table is called unity
table afterwards.

The method is applied to EDAs as the following exam-
ple. Suppose that we want to get the distribution of the
second and the fifth loci from a population of size 8 as il-
lustrated in Figure 2. Alleles for the second and the fifth
loci among population form two bit stings: S2 = 11110100
and S5 = 00101100. Assume that the values from the i-th
position of the two bit-strings form a pair Pi. For example,
P3 is (1, 1). We use nxy to denote the occurrences of the pair
(x, y) in the population. Because each bit from (¬S2&¬S5)
is 1 only when (x = 0 & y = 0), n00 can be counted from the
resulting bit-string of (¬S2&¬S5). The result of (¬S2&¬S5)
is 00000011, or 3 in decimal. By looking up the unity table,
we know that the number of ones in the resulting bit-string
is 2. Similarly, n01 is derived from (¬S2&S5), and n10 is
derived from (S2&¬S5). For a larger population, the occur-
rences can be accumulated from the results of every eight
individuals.

We utilize this technique to ECGA when computing com-
pressed population complexity. In the implementation, the
selected population is transformed into unsigned int ar-
ray, with each value representing 32 bits for a certain locus
among the 32 individuals. The unity table in CPU is for a
16-bit binary string, which implies that we count the unity
from 16 individuals at a time. For memory reason, the unity
table in GPU is for a 8-bit binary string.

4.2 gECGA: CUDA-based Implementation
This section introduces our first implementation on GPU,

which is called gECGA for convenience. The entire flow
chart of gECGA is illustrated in Figure 3, and the over-
all kernel of the model building is listed in Algorithm 2.
The section is followed by the redesign of the cache and the
model, the allocation of the memory space, tasks for each
thread block and how we update the cache and the model.
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Figure 3: Block diagram of gECGA

Global Memory Constant Memory Shared Memory
entire population unity table

entire model matrix merged group model
entire cache matrix unity table part of population

status array count array

Table 2: Memory space allocation of gECGA

4.2.1 Cache and model structure

Due to the separated memory spaces of a CPU and a GPU,
we need to transfer the data from CPU to GPU. Harik et al.
mentioned that ECGA could be optimized significantly by
caching delta values for all pair combinations at each step [5].
The implementation can be found in [9]. In the implementa-
tion, the cache and the MPM model are divided into several
C structures. However, passing structure to GPU is
troublesome, let alone passing structure inside another
structure. As the result, we redesign the cache and the
MPM model.

The cache and the MPM model we use are simply two
matrices. The cache is an ℓ-by-ℓ matrix, where ℓ is the
problem size. Entry (i, j) stores CCC of a group which is
merged from groupi and groupj . If i = j, the entry stores
CCC of the groupi. The loci in each group are stored in the
model matrix. The model is an ℓ-by-Lrow matrix, where
Lrow = MAXL + 1 and MAXL is hypothetically the maxi-
mum size of a group. Lrow is equal to MAXL + 1 because
the first column stores the size of each group. In all the
experiments, MAXL is set to 10. In addition to the first
column, the i-th row of the model matrix stores the loci
inside groupi. We simultaneously initialize CCC for each
group and copy the selected population to GPU.

4.2.2 Memory space allocation

Following the design constraints discussed in Section 2.3,
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structure data type quantity cost (bytes)

unity table char 28 256
merged group model int Lrow 44

count array int 2MAXL
− 1 4092

Table 3: Memory costs except for the population in
the shared memory

the strategy of making the global memory coalesced is to
store data that might be accessed by the same warps of
threads to contiguous memory. Additionally, the strategy
of enhancing CGMA is to store those values that will be
frequently used to the shared memory. Consequently, pro-
cessing the global memory once can be applied to several
operations.

The overall allocation is listed in Table 2. In Table 2,
status array stores which group just being merged in the
previous step, and count array stores the number of occur-
rences of every schemata. The unity table is invariant and is
stored to the constant memory instead of the global memory.

In Table 2.3, the shared memory is 6KB per block under
full occupancy on a Tesla C2050 card, which means that
GPU can only afford 120 individuals for a 50-bit problem.
Even if we transform the population into an unsigned int
array, a block can only process 6000×64

8×50
= 960 individuals.

