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Abstract: 
This paper concerns intrusion detection and audit trail reduction. We describe approaches to 

intrusion detection and audit data reduction using support vector machines and neural networks. 
Using a set of benchmark data from the KDD (Knowledge Discovery and Data Mining) competition 
designed by DARPA, we demonstrate that efficient and highly accurate classifiers can be built 
using either support vector machines (SVMs) or neural networks for intrusion detection. Further, 
we present SVMs and neural networks that use only the (13 of 41) most significant features of the 
data and deliver only-slightly-lower detection accuracy in the binary attack/normal classification. 
We also compare the performance of neural networks and SVMs. 

1. INTRODUCTION 
Information assurance is an issue of serious global concern as the explosive growth in connectivity and 

accessibility to the Internet has created a tremendous security threat to information systems worldwide. 
This paper concerns intrusion detection: we present the use of support vectors machines (SVMs) and 
neural networks for intrusion detection. Since most of the intrusions can be uncovered by examining 
patterns of user activities, many intrusion detection systems have been built by utilizing the recognized 
attack and misuse patterns [2, 9, 10, 11]. 

The data we use in our experiments originated from MIT’s Lincoln Lab. It was developed for a KDD 
competition by DARPA and is considered a standard benchmark for intrusion detection evaluations [16]. 
The approach is to train support vector machines or neural networks to learn the normal behavior and 
attack patterns; then deviations from normal behavior are flagged as attacks. It is demonstrated that both 
SVMs and neural networks are capable of making highly accurate attack/normal classifications. We also 
perform audit data reduction by using SVMs; and show that the (binary classification) performance of 
SVMs and neural networks would degrade only slightly when they are trained with the reduced data.   

2. THE DATA 
In the 1998 DARPA intrusion detection evaluation program, an environment was set up to acquire raw 

TCP/IP dump data for a network by simulating a typical U.S. Air Force LAN.  The LAN was operated 
like a true environment, but being blasted with multiple attacks. For each TCP/IP connection, 41 various 
quantitative and qualitative features were extracted. Of this database a subset of 494021 data were used, 
of which 20% represent normal patterns. 

Attack types fall into four main categories: 
1. DOS: denial of service 
2. R2L: unauthorized access from a remote machine 
3. U2R: unauthorized access to local super user (root) privileges 
4. Probing: surveillance and other probing 

 
Table 1 below shows 32 different exploits that were used in the intrusion detection evaluation. 



Table 1: Attacks in the DARPA evaluation. 
Attack Class OS: Solaris OS: SunOS OS: 

Linux 
Denial of 
Service 
 
 
 

Apache2 
Back 
Mail bomb 
Neptune 
Ping of death 
Process table 
Smurf 
Syslogd 
UDP storm 

Apache2 
Back 
Mail bomb 
Neptune 
Ping of death 
Process table 
Smurf 
Syslogd 
UDP storm 

Apache2 
Back 
Mail bomb 
Neptune 
Ping of death 
Process table 
Smurf 
Syslogd 
UDP storm 

Remote to User Dictionary 
Ftp-write 
Guest 
Phf 
Xlock 
Xnsnoop 
 

Dictionary 
Ftp-write 
Guest 
Phf 
Xlock 
Xnsnoop 
 

Dictionary 
Ftp-write 
Guest 
Imap 
Named 
Phf 
Sendmail 
Xlock 
Xnsnoop 

User to Super-
user 

Eject 
Ffbconfig 
Fdformat 
Ps 

Load module 
Ps 

Perl 
Xterm 

Probing Ip sweep 
Mscan 
Nmap 
Saint 
Satan 

Ip sweep 
Mscan 
Nmap 
Saint 
Satan 

Ip sweep 
Mscan 
Nmap 
Saint 
Satan 

 

The following table shows the list of 41 features of the data. 

