
Intrusion Detection: Support Vector Machines and Neural Networks

Srinivas Mukkamala, Guadalupe Janoski, Andrew Sung
{srinivas, silfalco, sung}@cs.nmt.edu

Department of Computer Science
New Mexico Institute of Mining and Technology

Socorro, New Mexico 87801

Abstract:
This paper concerns intrusion detection and audit trail reduction. We describe approaches to

intrusion detection and audit data reduction using support vector machines and neural networks.
Using a set of benchmark data from the KDD (Knowledge Discovery and Data Mining) competition
designed by DARPA, we demonstrate that efficient and highly accurate classifiers can be built
using either support vector machines (SVMs) or neural networks for intrusion detection. Further,
we present SVMs and neural networks that use only the (13 of 41) most significant features of the
data and deliver only-slightly-lower detection accuracy in the binary attack/normal classification.
We also compare the performance of neural networks and SVMs.

1. INTRODUCTION
Information assurance is an issue of serious global concern as the explosive growth in connectivity and

accessibility to the Internet has created a tremendous security threat to information systems worldwide.
This paper concerns intrusion detection: we present the use of support vectors machines (SVMs) and
neural networks for intrusion detection. Since most of the intrusions can be uncovered by examining
patterns of user activities, many intrusion detection systems have been built by utilizing the recognized
attack and misuse patterns [2, 9, 10, 11].

The data we use in our experiments originated from MIT’s Lincoln Lab. It was developed for a KDD
competition by DARPA and is considered a standard benchmark for intrusion detection evaluations [16].
The approach is to train support vector machines or neural networks to learn the normal behavior and
attack patterns; then deviations from normal behavior are flagged as attacks. It is demonstrated that both
SVMs and neural networks are capable of making highly accurate attack/normal classifications. We also
perform audit data reduction by using SVMs; and show that the (binary classification) performance of
SVMs and neural networks would degrade only slightly when they are trained with the reduced data.

2. THE DATA
In the 1998 DARPA intrusion detection evaluation program, an environment was set up to acquire raw

TCP/IP dump data for a network by simulating a typical U.S. Air Force LAN. The LAN was operated
like a true environment, but being blasted with multiple attacks. For each TCP/IP connection, 41 various
quantitative and qualitative features were extracted. Of this database a subset of 494021 data were used,
of which 20% represent normal patterns.

Attack types fall into four main categories:
1. DOS: denial of service
2. R2L: unauthorized access from a remote machine
3. U2R: unauthorized access to local super user (root) privileges
4. Probing: surveillance and other probing

Table 1 below shows 32 different exploits that were used in the intrusion detection evaluation.

Table 1: Attacks in the DARPA evaluation.
Attack Class OS: Solaris OS: SunOS OS:

Linux
Denial of
Service

Apache2
Back
Mail bomb
Neptune
Ping of death
Process table
Smurf
Syslogd
UDP storm

Apache2
Back
Mail bomb
Neptune
Ping of death
Process table
Smurf
Syslogd
UDP storm

Apache2
Back
Mail bomb
Neptune
Ping of death
Process table
Smurf
Syslogd
UDP storm

Remote to User Dictionary
Ftp-write
Guest
Phf
Xlock
Xnsnoop

Dictionary
Ftp-write
Guest
Phf
Xlock
Xnsnoop

Dictionary
Ftp-write
Guest
Imap
Named
Phf
Sendmail
Xlock
Xnsnoop

User to Super-
user

Eject
Ffbconfig
Fdformat
Ps

Load module
Ps

Perl
Xterm

Probing Ip sweep
Mscan
Nmap
Saint
Satan

Ip sweep
Mscan
Nmap
Saint
Satan

Ip sweep
Mscan
Nmap
Saint
Satan

The following table shows the list of 41 features of the data.

Table 2: List of features (KDD-CUP-99 task description [16]). Type C is continuous, while D is discrete.
Feature name Description Type

