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a b s t r a c t

Biogeography-based optimization (BBO) is a new evolutionary algorithm inspired by biogeography,

which involves the study of the migration of biological species between habitats. Previous work has

shown that various migration models of BBO result in significant changes in performance. Sinusoidal

migration models have been shown to provide the best performance so far. Motivated by biogeography

theory and previous results, in this paper a generalized sinusoidal migration model curve is proposed. A

previously derived BBO Markov model is used to analyze the effect of migration models on

optimization performance, and new theoretical results which are confirmed with simulation results

are obtained. The results show that the generalized sinusoidal migration model is significantly better

than other models for simple but representative problems, including a unimodal one-max problem, a

multimodal problem, and a deceptive problem. In addition, performance comparison is further

investigated through 23 benchmark functions with a wide range of dimensions and diverse complex-

ities, to verify the superiority of the generalized sinusoidal migration model.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Mathematical models of biogeography describe the immigra-
tion and emigration of species between habitats. Biogeography-
based optimization (BBO) was first presented in 2008 (Simon,
2008) and is an extension of biogeography theory to evolutionary
algorithms (EAs). BBO has demonstrated good performance on
various unconstrained and constrained benchmark functions
(Du et al., 2009; Ergezer et al., 2009; Ma and Simon, 2010). It
has also been applied to real-world optimization problems,
including sensor selection (Simon, 2008), groundwater detection
(Kundra et al., 2009), satellite image classification (Panchal et al.,
2009), and power system optimization (Rarick et al., 2009). See
reference Gardner and Simon (2009) for a web-based BBO
graphical user interface. Like other EAs (Ahn, 2006; Schwefel,
1995; Yao et al., 1999), BBO is based on the idea of probabil-
istically sharing information between candidate solutions based
on their fitness values. In BBO, each solution is comprised of a set
of features. Each solution immigrates features from other solu-
tions based on its immigration rate, and emigrates features to
other solutions based on its emigration rate. In the original BBO
ll rights reserved.
paper (Simon, 2008), a linear migration model is used for the sake
of simplicity. In Ma (2010) and Ma et al. (2009) more complicated
and life-like migration models are presented to give better
optimization results. These research provided empirical evidence
of the potential benefit of alternative migration models of BBO.
However, as with most other EAs, there are limited theoretical
results for BBO.

Markov models have been a valuable theoretical tool to
analyze EAs, including simple genetic algorithms (Davis and
Principe, 1993; Nix and Vose, 1992; Reeves and Rowe, 2003;
Suzuki, 1995, 1998) and simulated annealing (Lundy and Mees,
1986). Markov models have already been derived for BBO (Simon
et al., 2009, 2010), along with Markov model comparisons
between BBO and genetic algorithms (Simon et al., 2011). A
Markov chain is a random process, which has a discrete set of
possible state values si (i¼1,2, y , T). The probability that the
system transitions from state si to sj is given by the probability pij,
which is called a transition probability. The T� T matrix P¼[pij] is
called the transition matrix. A Markov state in Simon et al. (2010)
represents a BBO population distribution. Each state describes
how many individuals at each point of the search-space are there
in the population. Probability pij is the probability that the
population transitions from the ith population distribution to
the jth population distribution in one generation. Although the
BBO Markov model is established and some useful results are
obtained, there have not been any reports in the literature to

www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2011.04.012
mailto:Mahp@usx.edu.cn
mailto:d.j.simon@csuohio.edu
dx.doi.org/10.1016/j.engappai.2011.04.012


Table 1
One generation of the BBO algorithm. y is the entire population of candidate

solutions, yk is the kth candidate solution, and yk(s) is the sth feature of yk.

For each solution yk, define emigration rate mk proportional to fitness

of yk, mk A [0,1]

For each solution yk, define immigration rate lk inversely proportional to

fitness of yk, lk A [0,1]

z’y

For each solutionz
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analyze the influence of migration models based on Markov
theory. This paper uses Markov models to study the effect of
migration models on the performance of BBO.

Section 2 gives an introduction to BBO, provides its Markov
chain model and presents a new generalized sinusoidal migration
model. Section 3 compares various migration models based on
the Markov chain model and simulation results. Some concluding
remarks and directions for future work are provided in Section 4.
k

For each solution feature s

Use lk to probabilistically decide whether to immigrate to zk

If immigrating then

Use {mj} to probabilitically select the emigrating solution yj

zk(s) ’yj(s)

End if

Probabilitically decide whether to mutate zk(s)

Next solution feature

Next solution

y’z
2. Markov chains for biogeography-based optimization

This section presents an overview of the BBO algorithm
(Section 2.1), provides its Markov chain model (Section 2.2), and
discusses different migration models of BBO (Section 2.3).