Table 2: List of features (KDD-CUP-99 task description [16]). Type C is continuous, while D is discrete. 
# Feature name Description  Type 

1 duration � Length (# of seconds) of the connection � C�

2 protocol type � Type of the protocol, e.g. tcp, udp, etc. � D�

3 service � Network service on the destination, e.g., http, telnet, etc. � D�

4 flag � Normal or error status of the connection � D �

5 src_bytes � # of data bytes from source to destination � C�

6 dst_bytes � # of data bytes from destination to source � C�

7 land � 1 if connection is from/to the same host/port; 0 otherwise � D�

8 wrong_fragme
nt �

# of “wrong” fragments � C�

9 urgent � # of urgent packets� C�

10 hot � # of “hot” indicators� C�



11 num_failed_log
ins �

# of failed login attempts � C�

12 logged in � 1 if successfully logged in; 0 otherwise � D�

13 num_comprom
ised �

# of compromised conditions � C�

14 root_shell � 1 if root shell is obtained; 0 otherwise � D�

15 su_attempted � 1 if “su root” command attempted; 0 otherwise � D�

16 num_root � # of “root” accesses � C�

17 num_file_creati
ons �

# of file creation operations � C�

18 num_shells � # of shell prompts � C�

19 num_access_fil
es �

# of operations on access control files � C�

20 num_outbound
_cmds�

# of outbound commands in an ftp session � C�

21 is_host_login � 1 if the login belongs to the “hot” list; 0 otherwise � D�

22 is_guest_login � 1 if the login is a “guest’ login; 0 otherwise� D�

23 count � # connections to the same host as the current one during  
past two seconds 

C�

24 srv_count # of connections to the same service as the current 
connection in the past two seconds  
 

C 

25 serror_rate � % of connections that have “SYN” errors � C�

26 srv_serror_rate % of connections that have “SYN” errors  C 

27 rerror_rate � % of connections that have “REJ” errors � C�

28 srv_rerror_rate � % of connections that have “REJ” errors � C�
29 same_srv_rate � % of connections to the same service � C�
30 diff_srv_rate � % of connections to different services � C�
31 srv_diff_host_r

ate �
% of connections to different hosts � C �

32 dst_host_count C  
33 dst_host_srv_count C  
34 dst_host_same_srv_rate C  
35 dst_host_diff_srv_rate C 
36 dst_host_same_src_port_rate C  
37 dst_host_srv_diff_host_rate C  
38 dst_host_serror_rate C  
39 dst_host_srv_serror_rate C  
40 dst_host_rerror_rate C  
41 dst_host_srv_rerror_rate C  

3. IDS USING SVMs 
Support vector machines, or SVMs, are learning machines that plot the training vectors in high-

dimensional feature space, labeling each vector by its class. SVMs classify data by determining a set of 
support vectors, which are members of the set of training inputs that outline a hyper plane in the feature 
space [12]. 



SVMs provide a generic mechanism to fit the surface of the hyper plane to the data through the use of a 
kernel function. The user may provide a function (e.g., linear, polynomial, or sigmoid) to the SVMs 
during the training process, which selects support vectors along the surface of this function. The number 
of free parameters used in the SVMs depends on the margin that separates the data points but not on the 
number of input features, thus SVMs do not require a reduction in the number of features in order to 
avoid over fitting--an apparent advantage in applications such as intrusion detection. Another primary 
advantage of SVMs is the low expected probability of generalization errors. 

There are other reasons that we use SVMs for intrusion detection.  The first is speed: as real-time 
performance is of primary importance to intrusion detection systems, any classifier that can potentially 
run “fast” is worth considering. The second reason is scalability: SVMs are relatively insensitive to the 
number of data points and the classification complexity does not depend on the dimensionality of the 
feature space [14], so they can potentially learn a larger set of patterns and thus be able to scale better 
than neural networks. Once the data is classified into two classes, a suitable optimizing algorithm can be 
used if necessary for further feature identification, depending on the application [14]. 

