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ABSTRACT 
Computational Intelligence (CI) methods are increasingly being used for problem solving. This paper concerns 
using CI-type learning machines for intrusion detection, which is a problem of general interest to transportation 
infrastructure protection since a necessary task thereof is to protect the computers responsible for the infrastructure’s 
operational control, and an effective Intrusion Detection System (IDS) is essential for ensuring network security. 

Two classes of learning machines for IDSs are studied: Artificial Neural Networks (ANNs) and Support 
Vector Machines (SVMs). We show that SVMs are superior to ANNs in three critical respects of IDSs: SVMs train 
and run an order of magnitude faster; SVMs scale much better; and SVMs give higher classification accuracy. 

We also address the related issue of ranking the importance of input features, which is itself a problem of 
great interest. Since elimination of the insignificant and/or useless inputs leads to a simplified problem and possibly 
faster and more accurate detection, feature selection is very important in intrusion detection. 

Two methods for feature ranking are presented: the first one is independent of the modeling tool, while the 
second method is specific to SVMs. The two methods are applied to identify the important features in the 1999 
DARPA intrusion data set. It is shown that the two methods produce results that are largely consistent. 

We present experimental results that indicate that SVM-based IDSs using a reduced number of features can 
deliver enhanced or comparable performance. Finally, an SVM-based IDS for class-specific detection is proposed. 

1. INTRODUCTION 
This paper concerns computer networks intrusion detection and the related issue of identifying important input 
features for intrusion detection. Intrusion detection is a problem of significance to transportation infrastructure 
protection owing to the fact that computer networks are at the core of the operational control of much of the nation’s 
transportation. We use two types of learning machines to build Intrusion Detection Systems (IDSs): Artificial Neural 
Networks or ANNs (1) and Support Vector Machines or SVMs (2). Since the ability to identify the important inputs 
and redundant inputs of a classifier results in reduced problem size, faster training and possibly more accurate 
results, it is critical to be able to identify the important features of network traffic data for intrusion detection in 
order for the IDS to achieve maximal performance. Therefore, we also study feature ranking and selection, which is 
itself a problem of great interest in data mining and model construction based on experimental data. 

Since most of the intrusions can be uncovered by examining patterns of user activities, many IDSs have 
been built by utilizing the recognized attack and misuse patterns to develop learning machines (3,4,5,6,7,8,9,10,11). 
In our recent work, SVMs are found to be superior to ANNs in many important respects of intrusion detection 
(12,13,14); we will therefore concentrate on SVMs and briefly summarize the results of ANNs. 

The data we used in our experiments originated from MIT’s Lincoln Lab. It was developed for intrusion 
detection system evaluations by DARPA and is considered a benchmark for intrusion detection evaluations (15).  

We performed experiments to rank the importance of input features for each of the five classes (normal, 
probe, denial of service, user to super-user, and remote to local) of patterns in the DARPA data. It is shown that 
using only the important features for classification gives good accuracies and, in certain cases, reduces the training 
time and testing time of the SVM classifier. 

In the rest of the paper, a brief introduction to the data we used is given in section 2. In section 3 we 
describe two methods for ranking the importance of input features. In section 4 we present the experimental results 
of using SVMs for feature ranking. In section 5 we present the experimental results of using ANNs. In section 6 we 
summarize our results and give a brief description of our proposed IDS architecture.  
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2. THE DATA 
In the 1998 DARPA intrusion detection evaluation program, an environment was set up to acquire raw TCP/IP 
dump data for a network by simulating a typical U.S. Air Force LAN. The LAN was operated like a real 
environment, but being blasted with multiple attacks. For each TCP/IP connection, 41 various quantitative and 
qualitative features were extracted. Of this database a subset of 494021 data were used in our experiments reported 
in this paper, of which approximately 20% represent normal patterns, the rest 80% of patterns are attacks belonging 
to four different categories.   

The four different categories of attack patterns are: 
A. Denial of Service (DOS) Attacks: A denial of service attack is a class of attacks in which an attacker makes 

some computing or memory resource too busy or too full to handle legitimate requests, or denies legitimate users 
access to a machine. Examples are Apache2, Back, Land, Mail bomb, SYN Flood, Ping of death, Process table, 
Smurf, Syslogd, Teardrop, Udpstorm. 