2.1. Biogeography-based optimization

In this section a general presentation of the BBO algorithm is
given. Consider an optimization problem with a certain number of
candidate solutions. A good solution is analogous to a habitat
with a high habitat suitability index (HSI). This corresponds to a
geographical area that is well suited for hosting biological species
in biogeography. In optimization problems, HSI corresponds to a
measure of the goodness of a BBO solution, which is also called
fitness. In the following text the term fitness instead of HSI is used
to be consistent with standard EA notation. A poor solution is like
a habitat with a low fitness. High fitness solutions correspond to
habitats with a large number of species, and low fitness solutions
correspond to habitats with a small number of species. High
fitness solutions are more likely to share their features with other
solutions, and low fitness solutions are more likely to accept
shared features from other solutions. This approach to solve
general optimization problems is called biogeography-based
optimization (BBO). Similar to all other EAs, BBO consists of two
main steps: information sharing (which is implemented with
migration in BBO) and mutation.

Migration is a probabilistic operator that improves a candi-
date solution yk. The migration rates of each solution are used to
probabilistically share features between solutions. For each solu-
tion yk, the immigration rate lk is used to probabilistically decide
whether or not to immigrate. If immigration is selected, then the
emigrating solution yj is selected probabilistically based on the
emigration rate mj. Migration is denoted by

ykðsÞ’yjðsÞ ð1Þ

where s is a solution feature, equivalent to a gene in GAs. Here,
immigration rate l and emigration rate m are based on a
particular migration model, such as the linear model presented
in Simon (2008). Additional details about migration models are
discussed in Section 2.2.

Mutation is a probabilistic operator that randomly modifies a
solution feature. The purpose of mutation is to increase diversity
among the population. For low fitness solutions, mutation gives
them a chance of enhancing the quality of solutions, and for high
fitness solutions, mutation is able to improve them even more
than they already have.

A description of one generation of BBO is given in Table 1.
Migration and mutation of the entire population take place before
any of the solutions are replaced in the population, which
requires the use of the temporary population z in the algorithm.

2.2. Markov chain model

In Simon et al. (2010) a BBO Markov chain model is derived.
This subsection reviews this Markov model. A Markov model of
BBO provides the probability pij of transitioning from the ith
population distribution to the jth population distribution. In BBO,
two main steps, migration and mutation, are significant, which
indicate that the transition probability includes the migration
probability and the mutation probability for one generation.

Consider a problem whose solutions are in a binary search
space. The set of candidate solutions is the set of all bit strings xi

consisting of q bits each. Therefore, the cardinality of the search
space is n ¼2q. Use N to denote the population size, and use v to
denote the population vector, where the component vi is the
number of candidate solutions xi in the population. Use yk to
denote the kth individual in the population, and use s to denote
the sth feature of a solution. According to Simon et al. (2010), the
migration probability during generation t, which results in an
individual at generation tþ1, is the following:

Prðyk,tþ1ðsÞ ¼ xiðsÞÞ

¼ Prðno imigration to yk,tÞPrðyk,tþ1ðsÞ ¼ xiðsÞ9no immigrationÞ

þPrðimmigration to yk,tÞPrðyk,tþ1ðsÞ ¼ xiðsÞ9immigrationÞ

¼ ð1�lmðkÞÞ10ðxmðkÞðsÞ�xiðsÞÞþlmðkÞ

P
jABiðsÞ

vjmjPn
j ¼ 1 vjmj

ð2Þ

where 10 is the indicator function on the set {0}, and

yk ¼ xmðkÞ for k¼ 1,. . .,N ð3Þ

where m(k) is defined as

mðkÞ ¼min r such that
Xr

i ¼ 1

viZk ð4Þ

The notation BiðsÞ denotes the set of population indices j such that
the sth bit of xj is equal to the sth bit of xi. That is

BiðsÞ ¼ fj : xjðsÞ ¼ xiðsÞg ð5Þ

In fact, from (2) the total migration probability includes two parts:
the probability that immigration did not occur and the probability
that immigration occurred. When yk(s) does not change from
generation t to generation tþ1, that is, the sth feature of yk is not
selected for immigration during generation t, then

ykðsÞtþ1 ¼ xmðkÞðsÞ ðno imigration to yk,tÞ ð6Þ

When the sth feature of yk is selected for immigration during
generation t, the probability that yk(s)tþ1 is equal to xi(s) is
proportional to the combined emigration rates of all individuals
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Fig. 1. Four migration model curves, where (a)–(d) respectively denote the linear

migration curve, quadratic migration curve, sinusoidal migration curve, and

generalized sinusoidal migration curve, respectively. l is immigration rate and m
is emigration rate, and it is assumed that the maximum immigration rate and

maximum emigration rate are both equal to 1.
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whose sth feature is equal to xi(s). This probability can be written as

PrimmðykðsÞtþ1 ¼ xiðsÞÞ ¼

P
jABiðsÞ

vjmjPn
j ¼ 1 vjmj

ðimmigration to yk,tÞ ð7Þ

Eqs. (6) and (7) are combined with the fact that the probability of
immigration to yk(s) is equal to lk to obtain (2).