3.1 Experiments Using SVMs 
We partition the data in to two classes: normal and attack, where the attack is the collection of all 22 

different attacks belonging to the four classes described in section 2. The objective of our SVM 
experiments is to separate normal and attack patterns. In our case all attacks are classified as +1, and 
normal data classified as -1. In all experiments described below the freeware package SVM light [13] is 
used. 

For data reduction, we also apply SVMs to identify the most significant features for detecting attack 
patterns [5]. The procedure is to delete one feature at a time, and train SVMs with the same data set 
containing 40 features; those features whose deletion result in more accurate performance (as compared to 
the original SVM trained with 41 features) is deemed insignificant. This way, 13 of the 41 features are 
identified as most significant: 1,2,3,5,6,9,23,24,29,32,33,34,36. 

3.2 Training 
In our first set of experiments, the processed data consists of 65000 randomly selected data points. We 

composed two training sets containing the same 10000 data points with, respectively, 41 features and 13 
features each. (The 10000 data points are randomly generated, and include a subset of data points from 
each of the 23 classes in proportion to the relative size of the 23 classes). Data points are randomly 
generated and contain actual attacks and normal usage patterns. Training is done using the RBF (radial 
bias function) kernel option; an important point of the kernel function is that it defines the feature space in 
which the training set examples will be classified [13]. 

In our second set of experiments, the data consists of 14000 randomly generated points, with a number 
of data from each class in proportion to its size. We used a training set of 7000 data points with, 
respectively, 41 features and 13 features [16] each. The results are summarized in the following table. 

3.3 Testing 
In our first set of experiments, the test set consists of 55000 data points (with, respectively, 41 features 

and 13 features). In our second set of experiments, the test set consists of 7000 data points with 41 
features and 13 features. Results are given in table 4. 

Table 3: SVM training results. 
Training results Experiment 1 Experiment 2 



Data set 65000 65000 
Training set 10000 10000 
# of features 41 13 
Kernel RBF RBF 
Gamma value 0.000001 0.000001 
C value 1000 1000 
CPU run time 126.94 sec 211.34 sec 
# of misclassifications 23 32 

# of iterations 30387 25807 
Max difference 0.00096 0.00099 
# of Support vectors 249 (79 at upper bound) 205 (129 at upper bound) 

Liner loss 57.38954 93.9988 
Normalization of weight 
vector 

175.79429 220.61209 

# of kernel evaluations 6673531 7248374 

Training results Experiment 3 Experiment 4 
Data set 14000 14000 
Training set 7000 7000 
# of features 41 13 
Kernel RBF RBF 
Gamma value 0.000001 0.000001 
C value 1000 1000 
CPU run time 52.02 sec 108.62 sec 
# of misclassifications 15 22 

# of iterations 11605 23766 
Max difference 0.00099 0.00095 
# of Support vectors 209 (53 at upper bound) 163 (92 at upper bound) 

Liner loss 40.45970 65.25182 
Normalization of weight 
vector 

159.75859 203.82591 

# of kernel evaluations 3798517 4358680 

 
Table 4: SVM testing results. 

Testing Exp 1 Exp 2 Exp 3 Exp 4 
Test data set 55000 55000 7000 7000 
# of features 41 13 41 13 
Accuracy % 99.60 99.57 99.53 99.52 
CPU run time 15.44 10.04 1.60 1.06 

# of mis-classifications 230 234 33 35 

# of false positives 122 102 17 19 

# of false negatives 98 132 16 15 

Table 5: Results of the main test set with 41 features and 55000 data points. 



Class Normal Attack Accuracy 

Normal 10767 122 98.9 % 

Attack 98 44013 99.7 % 
Accuracy 99.7 % 99.9 %  

 
The top-left entry of Table 5 shows that 10767 of the actual “normal” test set were detected to be 

normal; the last column indicates that 98.9 % of the actual “normal” data points were detected correctly. 
In the same way, for the attack class 44013 of the actual “attack” test set were correctly detected; the last 
column indicates that 99.7% of the actual “attack” data points were detected correctly. The bottom row 
shows that 99.7% of the test set said to be “normal” indeed were “normal” and 99.9% of the test set 
classified as “attacks” indeed were attacks. 