1 duration � Length (# of seconds) of the connection � C�

2 protocol type � Type of the protocol, e.g. tcp, udp, etc. � D�

3 service � Network service on the destination, e.g., http, telnet, etc. � D�

4 flag � Normal or error status of the connection � D �

5 src_bytes � # of data bytes from source to destination � C�

6 dst_bytes � # of data bytes from destination to source � C�

7 land � 1 if connection is from/to the same host/port; 0 otherwise � D�

8 wrong_fragme
nt �

of “wrong” fragments � C�

9 urgent � # of urgent packets� C�

10 hot � # of “hot” indicators� C�

11 num_failed_log
ins �

of failed login attempts � C�

12 logged in � 1 if successfully logged in; 0 otherwise � D�

13 num_comprom
ised �

of compromised conditions � C�

14 root_shell � 1 if root shell is obtained; 0 otherwise � D�

15 su_attempted � 1 if “su root” command attempted; 0 otherwise � D�

16 num_root � # of “root” accesses � C�

17 num_file_creati
ons �

of file creation operations � C�

18 num_shells � # of shell prompts � C�

19 num_access_fil
es �

of operations on access control files � C�

20 num_outbound
_cmds�

of outbound commands in an ftp session � C�

21 is_host_login � 1 if the login belongs to the “hot” list; 0 otherwise � D�

22 is_guest_login � 1 if the login is a “guest’ login; 0 otherwise� D�

23 count � # connections to the same host as the current one during
past two seconds

C�

24 srv_count # of connections to the same service as the current
connection in the past two seconds

C

25 serror_rate � % of connections that have “SYN” errors � C�

26 srv_serror_rate % of connections that have “SYN” errors C

27 rerror_rate � % of connections that have “REJ” errors � C�

28 srv_rerror_rate � % of connections that have “REJ” errors � C�
29 same_srv_rate � % of connections to the same service � C�
30 diff_srv_rate � % of connections to different services � C�
31 srv_diff_host_r

ate �
% of connections to different hosts � C �

32 dst_host_count C
33 dst_host_srv_count C
34 dst_host_same_srv_rate C
35 dst_host_diff_srv_rate C
36 dst_host_same_src_port_rate C
37 dst_host_srv_diff_host_rate C
38 dst_host_serror_rate C
39 dst_host_srv_serror_rate C
40 dst_host_rerror_rate C
41 dst_host_srv_rerror_rate C

3. IDS USING SVMs
Support vector machines, or SVMs, are learning machines that plot the training vectors in high-

dimensional feature space, labeling each vector by its class. SVMs classify data by determining a set of
support vectors, which are members of the set of training inputs that outline a hyper plane in the feature
space [12].

SVMs provide a generic mechanism to fit the surface of the hyper plane to the data through the use of a
kernel function. The user may provide a function (e.g., linear, polynomial, or sigmoid) to the SVMs
during the training process, which selects support vectors along the surface of this function. The number
of free parameters used in the SVMs depends on the margin that separates the data points but not on the
number of input features, thus SVMs do not require a reduction in the number of features in order to
avoid over fitting--an apparent advantage in applications such as intrusion detection. Another primary
advantage of SVMs is the low expected probability of generalization errors.

There are other reasons that we use SVMs for intrusion detection. The first is speed: as real-time
performance is of primary importance to intrusion detection systems, any classifier that can potentially
run “fast” is worth considering. The second reason is scalability: SVMs are relatively insensitive to the
number of data points and the classification complexity does not depend on the dimensionality of the
feature space [14], so they can potentially learn a larger set of patterns and thus be able to scale better
than neural networks. Once the data is classified into two classes, a suitable optimizing algorithm can be
used if necessary for further feature identification, depending on the application [14].

3.1 Experiments Using SVMs
We partition the data in to two classes: normal and attack, where the attack is the collection of all 22

different attacks belonging to the four classes described in section 2. The objective of our SVM
experiments is to separate normal and attack patterns. In our case all attacks are classified as +1, and
normal data classified as -1. In all experiments described below the freeware package SVM light [13] is
used.

For data reduction, we also apply SVMs to identify the most significant features for detecting attack
patterns [5]. The procedure is to delete one feature at a time, and train SVMs with the same data set
containing 40 features; those features whose deletion result in more accurate performance (as compared to
the original SVM trained with 41 features) is deemed insignificant. This way, 13 of the 41 features are
identified as most significant: 1,2,3,5,6,9,23,24,29,32,33,34,36.

3.2 Training
In our first set of experiments, the processed data consists of 65000 randomly selected data points. We

composed two training sets containing the same 10000 data points with, respectively, 41 features and 13
features each. (The 10000 data points are randomly generated, and include a subset of data points from
each of the 23 classes in proportion to the relative size of the 23 classes). Data points are randomly
generated and contain actual attacks and normal usage patterns. Training is done using the RBF (radial
bias function) kernel option; an important point of the kernel function is that it defines the feature space in
which the training set examples will be classified [13].

In our second set of experiments, the data consists of 14000 randomly generated points, with a number
of data from each class in proportion to its size. We used a training set of 7000 data points with,
respectively, 41 features and 13 features [16] each. The results are summarized in the following table.