It is not enough to solve a GA-hard problem like trap [4].
Therefore, separating the population in the shared memory
is needed. In addition to the population, Table 3 lists the
memory costs required to store the other structures in the
shared memory. The sum is 4,392 bytes. As the result, we
still have (6, 000 − 4, 392) bytes per block, and the amount
is equal to 12,864 bits. Given a merged group, we only keep
the alleles in this group, and the quantity is not greater than
MAXL. The number of individuals a block can cover at once
is therefore derived as ⌊ 12,864

MAXL
⌋ = 1, 286. When comput-

ing CCC, every block sequentially iterates ⌈ population size

1,286
⌉

times to go over the entire population.

4.2.3 Tasks allocation

We partition the model-building process to coarse sub-
problems that are solved independently in parallel by blocks
of threads. We also partition each subproblem to finer pieces
that are solved cooperatively in parallel by all threads within
the block as the programming guide [16] suggests.

Each iteration of finding the group to merge greedily is
called a model-searching step. In every model-searching
step, a |g|-by-|g| grid which consists of thread blocks is
lunched, where |g| is the number of groups in the current
MPM model. The (x, y)-th block in the grid calculates CCC

of the merging group from groupi and groupj. Threads
within the block cooperatively finish the following tasks in
parallel:

1. Copy the entire unity table from the constant memory
to the shared memory.

2. Copy the loci in the merged group from the model
matrix in the global memory to the shared memory.

3. Initialize an array to store the distribution.
4. Copy alleles in these loci in the next 1,286 individuals

from the global memory to the shared memory.
5. Sequentially count each enumerated value in these in-

dividuals by FastCount.
6. Repeat Step 4 and 5 until the whole population is cov-

ered.

When the step of counting the occurrences of schemata is
done, one thread in the block calculates the resulting CCC

and updates the value to the cache matrix in the global
memory. After all the blocks finish updating the cache, the
cache matrix is copied back to CPU. The entire algorithm
is listed in Algorithm 2.

Algorithm 2: CUDA CCC kernel

1 Get the block coordinate (x, y) in the grid of threads
CUDA launch. The (x, y)-block in the grid is
responsible to calculate CCC for the merged group
groupxy from groupx and groupy.

2 tIdx← the index of the thread in the block.
3 L← (size of groupx + size of groupy)
4 if BorderCheck(x, y,L) = False then
5 return

6 CopyToShared(x, y,L, tIdx)
7 Synchronize threads in the block.
8 for each partition of population do
9 Parallely copy part of population from the global

memory to the shared memory.
10 Synchronize threads in the block.
11 Parallely count the occurrences of schemata in the

partition and store to distribution array.
12 Synchronize threads in the block.

13 if tIdx = 1 then
14 Calculate CCC from the distribution array and

store to cache.
15 ———————————————————————–
16 Function BorderCheck(x, y, L) begin
17 if (x ≥ y) ∨ groupx is deleted ∨ groupy is deleted

∨(L > MAXL) then
18 return False

19 else
20 return True

21 Function CopyToShared(x,y, L, tIdx) begin
22 Copy the tIdx element of the unity table from the

constant memory to the shared memory
23 if tIdx < L then
24 Copy the tIdx index in the groupxy from the

global memory to the shared memory

25 i← tIdx

26 for i < 2L do
27 i-th element of the distribution array ← zero

i← i+total thread number in the block

4.2.4 Update cache and model

The updating step is illustrated in Figure 4. Assume that
{1, 2, 3, 4} is the merged group which minimizes the descrip-
tion length of the model. Numbers in the braces represent
the loci in the group. The cache is updated by replac-
ing the merged group with the last group in the current
model. Steps (a) and (b) in the figure illustrate this goal.
In step (c), we need to update CCC of {1, 2, 3, 4} to the
(0, 0)-entry, which stores CCC of {1, 2} originally. When
updating the model matrix, the group with the greater in-
dex in the merged group appends to the one with the less
index, and the last row of the model replaces the row which

1201



Record 

CCC( {1234} )

Update 

Model

Update 

Cache

Cache
{12}{34}{56}{78}

{12}

{34} 

{56}

{78} A    B   C   D

E

F

G

(a) (b)

(c)

2   7   8   /    / … /

2   5   6   /    / … /

2   3   4   /    / … /

2   1   2   /    / … /

{1234}{34}{56}{78}

{1234}

{78} 

{56}
A    B    C   D

G

E

2   5   6   /    / … /

2   7   8   /    / … /

4   1   2   3   4 … /

{1234}{78}{56}

{1234}

{78} 

{56}
A    D   C 

G

E

Model

Figure 4: Update cache and model. The
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{{1, 2, 3, 4}, {5, 6}, {7, 8}}.

represents the merged group. The whole updating step is
completed in CPU.