Fig. 1. Comparison of SVMs using 41 and 13 features for detection. An output of 2 indicates 
attack; 1 indicates normal data. 

4. IDS USING NEURAL NETWORKS 
   Using neural networks for intrusion detection has been done in the security community [1,4, 7,8,10,11].  

Fig. 2. Comparison of Neural networkss using 41 and 13 features for detection 
 
For performance comparison with SVMs, the objective of our neural network experiments is to make 
binary normal/attack classification. 
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4.1 Training the Neural Network 
In our experiments, we use a dataset consisting of 14000 randomly generated data points from the 2 

classes of attack and normal. From this dataset, we then randomly select a subset of 7000 data for 
training; and prepare two training sets, with 41 features and 13 features each, respectively. A multi-layer, 
feedforward network was trained using the scaled conjugate gradient decent algorithm with convergence 
criterion set to be MSE (mean square error) of 0.001. During the training process of using 41features, the 
goal was met in 538 epochs with MSE=0.000999; Using 13 features, the goal was reached in 608 epochs 
with MSE=0.000638. 

Table 6: Neural network training. 
Training  Experiment 1 Experiment 2 
# of features 41 13 
# of data points 7000 7000 
Architecture [41,50,40,1] [13,40,40,1] 
Performance 0.000999 0.00638 
Epochs 538 608 
CPU time 30 min  38 min 

 

4.2 Testing the Neural Network 
The test set consisting of 7000 data points with 41 features and 13 features. The one with 41 features 

received 99.48% accuracy and the one with 13 features received 99.41%. The following graph gives a 
comparison of the neural network detection performance using 41 and 13 features. 

Table 7: Neural network testing. 
Training  Experiment 1 Experiment 2 
# of features 41 13 
# of data points 7000 7000 
Architecture [41,50,40,1] [13,40,40,1] 
Performance 0.000999 0.00638 
Epochs 538 608 
CPU time 30 min  38 min 

5. PERFORMANCE COMPARISON 
Figure 4 shows the combined results of neural networks and support vector machines on the KDD data 

subset, using 41 and the 13 most significant features. Only a tiny fraction of the dataset is shown here to 
illustrate the very infrequent cases where SVMs and neural networks give different classifications, due to 
the fact that both SVMs and neural networks have been trained to deliver highly accurate results, in either 
the 41- or 13-feature case. 

To summarize, SVMs consistently (either 41 or 13 features) outperform neural networks, in terms of 
training time and accuracy of detection.  Even though the margin in accuracy is small and may not be 
statistically significant, there is an order of magnitude in the difference of training times. 

SVMs (respectively, neural networks) trained with the 41-feature data set consistently outperform that 
trained with the 13-feature data set.  But, again, the difference is small and may not be significant. 
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Fig. 3. Neural network and SVMs testing on two classes attack/normal data. 

6. CONCLUSIONS 
We have performed a number of experiments to measure the performance of support vector machines 

and neural networks in intrusion detection, using the DARPA data for intrusion evaluation. All 
classifications were performed on the binary (attack / normal) basis. 

Both SVMs and neural networks deliver highly-accurate (99% and higher) performance, with SVMs 
showing slightly better results. Further, when a reduction is performed to reduce the 41 features to the 13 
most significant, both SVMs and neural networks again were able to train to deliver accurate results. 

Our ongoing experiments include making 5-class (4 attack classes plus normal) and 23-class (22 
specific attacks and normal) identification using SVMs and neural networks. 

Even though SVMs are limited to making binary classifications, their superior properties of fast 
training, scalability and generalization capability give them an advantage in the intrusion detection 
application. Finding cost-efficient ways to speed up or parallelize the multiple runs of SVMs (to make 
multi-class identification) is also under investigation.   
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