B. User to Superuser or Root Attacks (U2Su): User to root exploits are a class of attacks in which an attacker starts 
out with access to a normal user account on the system and is able to exploit vulnerability to gain root access to 
the system. Examples are Eject, Ffbconfig, Fdformat, Loadmodule, Perl, Ps, Xterm. 

C. Remote to User Attacks (R2L): A remote to user attack is a class of attacks in which an attacker sends packets to 
a machine over a network−but who does not have an account on that machine; exploits some vulnerability to 
gain local access as a user of that machine. Examples are Dictionary, Ftp_write, Guest, Imap, Named, Phf, 
Sendmail, Xlock, Xsnoop. 

D. Probing (Probe): Probing is a class of attacks in which an attacker scans a network of computers to gather 
information or find known vulnerabilities. An attacker with a map of machines and services that are available on 
a network can use this information to look for exploits. Examples are Ipsweep, Mscan, Nmap, Saint, Satan. 

3. RANKING THE SIGNIFICANCE OF INPUTS 
Feature selection and ranking (16,17) is an important issue in intrusion detection. Of the large number of features 
that can be monitored for intrusion detection purpose, which are truly useful, which are less significant, and which 
may be useless? The question is relevant because the elimination of useless features (the so-called audit trail 
reduction) enhances the accuracy of detection while speeding up the computation, thus improving the overall 
performance of an IDS. In cases where there are no useless features, by concentrating on the most important ones we 
may well improve the time performance of an IDS without affecting the accuracy of detection in statistically 
significant ways.  

The feature ranking and selection problem for intrusion detection is similar in nature to various engineering 
problems that are characterized by: 
 Having a large number of input variables x = (x1, x2, …, xn) of varying degrees of importance to the output y; i.e., 
some elements of x are essential, some are less important, some of them may not be mutually independent, and 
some may be useless or irrelevant (in determining the value of y) 

 Lacking an analytical model that provides the basis for a mathematical formula that precisely describes the input-
output relationship, y = F (x) 

 Having available a finite set of experimental data, based on which a model (e.g. neural networks) can be built for 
simulation and prediction purposes   

Due to the lack of an analytical model, one can only seek to determine the relative importance of the input 
variables through empirical methods. A complete analysis would require examination of all possibilities, e.g., taking 
two variables at a time to analyze their dependence or correlation, then taking three at a time, etc. This, however, is 
both infeasible (requiring 2n experiments!) and not infallible (since the available data may be of poor quality in 
sampling the whole input space). In the following, therefore, we apply the technique of deleting one feature at a time 
(16) to rank the input features and identify the most important ones for intrusion detection using SVMs. 
 
3.1 Performance-Based Ranking Method (PBRM) 
We first describe a general (i.e., independent of the modeling tools being used), performance-based input ranking 
methodology: One input feature is deleted from the data at a time; the resultant data set is then used for the training 
and testing of the classifier. Then the classifier’s performance is compared to that of the original classifier (based on 
all features) in terms of relevant performance criteria.  Finally, the importance of the feature is ranked according to a 
set of rules based on the performance comparison.    

The procedure is summarized as follows:  
1. compose the training set and the testing set; 
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for each feature do the following 
2. delete the feature from the (training and testing) data; 
3. use the resultant data set to train the classifier; 
4. analyze the performance of the classifier using the test set, in terms of the selected performance criteria; 
5. rank the importance of the feature according to the rules; 
 