For q bits in each solution, Pki(v) denotes the probability that
immigration results in yk¼xi, given that the population distribu-
tion is equal to v, which can be written as

PkiðvÞ ¼ Prðyk,tþ1 ¼ xiÞ

¼
Yq

s ¼ 1

ð1�lmðkÞÞ10ðxmðkÞðsÞ�xiðsÞÞþlmðkÞ

P
jABi sð ÞvjmjPn
j ¼ 1 vjmj

" #
ð8Þ

Note that the kth row of P(v) corresponds to the kth iteration of
the outer loop in Table 1 (there are N iterations of the outer loop
in Table 1). The ith column of P(v) corresponds to the probability
of obtaining island xi during each outer loop iteration; that is, Pki(v)
means the probability of the ith outcome on the kth migration trial.

In (8) only migration is calculated. Mutation probability needs
to be included after migration is completed. Use U to denote the
n�n mutation matrix, where Uij is the probability that xj mutates
to xi. The probability that the kth immigration trial followed by
mutation results in xi is denoted as Pð2Þki ðvÞ. This can be written as

Pð2Þki ðvÞ ¼
Xn

j ¼ 1

UijPkjðvÞ

Pð2ÞðvÞ ¼ PðvÞUT ð9Þ

where the elements of P(v) are given in (8). P(2)(v) contains the
probabilities when both migration and mutation are considered.
Define u as the population vector after migration and mutation
are completed, where the component ui is the number of solu-
tions xi in the population. Then the transition probability Pr(u9v)
where population vector u is obtained after one generation, given
that the population vector is v at the beginning of the generation,
can be obtained as

Prðu9vÞ ¼
P

JAY

YN
k ¼ 1

Yn

i ¼ 1

½Pð2Þki ðvÞ�
Jki ,

Y ¼ JARN�n : JkiAf0,1g,
Xn

i ¼ 1

Jki ¼ 1 for all k,
XN

k ¼ 1

Jki ¼ ui for all i

( )

ð10Þ

Eq. (10) can be used to find the transition matrix for BBO with
migration and mutation. In order to find the probability that the
BBO population transitions from v to u after one generation, find
all of the J matrices that satisfy the condition of (10). For each of
these J matrices, compute the product of products given in (10).
Then add up all the product-of-products to obtain the desired
probability. The Markov transition matrix Q is obtained by
computing (10) for each possible v and each possible u. The
element Qij will give the probability of transitioning from popula-
tion vector v to u after one generation. Note the matrix Q is a T� T

matrix, where T is the total number of possible populations,
which can be calculated by several different methods, as dis-
cussed in Simon et al. (2010). Once the transition matrix Q is
calculated, a wealth of Markov tools (Grinstead and Snell, 1997)
can be applied to the transition matrix to find statistical proper-
ties of BBO, including the limiting probability of each possible
BBO population, and population distributions of different BBO
migration models. This is discussed further in Section 3.

2.3. Migration models

According to different mathematical models of biogeography
(Lomolino et al., 2009; Whittaker, 1998), various migration model
curves can be obtained. In Ma (2010), the influences of six
representative migration model curves on optimization perfor-
mance are explored, based on empirical experiments, including
three linear curves and three nonlinear curves. In this paper, the
Markov model discussed above is used to verify the effect of
migration curves on BBO. The three best migration models in Ma
(2010) are used here, namely, the linear migration model, quadratic
migration model, and sinusoidal migration model. In addition, a new
model is introduced here, which is called the generalized sinusoidal
migration model. The curves of these four models are shown in
Fig. 1, where Fig. 1(a)–(d) respectively denote the linear migration
curve, quadratic migration curve, sinusoidal migration curve, and
generalized sinusoidal migration curve. In Fig. 1, l denotes immi-
gration rate and m denotes emigration rate, and it is assumed that
the maximum immigration rate and maximum emigration rate are
both equal to 1. This subsection first reviews the previously
proposed migration models, then discusses the generalized sinusoi-
dal migration model.

According to Simon et al. (2010), the linear migration model is
given as follows

l¼ 1�fitness

m¼ fitness ð11Þ

where fitness denotes solution fitness, and is normalized to the
range [0,1]. This model was first presented in the original BBO
paper (Simon, 2008). It means that immigration rate l and
emigration rate m are linear functions of solution fitness. This is
illustrated by Fig. 1(a). The linear migration model does not exist
in natural biogeography. Nevertheless this model exhibits fea-
tures and properties of the process of migration that are much
simpler than the general, nonlinear case.

The second model is the quadratic migration model, which is

l¼ ð1�fitnessÞ2

m¼ ðfitnessÞ2 ð12Þ

where migration rate l and m are concave quadratic functions of
solution fitness, and where fitness is again normalized to the range
[0,1]. This is illustrated by Fig. 1(b). This model is inspired by island
biogeography, which is developed to explain the species distribution
of biological habitats. Based on an experimentally tested theory of
island biogeography (Whittaker, 1998), we know that migration in a
single habitat follows a quadratic function of the size of the habitat
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and geographical proximity to other habitats. According to (12),
when solution fitness is small, immigration rate rapidly decreases
from its maximum while emigration rate slowly increases from zero.
When solution fitness is large, immigration rate gradually decreases
to zero and emigration rate rapidly increases to its maximum.