4.3 GM Search: The Modified Model-
searching Algorithm

In the original ECGA, more than ℓ(ℓ−1)
2

CCC values are
calculated in every generation, where ℓ is the problem size.
However, for each model-searching step, only one CCC value
is utilized from the greedy process. Our method records a
group that minimizes the description length for each specific
group, instead of finding one among all pairwise candidates
greedily. After recording, pairs of groups merge only if they
are the best companions to minimize the description length
for each other. Therefore, we call this method the greedy
mating (GM) search. In each model-searching step, at most
half of the groups are merged to the other groups. As the
result, GM search needs fewer model-searching steps to find
the final model than the original greedy algorithm.

5. EXPERIMENTS
In this section, the hardware specification and general

experiment setting are first described. The speedup from
FastCount, gECGA and gECGA with GM search are then
shown. The scalability of our implementation is also dis-
cussed.

5.1 Hardware Specification
We conduct the experiments on a computer with an 8

cores Intel XEON W3530 CPU at 2.8 GHz, and a NVIDIA
Tesla C2050 GPU with 3 GB of DDR5 global memory. The
GPU card has 448 cores at 1.15GHz. Cores cluster to 14
SMs. The operating system is Gentoo with kernel version
3.4.9. The driver version is nvidia-drivers 295.71 with
CUDA toolkit 4.0.

5.2 General Experiment Setting
The baseline comparison is the implementation from

Lobo et al. [9] The test problem is the concatenated traps [4],
where the order is 5. The fitness function of each subprob-
lem is defined as

ftrap5(x) =

{

5 if x = 5
4− x otherwise.

(2)
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Figure 5: Speedup of FastCount on CPU is denoted
as spc, speedup of gECGA is denoted as spg, and
speedup between gECGA and FastCount on CPU
is denoted as spcg. For the notation after speedup,
(m) represents the duration for the entire model-
building process, and (w) represents the duration
for the whole ECGA process.

The test problem is called (m, k)-trap afterward, where m is
the number of subproblems, and k is the order of a subprob-
lem. The minimum population size required to correctly
solve at least m− 1 subproblems is obtained from the aver-
age over 30 independent bisection [18] runs, which is listed
in Table 5. For problems with ℓ greater than 350, we use
the theoretical values instead of running bisection method.
Tournament selection is used, and the selection pressure is
8. Previous population is fully replaced by the offspring.
The program terminates when all the individuals converge.
The unity table on CPU is for 16-bit binary string while
the unity table on GPU is for 8-bit binary string due to
the memory limit. We assume that the maximum size of a
group (MAXL) is 10, which is also applied to the baseline
implementation. Finally, the number of threads per block is
set to 256 in the entire experiment.

5.3 Speedups
We show the speedups in Figure 5. The speedup between

FastCount on CPU and baseline is defined as the ratio of
execution time of baseline over the execution time of Fast-
Count method on CPU, which is denoted as spc. Simi-
larly, spg denotes the speedup between gECGA and base-
line, which is defined as the ratio of execution time of base-
line over the execution time of gECGA. The speedup be-
tween gECGA and FastCount on CPU is denoted as spcg.
Two different execution periods are shown in Figure 5. The
first one is the speedup for model building, and the second
one is the speedup for the whole execution time to solve
the problem. Each point in the figure is an average over 30
independent runs.

Although FastCount speeds up the counting step, the
complexity of model building does not change. We still
need to calculate CCC from the resulting distribution after
FastCount. Consequently, the overall speedup from Fast-
Count is limited, which is shown as spc. The speedups from
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structure data type cost (byte)

entire population unsigned int 8(Nℓ

64
)

model matrix int 4ℓLrow

cache matrix int 4ℓ2

status array bool ℓ

Table 4: Global memory costs

0

0.2

0.4

0.6

0.8

1

1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

M
o
d
e
l
 
B
u
i
l
d
i
n
g
 
Q
u
a
l
i
t
y

Population Size

GM       (gen = 1)
GM       (gen = 3)
GM       (gen = 8)
greedy   (gen = 1)
greedy   (gen = 3)
greedy   (gen = 8)

(a) Model-building quality

0

0.2

0.4

0.6

0.8

1

1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

R
a
t
i
o
 
o
f
 
O
n
e
s
 
i
n
 
t
h
e
 
E
n
t
i
r
e
 
P
o
p
u
l
a
t
i
o
n

Population Size

GM       (gen = 1)
GM       (gen = 3)
GM       (gen = 8)
greedy   (gen = 1)
greedy   (gen = 3)
greedy   (gen = 8)

(b) Ratio of ones in the population

Figure 6: Model-building quality and ratio of ones
in the population for the original ECGA and ECGA
with GM search under different population size and
different generations (gen).

gECGA can be seen in spg and spcg. We show the speedup
on problems with ℓ up to 500.