3.2 Performance Metrics 
To rank the importance of the 41 features (of the DARPA data) in an SVM-based IDS, we consider three main 
performance criteria: overall accuracy of (5-class) classification; training time; and testing time. Each feature will be 
ranked as “important”, “secondary”, or “insignificant”, according to the following rules that are applied to the result 
of performance comparison of the original 41-feature SVM and the 40-feature SVM: 
1. If accuracy decreases and training time increases and testing time decreases, then the feature is important 
2. If accuracy decreases and training time increases and testing time increases, then the feature is important 
3. If accuracy decreases and training time decreases and testing time increases, then the feature is important 
4. If accuracy unchanges and training time increases and testing time increases, then the feature is important 
5. If accuracy unchanges and training time decreases and testing time increases, then the feature is secondary 
6. If accuracy unchanges and training time increases and testing time decreases, then the feature is secondary 
7. If accuracy unchanges and training time decreases and testing time decreases, then the feature is unimportant 
8. If accuracy increases and training time increases and testing time decreases, then the feature is secondary 
9. If accuracy increases and training time decreases and testing time increases, then the feature is secondary 
10. If accuracy increases and training time decreases and testing time decreases, then the feature is unimportant 

According to the above rules, the 41 features are ranked into the 3 types of {Important features}, 
<Secondary features>, or (Unimportant features), for each of the 5 classes of patterns, as follows: 
class 1: {1,3,5,6,8-10,14,15,17,20-23,25-29,33,35,36,38,39,41},  <2,4,7,11,12,16,18,19,24,30,31,34,37,40>,  (13,32) 
class 2: {3,5,6,23,24,32,33}, <1,4,7-9,12-19,21,22,25-28,34-41>,   (2,10,11,20,29,30,31,36,37) 
class 3: {1,3,5,6,8,19,23-28,32,33,35,36,38-41}, <2,7,9-11,14,17,20,22,29,30,34,37>,  (4,12,13,15,16,18,19,21,3 ) 
class 4: {5,6,15,16,18,32,33},  <7,8,11,13,17,19-24,26,30,36-39>,  (9,10,12,14,27,29,31,34,35,40,41) 
class 5: {3,5,6,24,32,33},  <2,4,7-23,26-31,34-41>,  (1,20,25,38 ) 
 
3.3 SVM-specific Feature Ranking Method 
Information about the features and their contribution towards classification is hidden in the support vector decision 
function. Using this information one can rank their significance, i.e., in the equation 

F (X) = ΣWiXi + b 
The point X belongs to the positive class if F(X) is a positive value. The point X belongs to the negative class if 
F(X) is negative. The value of F(X) depends on the contribution of each value of  X and Wi. The absolute value of 
Wi measures the strength of the classification. If Wi is a large positive value then the ith feature is a key factor for 
positive class. If Wi is a large negative value then the ith feature is a key factor for negative class. If Wi is a value 
close to zero on either the positive or the negative side, then the ith feature does not contribute significantly to the 
classification. Based on this idea, a ranking can be done by considering the support vector decision function. 
 
3.4 Support Vector Decision Function Ranking Method (SVDFRM) 
The input ranking is done as follows: First the original data set is used for the training of the classifier. Then the 
classifier’s decision function is used to rank the importance of the features. The procedure is:  
1. Calculate the weights from the support vector decision function; 
2. Rank the importance of the features by the absolute values of the weights; 

According to the ranking method, the 41 features are placed into the 3 categories of {Important features},   
<Secondary features> or (Unimportant features), for each of the 5 classes of patterns, as follows: 
class 1: {1-6,10,12,17,23,24,27,28,29,31-34,36,39}, <11-14,16,19,22,25,26,30,35,37,38, 40,41>, (7-9,15,18,20,21)  
class 2: {1-6,23,24,29,32,33}, <10,12,22,28,34-36,38-41>, (7-9,11,13-21,25-27,30,31,37,40) 
class 3: {1,5,6,23-26,32,36,38,39},  <2,3,4,10,12,29,33,34>, (7-9,11,13-22,27,28,30,31,35-37,40,41) 
class 4: {1-6,12,23,24,32,33}, <4,10,13,14,17,22,27,29,31,34,36,37,39>,   

(7-9,11,15,16,18-21,25,26,28,30,35,38,40,41) 
class 5: {1,3,5,6,32,33}, <2,4,10,12,22-24,29,31,34,36,37,38,40>, (7,-9,11,13-21,25-28,30,35,39,41) 
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4. EXPERIMENTS USING SVMs 
SVMs are used, in each of the two methods, for ranking the importance of the input features. Once the importance of 
the input features was ranked, the classifiers were trained and tested with only the important features. Further, we 
validate the ranking by comparing the performance of the classifier using all input features to that using the 
important features; and we also compare the performance of a classifier using the union of the important features for 
all fives classes. (Because SVMs are only capable of binary classifications, we will need to employ five SVMs for 
the five-class identification problem in intrusion detection. But since the set of important features may differ from 
class to class, using five SVMs becomes an advantage rather than a hindrance, i.e., in building an IDS using five 
SVMs, each SVM can use only the important features for that class which it is responsible for making 
classifications.) 
 