3.3 Testing
In our first set of experiments, the test set consists of 55000 data points (with, respectively, 41 features

and 13 features). In our second set of experiments, the test set consists of 7000 data points with 41
features and 13 features. Results are given in table 4.

Table 3: SVM training results.
Training results Experiment 1 Experiment 2

Data set 65000 65000
Training set 10000 10000
of features 41 13
Kernel RBF RBF
Gamma value 0.000001 0.000001
C value 1000 1000
CPU run time 126.94 sec 211.34 sec
of misclassifications 23 32

of iterations 30387 25807
Max difference 0.00096 0.00099
of Support vectors 249 (79 at upper bound) 205 (129 at upper bound)

Liner loss 57.38954 93.9988
Normalization of weight
vector

175.79429 220.61209

of kernel evaluations 6673531 7248374

Training results Experiment 3 Experiment 4
Data set 14000 14000
Training set 7000 7000
of features 41 13
Kernel RBF RBF
Gamma value 0.000001 0.000001
C value 1000 1000
CPU run time 52.02 sec 108.62 sec
of misclassifications 15 22

of iterations 11605 23766
Max difference 0.00099 0.00095
of Support vectors 209 (53 at upper bound) 163 (92 at upper bound)

Liner loss 40.45970 65.25182
Normalization of weight
vector

159.75859 203.82591

of kernel evaluations 3798517 4358680

Table 4: SVM testing results.

Testing Exp 1 Exp 2 Exp 3 Exp 4
Test data set 55000 55000 7000 7000
of features 41 13 41 13
Accuracy % 99.60 99.57 99.53 99.52
CPU run time 15.44 10.04 1.60 1.06

of mis-classifications 230 234 33 35

of false positives 122 102 17 19

of false negatives 98 132 16 15

Table 5: Results of the main test set with 41 features and 55000 data points.

Class Normal Attack Accuracy

Normal 10767 122 98.9 %

Attack 98 44013 99.7 %
Accuracy 99.7 % 99.9 %

The top-left entry of Table 5 shows that 10767 of the actual “normal” test set were detected to be

normal; the last column indicates that 98.9 % of the actual “normal” data points were detected correctly.
In the same way, for the attack class 44013 of the actual “attack” test set were correctly detected; the last
column indicates that 99.7% of the actual “attack” data points were detected correctly. The bottom row
shows that 99.7% of the test set said to be “normal” indeed were “normal” and 99.9% of the test set
classified as “attacks” indeed were attacks.

Fig. 1. Comparison of SVMs using 41 and 13 features for detection. An output of 2 indicates
attack; 1 indicates normal data.

4. IDS USING NEURAL NETWORKS
 Using neural networks for intrusion detection has been done in the security community [1,4, 7,8,10,11].

Fig. 2. Comparison of Neural networkss using 41 and 13 features for detection

For performance comparison with SVMs, the objective of our neural network experiments is to make
binary normal/attack classification.

Comaprison of SVM's

0

0.5

1

1.5

2

2.5

1 4 7 10 13 16 19 22 25 28 31
Data points

Cl
as

s Actual
SVM 13
SVM 41

Comparison of NN's

0

0.5

1

1.5

2

2.5

1 4 7 10 13 16 19 22 25 28 31

Data points

Cl
as

s NN 13
Actual
NN 41

4.1 Training the Neural Network
In our experiments, we use a dataset consisting of 14000 randomly generated data points from the 2

classes of attack and normal. From this dataset, we then randomly select a subset of 7000 data for
training; and prepare two training sets, with 41 features and 13 features each, respectively. A multi-layer,
feedforward network was trained using the scaled conjugate gradient decent algorithm with convergence
criterion set to be MSE (mean square error) of 0.001. During the training process of using 41features, the
goal was met in 538 epochs with MSE=0.000999; Using 13 features, the goal was reached in 608 epochs
with MSE=0.000638.

Table 6: Neural network training.
Training Experiment 1 Experiment 2
of features 41 13
of data points 7000 7000
Architecture [41,50,40,1] [13,40,40,1]
Performance 0.000999 0.00638
Epochs 538 608
CPU time 30 min 38 min

4.2 Testing the Neural Network
The test set consisting of 7000 data points with 41 features and 13 features. The one with 41 features

received 99.48% accuracy and the one with 13 features received 99.41%. The following graph gives a
comparison of the neural network detection performance using 41 and 13 features.