Figure 5 shows that gECGA speeds up the model-building
process 482.28 times on 500-bit problem, which results to a
speedup of 358.97 times faster to solve the problem. The
corresponding spcg is 68.56, which means that the imple-
mentation for FastCount on CUDA is 68.56 times faster
than FastCount on CPU using single core.

5.4 Scalability
The only scalability constraint is that the memory which

the entire population occupies should be less than the global
memory. The shared memory is not a constraint in our im-
plementations. For a Tesla C2050 card, a CUDA program
can utilize at most 2.687 GBs of global memory. In Table 2,
four structures need to be copied to the global memory. As-
sume that the population size is N , and the problem size is
ℓ. The global memory costs are listed in Table 4. Using the
theoretical population size [22], one C2050 GPU card can
afford to solve a (2040, 5)-trap problem, where ℓ = 9, 800
and N = 1, 912, 315.

ℓ 50 100 150 200 250 300 350
greedy 2376 6670 11781 17160 21907 29890 36992
GM 2616 6670 12248 19008 24667 30530 39296

Table 5: Population size required to solve m−1 sub-
problems for ECGA with greedy search and ECGA
with GM search respectively.

5.5 Experiments of GM Search
The speedup of GM search is not shown in Figure 5 be-

cause we suspect that the model-building quality in the new
approach is lower than the original method. It is unfair to
compare the speedup between the two methods without dis-
cussing the model-building quality first. The model-building
quality is defined as the number of linkage group that is
completely identical with the definition of the subproblem
over the number of the subproblems. Figure 6(a) shows the
model-building quality under different population sizes and
different generations when solving a (10, 5)-trap. The third
generation is the generation that achieves the maximum av-
erage model quality. The eighth generation is the last gen-
eration that program terminates. The figure shows that the
overall model-building quality of ECGA with greedy search
is greater than with GM search except for the last genera-
tion. A possible reason is that the relation between genes
is hard to detect when the population is about to converge,
and the model-building quality therefore drops in the last
generations. Figure 6(b) presents the corresponding ratio of
ones in the population after selection. The figure indicates
that ECGA with greedy search converges earlier than with
GM search, and the model-building quality might therefore
drops more quickly.

Due to the loss of model-building quality, the minimum
population sizes required to solve the problems are greater,
which are listed in Table 5. The speedup from GM search
is shown in Figure 7. The population sizes for gECGA with
greedy search and gECGA with GM search are different.
Although gECGA with GM search needs larger population,
the execution time for gECGA with GM search is less than
gECGA with the original greedy search.

6. CONCLUSION
In this paper, two implementations were proposed to

speed up model building for ECGA. The first implemen-
tation was algorithmically identical with ECGA, but solved
the problem with a speedup of 358.97 compared with the
baseline implementation on a 500-bit trap problem with or-
der 5. The key was to utilize thread blocks in CUDA by
separating the model building in ECGA to coarse subprob-
lems that were solved independently in parallel by blocks
of threads. Furthermore, each subproblem was separated to
finer pieces so that it was solved cooperatively in parallel by
all threads within the block. On the basis of the first imple-
mentation, our second implementation modified the model
building in ECGA. The second implementation solved the
same problem with a speedup of 505.6 times faster com-
pared with the baseline. The two implementations scaled up
to 9,800-bit trap problem with order 5 on one single Tesla
C2050 GPU card.

EDAs have shown the ability to solve many complex prob-
lems, and GPUs solve massively parallel computation tasks
under relatively lower price than CPUs. To extend the ap-
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Figure 7: Speedup of gECGA is denoted as spg, and
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cess, and (w) represents the duration for the whole
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plicability of EDAs to large-scale problems, we believe that
EDA researchers need to bear in mind the utilization of GPU
features during their designs.
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The Bayesian optimization algorithm. Proceedings of
the Genetic and Evolutionary Computation
Conference (GECCO-1999), I:525–532, 1999.

[18] K. Sastry. Evaluation-relaxation schemes for genetic
and evolutionary algorithms. Master thesis, University
of Illinois at Urbana-Champaign, Urbana, IL, 2002.

[19] D. Thierens. Scalability problems of simple genetic
algorithms. Evolutionary computation, 7(4):331–352,
1999.
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