4.1 SVMs Briefly Explained 
Support vector machines, or SVMs, are learning machines that place the training vectors in high-dimensional feature 
space, labeling each vector by its class. SVMs classify data by determining a set of vectors from the training set, 
called support vectors, which outlines a hyper plane in the feature space (18,19,20). 

SVMs provide a generic mechanism to fit the surface of the hyper plane to the data through the use of a 
kernel function. The user may provide a function (e.g., linear, polynomial, or sigmoid) to the SVMs during the 
training process, which selects support vectors along the surface of this function. The number of free parameters 
used in the SVMs depends on the margin that separates the two classes but not on the number of input features, thus 
SVMs do not require a reduction in the number of features in order to avoid over fitting--an apparent advantage in 
applications such as intrusion detection. Another primary advantage of SVMs is the low expected probability of 
generalization errors. 

There are other reasons that we use SVMs for intrusion detection. The first is speed: as real-time 
performance is of primary importance to IDSs, any classifier that can potentially run “fast” is worth considering. 
The second reason is scalability: SVMs are relatively insensitive to the number of data points and the classification 
complexity does not depend on the dimensionality of the feature space (18), so they can potentially learn a larger set 
of patterns and thus be able to scale better than neural networks. Finally, SVMs give highly accurate classification of 
the patterns, as will be seen in the next section.  
 
4.2 SVM Performance Statistics 
Our results are summarized in the following tables. Table 1 gives the performance results of the five SVMs for each 
respective class of data. Table 2 shows the results of SVMs performing classification, with each SVM using as input 
the important features for all five classes. Table 3 shows the results of SVMs performing classification, with each 
SVM using as input the important and secondary features for each respective class. Table 4 shows the result of 
SVMs performing classification, with each SVM using as input the union of the important features for each class as 
obtained from PBR; the union has 30 features.  Table 5 shows the results of SVMs performing classification, with 
each SVM using as input the union of the important features for each class as obtained from the SVDFR ranking; 
the union has 23 features. 

The features identified as important by both ranking methods are described below: 
 Duration: Length of the connection made by the destination system to the host system 
 Service: Network service used by the destination system to connect to the host system 
 Source bytes: Number of bytes sent from the host system to the destination system 
 Destination bytes: Number of bytes sent from the destination system to the host system 
 Count: Number of connections made to the same host system in a given interval of time 
 Service count: Number of connections made to the same service on the same host system in a given interval of 
time 

 Destination host count: Number of connections made by the same destination system to the same host system in a 
given interval of time 

 Destination host service count: Number of connections made by the same destination system to the same service 
on the same host system in a given interval of time 

5. EXPERIMENTS USING NEURAL NETWORKS  
This section summarizes the authors’ recent work in comparing ANNs and SVMs for intrusion detection (12,13,14). 
Since a (multi-layer feedforward) ANN is capable of making multi-class classifications, a single ANN (Scaled 
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Conjugate Gradient Decent), is employed to perform the intrusion detection, using the same training and testing sets 
as those for the SVMs. 

Neural networks are used for ranking the importance of the input features, taking training time, testing 
time, and classification accuracy as the performance measure; and a set of rules is used for ranking.  Therefore, the 
method is an extension of the feature ranking method described in (16) where the cement bonding quality problem 
was studied.  Once the importance of the input feature was ranked, the ANNs are trained and tested with the data set 
containing only the important features. We then compare the performance of the trained classifier against the 
original ANN trained with data containing all input features. 
 