The sinusoidal migration model is given by

l¼ 1
2 ðcosðfitness� pÞþ1Þ

m¼ 1

2
ð�cosðfitness� pÞþ1Þ ð13Þ

where migration rate l and m are sinusoidal functions of solution
fitness, and where fitness is again normalized to the range [0,1]. This
model describes the migration curves to take into account species
mobility, the evolution of particular species, and population size.
These factors make the migration curves look like sinusoids. This is
illustrated by Fig. 1(c). Based on (13), when solution fitness is small
or large, immigration rate and emigration rate both change slowly
from their extremes, and when solution fitness is medium, the
migration rates change rapidly from their intersection.

Classical island biogeography theory indicates that the immigra-
tion rate decreases and emigration rate increases as the number of
species increases in a habitat. In BBO this corresponds to a mono-
tonic decrease in immigration rate and a monotonic increase in
emigration rate as solution fitness increases, as shown in the
previous three migration models, although their curve shapes are
different. This means that as a solution becomes more fit, the
probability of incorporating features from other solutions decreases.
However, recent advances in biogeography indicate that for some
pioneer species, at least for plants, an initial increase in species
count results in an initial increase in immigration rate and an initial
decrease in emigration rate (Lomolino et al., 2009; Whittaker, 1998).
This is because the original unfavorable environmental conditions of
the island are ameliorated by the first colonists, which make it more
hospitable to additional species. That is, the positive effect of
increased diversity due to initial immigration overcomes the nega-
tive effect of increased population size. In BBO this would corre-
spond to an initial increase in immigration rate as a very poor
candidate solution initially improves its fitness. This can be viewed
as a temporary positive feedback mechanism in BBO. A very poor
candidate solution accepts features from other solutions, increasing
its fitness, which subsequently increases its likelihood of accepting
even more features from other solutions. This idea can be incorpo-
rated into other EAs (Mühlenbein and Schlierkamp-Voosen, 1993)
also, but its initial motivation comes from biogeography. This is
depicted in Fig. 1(d), and is expressed as

l¼ 1
2 ðcosðfitness� pþbÞþ1Þ

m¼ 1

2
ð�cosðfitness� pþbÞþ1Þ ð14Þ
Table 2

Optimization results of the generalized sinusoidal migration model for unimodal one-m

of obtaining an all-optimal population and the probabilities of obtaining a no-optimal po

bold font in each row.

Mutation

rate

Population

vector

Probability

b¼0 b¼�p/4

Markov Simulation Markov S

0.1 All optimal 0.0456 0.0455 0.0475 0

No optimal 0.1994 0.1872 0.1975 0

0.01 All optimal 0.6076 0.6008 0.6205 0

No optimal 0.0367 0.0351 0.0314 0

0.001 All optimal 0.9062 0.9094 0.9335 0

No optimal 0.0151 0.0147 0.0112 0
where b is a negative trigonometric offset angle (typically between
�p/2 and 0), but in BBO, it denotes the degree of temporary positive
immigration rate feedback. With this model, fitness is normalized to
[0, 1�b/p]. This is called the generalized sinusoidal migration
model. This proposed model shows that immigration initially
increases with solution fitness. It gives improving solutions the
momentum that they need to continue improving. As a solution
continues to become fitter after the initial increase in immigration,
immigration begins to decrease to give less fit solutions relatively
greater opportunities to immigrate good solution features.
3. Result comparisons

This section first investigates the effect of the parameter b in
the generalized sinusoidal migration model (Section 3.1), then
compares the performance of the four migration models proposed
in Section 2.3 using the BBO Markov chain model (Section 3.2),
and finally compares the generalized sinusoidal migration model
with the regular sinusoidal migration model using 23 benchmark
testing functions (Section 3.3).

3.1. Generalized sinusoidal migration model: effect of the parameter b

In the first experiment the effect of the parameter b, which is
the degree of temporary positive immigration rate feedback in the
generalized sinusoidal migration model, is investigated. The
limiting population distribution of the generalized sinusoidal
migration model of BBO is given in Eq. (10). This is the probability,
in the limit as the generation count approaches infinity, that the
BBO population consists of any particular set of individuals. Test
functions are limited to three-bit problems with a search space
cardinality of eight and a population size of four, due to the
exponential increase of Markov matrix sizes with problem size.
Three fitness functions are investigated, which are given as

f1 ¼ 1 2 3 4 5 6 7 8
� �

f2 ¼ 1 2 3 2 1 2 3 2
� �

f3 ¼ 5 2 2 3 2 3 3 4
� �

ð15Þ

where f1 is an unimodal one-max problem, f2 is a multimodal
problem, and f3 is a deceptive problem. Fitness values are listed in
binary order, so the first element of each fitness function
corresponds to the bit string 000, the second element corresponds
to the bit string 001, and so on.