Table 7: Neural network testing.
Training Experiment 1 Experiment 2
of features 41 13
of data points 7000 7000
Architecture [41,50,40,1] [13,40,40,1]
Performance 0.000999 0.00638
Epochs 538 608
CPU time 30 min 38 min

5. PERFORMANCE COMPARISON
Figure 4 shows the combined results of neural networks and support vector machines on the KDD data

subset, using 41 and the 13 most significant features. Only a tiny fraction of the dataset is shown here to
illustrate the very infrequent cases where SVMs and neural networks give different classifications, due to
the fact that both SVMs and neural networks have been trained to deliver highly accurate results, in either
the 41- or 13-feature case.

To summarize, SVMs consistently (either 41 or 13 features) outperform neural networks, in terms of
training time and accuracy of detection. Even though the margin in accuracy is small and may not be
statistically significant, there is an order of magnitude in the difference of training times.

SVMs (respectively, neural networks) trained with the 41-feature data set consistently outperform that
trained with the 13-feature data set. But, again, the difference is small and may not be significant.

Comparison of NN's and SVM's

0

0.5

1

1.5

2

2.5

1 4 7 10 13 16 19 22 25 28 31

Data points

Cl
as

s

Actual
NN 13
NN 41
SVM 41
SVM 13

Fig. 3. Neural network and SVMs testing on two classes attack/normal data.

6. CONCLUSIONS
We have performed a number of experiments to measure the performance of support vector machines

and neural networks in intrusion detection, using the DARPA data for intrusion evaluation. All
classifications were performed on the binary (attack / normal) basis.

Both SVMs and neural networks deliver highly-accurate (99% and higher) performance, with SVMs
showing slightly better results. Further, when a reduction is performed to reduce the 41 features to the 13
most significant, both SVMs and neural networks again were able to train to deliver accurate results.

Our ongoing experiments include making 5-class (4 attack classes plus normal) and 23-class (22
specific attacks and normal) identification using SVMs and neural networks.

Even though SVMs are limited to making binary classifications, their superior properties of fast
training, scalability and generalization capability give them an advantage in the intrusion detection
application. Finding cost-efficient ways to speed up or parallelize the multiple runs of SVMs (to make
multi-class identification) is also under investigation.

7. REFERENCES
[1] Ryan J, Lin M-J, Miikkulainen R (1998) Intrusion Detection with Neural Networks. Advances in

Neural Information Processing Systems 10, Cambridge, MA: MIT Press
[2] Kumar S, Spafford EH (1994) An Application of Pattern Matching in Intrusion Detection.

Technical Report CSD-TR-94-013. Purdue University
[3] Luo J, Bridges SM (2000) Mining Fuzzy Association Rules and Fuzzy Frequency Episodes for

Intrusion Detection. International Journal of Intelligent Systems, John Wiley & Sons, pp 15:687-
703

[4] Demuth H, Beale M (2000) Neural Network Toolbox User’s Guide. MathWorks, Inc. Natick, MA
[5] Sung AH (1998) Ranking Importance of Input Parameters Of Neural Networks. Expert Systems

with Applications, pp 15:405-411.
[6] Cramer M, et. al. (1995) New Methods of Intrusion Detection using Control-Loop Measurement.

Proceedings of the Technology in Information Security Conference (TISC) ’95. pp 1-10
[7] Debar H, Becke M, Siboni D (1992) A Neural Network Component for an Intrusion Detection

System. Proceedings of the IEEE Computer Society Symposium on Research in Security and
Privacy

[8] Debar H, Dorizzi B (1992) An Application of a Recurrent Network to an Intrusion Detection
System. Proceedings of the International Joint Conference on Neural Networks. pp 78-483

[9] Denning D (Feb 1987) An Intrusion-Detection Model. IEEE Transactions on Software
Engineering, Vol. SE-13, No 2.

[10] Ghosh AK. (1999). Learning Program Behavior Profiles for Intrusion Detection. USENIX
[11] Cannady J. (1998) Artificial Neural Networks for Misuse Detection. National Information

Systems Security Conference
[12] Vladimir VN (1995) The Nature of Statistical Learning Theory. Springer, Berlin Heidelberg New

York
[13] Joachims T (2000) SVMlight is an implementation of Support Vector Machines (SVMs) in C.

http://ais.gmd.de/~thorsten/svm_light/ . University of Dortmund. Collaborative Research Center
on 'Complexity Reduction in Multivariate Data' (SFB475)

[14] Joachims T (1998) Making Large-Scale SVM Learning Practical. LS8-Report, University of
Dortmund, LS VIII-Report

[15] Joachims T (2000) Estimating the Generalization Performance of a SVM Efficiently. Proceedings
of the International Conference on Machine Learning, Morgan Kaufman

[16] http://kdd.ics.uci.edu/databases/kddcup99/task.htm