5.1 Artificial Neural Networks 
Artificial neural network (in the present context, multilayer, feedforward type networks) consists of a collection of 
highly-interconnected processing elements to perform an input-output transformation. The actual transformation is 
determined by the set of weights associated with the links connecting elements. The neural network gains 
knowledge about the transformation to be performed by iteratively learning from a sufficient training set of samples 
or input-output training pairs. A well-trained network can perform the transformation correctly and also possess 
some generalization capability. 

This section summarizes the use of different neural network training functions for the problem of intrusion 
detection. Since multi-layer feedforward ANNs are capable of making multi-class classifications, an ANN is 
employed to perform the intrusion detection, using the same training and testing sets as those for the SVMs. Table 6 
gives the description of the different neural network training functions used for detecting intrusions (21). 
 
5.2 ANN Performance Statistics 
Table 8 gives the comparison of the ANN with all 41 features to that of using 34 important features that have been 
obtained by our feature-ranking algorithm described in section 3.1. 

6. SUMMARY & CONCLUSIONS 
A number of observations and conclusions are drawn from the results reported: 
 SVMs outperform ANNs in the important respects of 

a. scalability (SVMs can train with a larger number of patterns, while ANNs would take a long time to train 
or fail to converge at all when the number of patterns gets large) 

b. training time and running time (SVMs run an order of magnitude faster) 
c. prediction accuracy. 

 SVMs easily achieve high detection accuracy (higher than 99%) for each of the 5 classes of data, regardless of 
whether all 41 features are used, only the important features for each class are used, or the union of all important 
features for all classes are used. 

We note, however, that the difference in accuracy figures tend to be very small and may not be statistically 
significant, especially in view of the fact that the 5 classes of patterns differ in their sizes tremendously. More 
definitive conclusions can only be made after analyzing more comprehensive sets of network traffic data. 

Regarding feature ranking, we observe that 
 The two feature ranking methods produce largely consistent results: except for the class 1 (Normal) and class 4 
(U2Su) data, the features ranked as Important by the two methods heavily overlap. 

 The most important features for the two classes of ‘Normal’ and ‘DOS’ heavily overlap. 
 ‘U2Su’ and ‘R2L’, the two smallest classes representing the most serious attacks, each has a small number of 
important features and a large number of secondary features. 

 The performances of (a) using the important features for each class, Table 2, (b) using the union of important 
features, Table 4 and Table 5, and (c) using the union of important and secondary features for each class, Table 3, 
do not show significant differences, and are all similar to that of using all 41 features. 

 Using the important features for each class gives the most remarkable performance: the testing time decreases in 
each class; the accuracy increases slightly for one class ‘Normal’, decreases slightly for two classes ‘Probe’ and 
‘DOS’, and remains the same for the two most serious attack classes. 

Our ongoing experiments include making 23-class (22 attack classes plus normal) feature identification 
using SVMs, for the purpose of designing a cost-effective and real time intrusion detection tool. Finally, we propose 
a five-SVM-based intrusion detection architecture as shown in figure 2, where the set of features to be used for each 
class can be selected by the user to optimize the overall performance of intrusion detection. 
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TABLE 1 Performance of SVMs Using 41 Features 

Class Training 
Time (sec) 

Testing 
Time (sec) Accuracy (%) 

Normal 7.66 1.26 99.55 

Probe 49.13 2.10 99.70 

DOS 22.87 1.92 99.25 

U2Su 3.38 1.05 99.87 

R2L 11.54 1.02 99.78 
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TABLE 2 Performance of SVMs Using Important Features 

Class No of Features 
Identified 

Training 
Time (sec) 

Testing 
Time (sec) Accuracy (%) 

 PBRM SVDFRM PBRM SVDFRM PBRM SVDFRM PBRM SVDFRM 

Normal 25 20 9.36 4.58 1.07 0.78 99.59 99.55 

Probe 7 11 37.71 40.56 1.87 1.20 99.38 99.36 

DOS 19 11 22.79 18.93 1.84 1.00 99.22 99.16 

U2Su 8 10 2.56 1.46 0.85 0.70 99.87 99.87 

R2L 6 6 8.76 6.79 0.73 0.72 99.78 99.72 
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TABLE 3 Performance of SVMs Using Important and Secondary Features 