The parameter b¼0, �p/4, �p/3, and �p/2 in Eq. (14) is used to
investigate its influence on performance of the generalized sinusoidal
migration model. In addition, simulation experiments are used to
confirm the results. The other parameters of BBO are recommended
as follows: population size of 50, maximum immigration rate and
ax problem f1 when b¼0, �p/4, �p/3, and �p/2. The table shows the probabilities

pulation using the BBO Markov model and simulations. The best performance is in

b¼�p/3 b¼�p/2

imulation Markov Simulation Markov Simulation

.0483 0.0526 0.0545 0.1001 0.1024

.1817 0.1756 0.1703 0.1542 0.1517

.6260 0.6542 0.6618 0.7354 0.7361

.0306 0.0376 0.0371 0.0394 0.0317

.9327 0.9363 0.9368 0.9456 0.9513

.0105 0.0102 0.0099 0.0103 0.0158



Table 3

Optimization results of the generalized sinusoidal migration model for multimodal problem f2 when b¼0, �p/4, �p/3, and �p/2. The table shows the probabilities of

obtaining an all-optimal population and the probabilities of obtaining a no-optimal population using the BBO Markov model and simulations. The best performance is in

bold font in each row.

Mutation

rate

Population

vector

Probability

b¼0 b¼�p/4 b¼�p/3 b¼�p/2

Markov Simulation Markov Simulation Markov Simulation Markov Simulation

0.1 All optimal 0.2414 0.2419 0.2522 0.2592 0.2790 0.2716 0.2941 0.2824
No optimal 0.1519 0.1433 0.1507 0.1578 0.1175 0.1214 0.1483 0.1311

0.01 All optimal 0.8584 0.8415 0.8774 0.8613 0.8806 0.8893 0.8972 0.9022
No optimal 0.0241 0.0257 0.0213 0.0227 0.0199 0.0190 0.0287 0.0281

0.001 All optimal 0.9627 0.9617 0.9526 0.9604 0.9637 0.9619 0.9834 0.9712
No optimal 0.0216 0.0244 0.0193 0.0187 0.0142 0.0153 0.0087 0.0090

Table 4

Optimization results of the generalized sinusoidal migration model for deceptive problem f3 when b¼0, �p/4, �p/3, and �p/2. The table shows the probabilities of

obtaining an all-optimal population and the probabilities of obtaining a no-optimal population using the BBO Markov model and simulations. The best performance is in

bold font in each row.

Mutation

rate

Population

vector

Probability

b¼0 b¼�p/4 b¼�p/3 b¼�p/2

Markov Simulation Markov Simulation Markov Simulation Markov Simulation

0.1 All optimal 0.0714 0.0709 0.0866 0.0812 0.0890 0.0901 0.1127 0.1072
No optimal 0.4821 0.4894 0.4648 0.4607 0.4321 0.4294 0.4078 0.4007

0.01 All optimal 0.7479 0.7422 0.7609 0.7745 0.7879 0.7822 0.8115 0.8110
No optimal 0.1119 0.1214 0.1105 0.1184 0.1006 0.1034 0.0941 0.0935

0.001 All optimal 0.9224 0.9251 0.9164 0.9275 0.9312 0.9381 0.9689 0.9548
No optimal 0.0322 0.0317 0.0267 0.0271 0.0204 0.0253 0.0186 0.0177
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maximum emigration rate of 1, mutation rates of 0.1, 0.01, and 0.001
per bit per generation, generation count of 20,000, and 100 Monte
Carlo runs for each function. Tables 2–4 show comparisons between
theoretical (Markov) and simulation results of the generalized
sinusoidal migration model with different values of b. The tables
show the probability of obtaining a population in which all indivi-
duals are optimal, and the probability of obtaining a population in
which no individuals are optimal. The mutation rates shown in
Tables 2–4 are applied to each bit in each individual at each
generation.

Several things are notable about the results in Tables 2–4. First,
the mutation rate affects the performance of the generalized
sinusoidal migration model. For three different test problems,
the performance of the generalized sinusoidal migration model
improves as the mutation rate decreases; that is, the probability
of obtaining a population in which all individuals are optimal
increases, and the probability of obtaining a population in which
no individuals are optimal decreases. A high mutation rate of
0.1 per bit results in too much exploration, so the probability of
obtaining the optimal population is low. However, as the muta-
tion rate decreases to the values of 0.01 and 0.001, the probability
of obtaining the optimal population significantly increases.

Second, when the parameter b¼�p/2, the generalized sinu-
soidal migration model performs the best on all three test
problems for most cases. For example, for the unimodal one-
max problem (Table 2), the best performance is obtained by the
generalized sinusoidal migration model with the parameter
b¼�p/2 and a mutation rate of 0.001 in its high probability of
obtaining a population with all optimal individuals (94.6%), and in
its low probability of obtaining a population with no optimal
individuals (1.0%). When the parameter b¼0, �p/4, and �p/3,
the probabilities are 90.6%, 93.3%, and 93.6%, respectively, for
obtaining a population with all optimal individuals, and 1.5%,
1.1%, and 1.0%, respectively, for obtaining a population with no
optimal individuals. This indicates that the value of parameter b
can significantly affect the performance of the generalized sinu-
soidal migration model.

Third, from Tables 2–4, the Markov model results and the
simulation results match well for all test problems, which con-
firms the Markov theory, and verifies the significance of para-
meter b for the generalized sinusoidal migration model.

Fig. 2 shows the probability of obtaining an all-optimal
population for the generalized sinusoidal migration model for
the unimodal one-max problem when the parameter b¼0, �p/4,
�p/3 and �p/2, and when the mutation rate is 1% per bit. It is
seen that the results agree with Table 2, providing further
confirmation of the Markov theory results.

3.2. Theoretical comparison of migration models

The next experiment investigates the effect of migration
models on BBO performance using the BBO Markov chain model.
The limiting population distribution of BBO with the four migra-
tion models proposed in Section 2.3 is compared using Eq. (10).
Test functions and the parameters used in this experiment are the
same as those described in the previous section. For the general-
ized sinusoidal migration model, b¼�p/2, which provides the
best performance based on the results in the previous section
(when b¼0, the generalized sinusoidal migration model reduces
to the regular sinusoidal migration model). Tables 5–7 show
comparisons between theoretical and simulated BBO with the
four proposed migration models.
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From Tables 5–7, first, the mutation rate affects the perfor-
mance of BBO for all four migration models, which is similar
to the results discussed in the previous section. Second, the
generalized sinusoidal migration model performs better than
the other three migration models for most cases. For example,
for the deceptive problem (Table 7), the best performance is
obtained by the generalized sinusoidal migration model with a
mutation rate of 0.001 in its high probability of obtaining a
Table 5
Optimization results of four migration models for unimodal one-max problem f1. Th

probabilities of obtaining a no-optimal population using the BBO Markov model and s

Mutation

rate

Population

vector

Probability

Linear model Quadratic model

Markov Simulation Markov S

0.1 All optimal 0.0257 0.0214 0.0363 0

No optimal 0.2738 0.2709 0.2117 0

0.01 All optimal 0.5049 0.5146 0.5529 0

No optimal 0.1004 0.1097 0.0416 0

0.001 All optimal 0.8676 0.8504 0.9309 0

No optimal 0.0761 0.0755 0.0395 0
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Fig. 2. Simulation results obtained by the parameter b¼0, �p/4, �p/3 and �p/2

for the generalized sinusoidal migration model for a three-bit unimodal optimiza-

tion problem with a mutation rate of 1% per bit. The figure shows the cumulative

percent of obtaining an all-optimal population.

Table 6
Optimization results of four migration models for multimodal problem f2. The table sho

obtaining a no-optimal population using the BBO Markov model and simulations. The

Mutation

rate

Population

vector

Probability

Linear model Quadratic model

Markov Simulation Markov S

0.1 All optimal 0.1203 0.1231 0.2078 0

No optimal 0.1827 0.1759 0.2173 0

0.01 All optimal 0.7760 0.7767 0.8311 0

No optimal 0.0515 0.0438 0.0354 0

0.001 All optimal 0.9154 0.9212 0.9318 0

No optimal 0.0355 0.0541 0.0274 0
population with all optimal individuals (96.9%), and in its low
probability of obtaining a population with no optimal individuals
(1.9%). The probabilities of linear model, quadratic model, and
sinusoidal model are 90.7%, 91.9%, and 92.2%, respectively, for
obtaining a population with all optimal individuals, and 7.3%,
6.0%, and 3.2%, respectively, for obtaining a population with no
optimal individuals. Third, the Markov theory results are con-
firmed by the simulation results.

Tables 5–7 indicate that changing the migration model curve
can provide a valuable approach for enhancing BBO. From Tables
5–7, we further see that the nonlinear migration models (quad-
ratic, sinusoidal, and generalized sinusoidal) are better than the
linear migration model with different mutation rates for all test
problems. Such results are similar to those reported in previous
work (Ma, 2010). This confirms that when BBO migration model
curves are closer to migration characteristics in nature, such as
the generalized sinusoidal migration model, optimization perfor-
mance is better.
3.3. Empirical comparison with sinusoidal migration model

To confirm the performance of the proposed generalized
sinusoidal migration model, it is compared with the regular
sinusoidal migration model using 23 benchmark functions, which
are chosen from Hedar and Fukushima (2003). These functions
are briefly summarized in Table 8. A more detailed description of
these functions can be found in the literature (Yao et al., 1999),
where functions f01–f07 are high-dimensional and unimodal,
functions f08–f13 are high-dimensional and multimodal with
many local minima, and functions f14–f23 are low-dimensional
with only a few local minima. For both migration models, the
e table shows the probabilities of obtaining an all-optimal population and the

imulations. The best performance is in bold font in each row.

Sinusoidal model Generalized model

imulation Markov Simulation Markov Simulation

.0360 0.0456 0.0455 0.1001 0.1024

.2108 0.1994 0.1872 0.1542 0.1517

.5621 0.6076 0.6008 0.7354 0.7361

.0411 0.0367 0.0351 0.0394 0.0317

.9274 0.9062 0.9094 0.9456 0.9513

.0356 0.0151 0.0147 0.0103 0.0158

ws the probabilities of obtaining an all-optimal population and the probabilities of

best performance is in bold font in each row.

Sinusoidal model Generalized model

imulation Markov Simulation Markov Simulation

.2166 0.2414 0.2419 0.2941 0.2824

.2078 0.1519 0.1433 0.1175 0.1214

.8246 0.8584 0.8415 0.8972 0.9022

.0251 0.0241 0.0257 0.0287 0.0281

.9412 0.9627 0.9617 0.9834 0.9712

.0264 0.0216 0.0244 0.0087 0.0090



Table 8
Benchmark functions. More details about these functions can be found in Yao. et al. (1999).