Class No of Features 
Identified 

Training 
Time (sec) 

Testing 
Time (sec) Accuracy (%) 

 PBRM SVDFRM PBRM SVDFRM PBRM SVDFRM PBRM SVDFRM 

Normal 39 34 8.15 4.61 1.22 0.97 99.59 99.55 

Probe 32 21 47.56 39.69 2.09 1.45 99.65 99.56 

DOS 32 19 19.72 73.55 2.11 1.50 99.25 99.56 

U2Su 25 23 2.72 1.73 0.92 0.79 99.87 99.87 

R2L 37 20 8.25 5.94 1.25 0.91 99.80 99.78 
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TABLE 4 Performance of SVMs Using Union of Important Features (Total 30) 

Class Training 
Time (sec) 

Testing 
Time (sec) Accuracy (%) 

Normal 7.67 1.02 99.51 
Probe 44.38 2.07 99.67 
DOS 18.64 1.41 99.22 
U2Su 3.23 0.98 99.87 

R2L 9.81 1.01 99.78 
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TABLE 5 Performance of SVMs Using Union of 
Important Features (Total 23) as Ranked by SVDFM 

Class Training time 
(sec) 

Testing time  
(sec) Accuracy (%) 

Normal 4.85 0.82 99.55 
Probe 36.23 1.40 99.71 
DOS 7.77 1.32 99.20 
U2Su 1.72 0.75 99.87 
R2L 5.91 0.88 99.78 
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TABLE 6 Description of Different Neural Network Training Functions 
Function Description 
Traingd Basic gradient descent. Slow response, can be used in incremental mode training. 

Traingdm Gradient descent with momentum. Generally faster than traingd. Can be used in incremental 
mode training. 

Traingdx Adaptive learning rate. Faster training than traingd, but can only be used in batch mode 
training. 

Trainrp Resilient back propagation. Simple batch mode training algorithm with fast convergence and 
minimal storage requirements. 

Traincgf Fletcher-Reeves conjugate gradient algorithm. Have smallest storage requirements of the 
conjugate gradient algorithms. 

Traincgp Polak-Ribiere conjugate gradient algorithm. Slightly larger storage requirements than traincgf. 
Faster convergence on some problems. 

Traincgb Powell-Beale conjugate gradient algorithm. Slightly larger storage requirements than traincgp. 
Generally faster convergence. 

Trainscg Scaled conjugate gradient algorithm. The only conjugate gradient algorithm that requires no 
line search. A very good general purpose training algorithm. 

Trainbfg 
BFGS quasi-Newton method. Requires storage of approximate Hessian matrix and has more 
computation in each iteration than conjugate gradient algorithms, but usually converges in 
fewer iterations. 

Trainoss One step secant method. Compromise between conjugate gradient methods and quasi-Newton 
methods. 

Trainlm Levenberg-Marquardt algorithm. Fastest training algorithm for networks of moderate size. Has 
memory reduction feature for use when the training set is large. 
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TABLE 7 Performance of Different Neural Network Training Functions 

Function 
No of 

epochs 
Trial 1 

No of 
epochs 
Trial 2 

Accuracy 
(%) 

Trail 1 

Accuracy 
(%) 

Trail 2 
Traingd 3500 3500 61.70 48.14 

Traingdm 3500 3500 51.60 48.14 
Traingdx 3500 3500 95.38 92.83 
Trainrp 67 66 97.04 95.44 
Traincgf 891 891 82.18 82.18 
Traincgp 313 274 80.54 78.19 
Traincgb 298 256 91.57 83.11 
Trainscg 351 303 80.87 95.25 
Trainbfg 359 359 75.67 75.67 
Trainoss 638 638 93.60 93.60 
Trainlm 17 16 76.23 74.04 
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TABLE 8 Neural Network Results Using all 41 Features and 34 Important Features 
Number of 

features Accuracy (%) False positive rate 
(%) 

False negative 
rate (%) 

Number of 
epochs 

41 87.07 6.66 6.27 412 
34 81.57 18.19 0.25 27 
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FIGURE 1 Data distribution 
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FIGURE 2 Proposed 5 class SVM intrusion detection architecture 
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