Function Name Dimension Domain Minimum

f01 Sphere model 30 �100rxi r100 0

f02 Schwefel’s problem 2.22 30 �10rxi r10 0.

f03 Schwefel’s problem 1.2 30 �100rxi r100 0

f04 Schwefel’s problem 2.21 30 �100rxi r100 0

f05 Generalized Rosenbrock’s function 30 �30rxi r30 0

f06 Step function 30 �100rxi r100 0

f07 Quartic function 30 �1:28rxi r1:28 0

f08 Generalized Schwefel’s problem 2.26 30 �500rxi r500 �12569.5

f09 Generalized Rastrigin’s function 30 �5:12rxi r5:12 0

f10 Ackley’s function 30 �32rxi r32 0

f11 Generalized Griewank’s function 30 �600rxi r600 0

f12 Generalized Penalized function 1 30 �50rxi r50 0

f13 Generalized Penalized function 2 30 �50rxi r50 0

f14 Shekel’s Foxholes function 2 �65:536rxi r65:536 1

f15 Kowalik’s function 4 �5rxi r5 0.003075

f16 Six-Hump Camel-Back function 2 �5rxi r5 �1.0316285

f17 Branin’s function 2 �5rx1 r10, 0rx2 r15, 0.398

f18 Goldstein-Price’s function 2 �2rxi r2 3

f19 Hartman’s function 1 3 0rxi r1 �3.86

f20 Hartman’s function 2 6 0rxi r1 �3.32

f21 Shekel’s function 1 1 0rxi r10 �10.1532

f22 Shekel’s function 2 1 0rxi r10 �10.4029

f23 Shekel’s function 3 1 0rxi r10 �10.5364

Table 7
Optimization results of four migration models for deceptive problem f3. The table shows the probabilities of obtaining an all-optimal population and the probabilities of

obtaining a no-optimal population using the BBO Markov model and simulations. The best performance is in bold font in each row.

Mutation

rate

Population

vector

Probability

Linear model Quadratic model Sinusoidal model Generalized model

Markov Simulation Markov Simulation Markov Simulation Markov Simulation

0.1 All optimal 0.0145 0.0144 0.0334 0.0332 0.0714 0.0709 0.1127 0.1072
No optimal 0.7954 0.8012 0.5048 0.5007 0.4821 0.4894 0.4078 0.4007

0.01 All optimal 0.6407 0.6513 0.7009 0.7145 0.7479 0.7422 0.8115 0.8110
No optimal 0.1921 0.1825 0.1193 0.0987 0.1119 0.1214 0.0941 0.0935

0.001 All optimal 0.9074 0.9017 0.9194 0.9152 0.9224 0.9251 0.9689 0.9548
No optimal 0.0733 0.0691 0.0597 0.0590 0.0322 0.0317 0.0186 0.0177
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following parameters of BBO have to be examined: population
size, maximum migration rates, and mutation rate. In the litera-
ture (Ma, 2010) these parameters have been discussed in detailed.
This paper uses a reasonable set of tuning parameters, but does
not make any effort in finding the best parameter settings. For
this experiment, the parameters of BBO used in the two migration
models are the same: population size of 50, maximum immigra-
tion rate and maximum emigration rate of 1, mutation rate of
0.01 per bit per generation, generation limit of 20,000 for f01–f13,
and 1000 for f14–f23, and 30 Monte Carlo runs. In addition,
b¼�p/2 for the generalized sinusoidal migration model.

Table 9 summarizes the performance on 23 benchmark func-
tions for the generalized sinusoidal migration model and the
regular sinusoidal migration model. It is apparent that the
generalized sinusoidal migration model performs significantly
better than the regular sinusoidal migration model in terms of
the final results for the most functions. The generalized sinusoidal
migration model performs the best on 16 functions, and the
regular sinusoidal migration model performs the best on four
functions (f06, f12, f17, f23). For functions f14, f19, f20, both
models attain the global optimum.
Table 9 also indicates statistically significant differences of the
two models based on the p value, which is the probability that the
two sets of data come from the same distribution. From p value
comparison between the generalized sinusoidal migration model
and the regular sinusoidal migration model, there are 17 p values
smaller than 0.05 (which is often used as the significance level or
critical p value). Based on this result, the probability that two
models are from the same distribution is low. It indicates that the
parameter b is influential on BBO performance. Furthermore, the
generalized sinusoidal migration model generally outperforms
the regular sinusoidal migration model, which indicates that the
parameter b, which is the degree of temporary positive immigra-
tion rate feedback in the generalized sinusoidal migration model,
contributes to improve the optimization ability of BBO. Finally,
note that the benchmark functions outperformed by the general-
ized sinusoidal migration model include high-dimensional and
unimodal functions, high-dimensional and multimodal functions
with many local minima, and low-dimensional functions with
only a few local minima. Therefore, the type of benchmark
function is not of importance for successful optimization using
the generalized sinusoidal migration model.



Table 9
Comparison of experimental results over 30 Monte Carlo runs of the generalized sinusoidal migration model and the regular sinusoidal migration model. The table shows

the best, mean and its standard deviation. The p value for each benchmark gives the probability that the two sets of results come from the same distribution. Best results

for each benchmark function are shown in bold font.

Fun. BBO p value

Sinusoidal model Generalized model

Best Mean Stdev Best Mean Stdev

f01 2.17E�02 6.38E�02 5.46E�03 9.55E�04 8.24E�03 9.78E�04 8.24E�03

f02 1.84E�04 8.03E�04 3.84E�04 1.22E�04 1.47E�04 4.86E�05 0.47

f03 6.33E�02 8.31E�02 1.17E�02 2.71E�03 3.08E�03 5.71E�04 0.03

f04 5.68E�15 5.34E�14 2.54E�15 5.36E�15 4.64E�14 1.07E�15 0.16

f05 9.24E�01 3.47Eþ00 4.33E�01 6.54E�01 9.36E�01 2.44E�01 0.08

f06 0.00Eþ00 0.00Eþ00 0.00Eþ00 1.16E�15 8.21E�15 1.83E�16 7.19E�04

f07 1.37E�15 2.36E�15 1.96E�16 0.00Eþ00 0.00Eþ00 0.00Eþ00 6.58E�04

f08 2.63E�06 5.08E�06 2.74E�06 6.85E�09 9.38E�09 4.76E�10 1.28E�03

f09 1.55E�03 1.21E�02 3.78E�03 1.15E�04 4.38E�04 9.33E�05 0.01

f10 2.54E�01 9.71E�01 7.16E�02 1.14E�03 2.54E�03 8.25E�04 5.32E�03

f11 7.49E�01 1.97Eþ00 9.33E�01 2.55E�01 3.65E�01 1.72E�02 0.03

f12 2.26E�30 4.11E�30 8.45E�31 3.74E�25 7.81E�25 5.38E�26 9.21E�04

f13 1.28E�10 7.36E�10 6.32E�11 1.07E�11 9.05E�11 6.72E�12 0.02

f14 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.56

f15 3.19E�04 5.29E�04 6.27E�05 8.46E�06 7.18E�05 1.80E�06 0.02

f16 2.67E�09 1.51E�08 7.32E�09 7.11E�12 4.02E�11 1.22E�12 5.01E�04

f17 2.17E�15 1.44E�14 4.77E�15 5.34E�10 3.94E�09 3.89E�10 3.76E�04

f18 6.06E�15 7.05E�15 2.56E�16 0.00Eþ00 0.00Eþ00 0.00Eþ00 2.37E�04

f19 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.56

f20 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.56

f21 5.29E�08 6.14E�07 6.60E�08 2.69E�08 3.57E�08 6.96E�09 0.03

f22 9.60E�12 7.89E�10 2.31E�10 6.65E�15 3.47E�14 5.73E�15 4.88E�04

f23 3.55E�12 7.34E�11 5.78E�12 1.75E�10 4.54E�10 1.58E�10 0.03
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4. Conclusions

This paper proposed a generalized sinusoidal migration model
based on the natural migration relations in island biogeography,
and explored optimization performance of BBO with different
migration models based on Markov chain models of the BBO
algorithm. New theoretical results for different migration models
have been obtained, which are confirmed with simulation results.
The experiments for a unimodal one-max problem, multimodal
problem and deceptive problem: (1) show that the generalized
sinusoidal migration model further improves BBO’s performance.
Namely, the parameter b, the degree of temporary positive
immigration rate feedback in this model, can affect BBO’s opti-
mization ability; (2) verify that different migration models in BBO
result in significant changes in performance based on Markov
theory; (3) further show that BBO migration models which are
closer to natural biogeography are significantly better than gen-
eral models. Although the theoretical results are limited to small
problem dimensions due to the factorial increase of the Markov
transition matrix size with problem dimension, these results
provide confidence that migration models based on island bio-
geography can improve BBO performance. In addition, to confirm
the above conclusions, empirical performance comparison
between the generalized sinusoidal migration model with the
sinusoidal migration model was investigated through 23 bench-
mark functions. The results showed that generalized sinusoidal
migration exhibits superior optimization performance.

Future work includes several important directions. The first is
to explore additional migration model features as indicated by
natural biogeography theory to obtain better BBO performance. It
has been shown in this paper that the generalized migration
model generally gives better BBO performance, but it remains to
be seen how other migration model features will affect BBO
performance. There are many other interesting possibilities for
aligning BBO more closely with island biogeography. For example,
habitat similarity, species age criterion, resource competition, and
migration time correlation, could inspire other variations to the
BBO algorithm and to the shape of the migration curves. The
second important direction for future research is the development
of Markov theory results for BBO variations with the additional
migration model features mentioned above. The third important
direction for future research is the development of additional
theoretical tools to study BBO performance. For example, the
asymptotic convergence of BBO with different migration models
and their convergence rates could be worth further study. Fourth,
adaptive migration rates and their theoretical analysis could be
considered.
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