
Mukkamala, Sung 1

Feature Selection for Intrusion Detection using
Neural Networks and Support Vector Machines

Srinivas Mukkamala1 & Andrew H. Sung1,2

1Department of Computer Science
2Institute for Complex Additive Systems Analysis

New Mexico Tech
Socorro, New Mexico 87801
srinivas|sung@cs.nmt.edu

ABSTRACT
Computational Intelligence (CI) methods are increasingly being used for problem solving. This paper concerns
using CI-type learning machines for intrusion detection, which is a problem of general interest to transportation
infrastructure protection since a necessary task thereof is to protect the computers responsible for the infrastructure’s
operational control, and an effective Intrusion Detection System (IDS) is essential for ensuring network security.

Two classes of learning machines for IDSs are studied: Artificial Neural Networks (ANNs) and Support
Vector Machines (SVMs). We show that SVMs are superior to ANNs in three critical respects of IDSs: SVMs train
and run an order of magnitude faster; SVMs scale much better; and SVMs give higher classification accuracy.

We also address the related issue of ranking the importance of input features, which is itself a problem of
great interest. Since elimination of the insignificant and/or useless inputs leads to a simplified problem and possibly
faster and more accurate detection, feature selection is very important in intrusion detection.

Two methods for feature ranking are presented: the first one is independent of the modeling tool, while the
second method is specific to SVMs. The two methods are applied to identify the important features in the 1999
DARPA intrusion data set. It is shown that the two methods produce results that are largely consistent.

We present experimental results that indicate that SVM-based IDSs using a reduced number of features can
deliver enhanced or comparable performance. Finally, an SVM-based IDS for class-specific detection is proposed.

1. INTRODUCTION
This paper concerns computer networks intrusion detection and the related issue of identifying important input
features for intrusion detection. Intrusion detection is a problem of significance to transportation infrastructure
protection owing to the fact that computer networks are at the core of the operational control of much of the nation’s
transportation. We use two types of learning machines to build Intrusion Detection Systems (IDSs): Artificial Neural
Networks or ANNs (1) and Support Vector Machines or SVMs (2). Since the ability to identify the important inputs
and redundant inputs of a classifier results in reduced problem size, faster training and possibly more accurate
results, it is critical to be able to identify the important features of network traffic data for intrusion detection in
order for the IDS to achieve maximal performance. Therefore, we also study feature ranking and selection, which is
itself a problem of great interest in data mining and model construction based on experimental data.

Since most of the intrusions can be uncovered by examining patterns of user activities, many IDSs have
been built by utilizing the recognized attack and misuse patterns to develop learning machines (3,4,5,6,7,8,9,10,11).
In our recent work, SVMs are found to be superior to ANNs in many important respects of intrusion detection
(12,13,14); we will therefore concentrate on SVMs and briefly summarize the results of ANNs.

The data we used in our experiments originated from MIT’s Lincoln Lab. It was developed for intrusion
detection system evaluations by DARPA and is considered a benchmark for intrusion detection evaluations (15).

We performed experiments to rank the importance of input features for each of the five classes (normal,
probe, denial of service, user to super-user, and remote to local) of patterns in the DARPA data. It is shown that
using only the important features for classification gives good accuracies and, in certain cases, reduces the training
time and testing time of the SVM classifier.

In the rest of the paper, a brief introduction to the data we used is given in section 2. In section 3 we
describe two methods for ranking the importance of input features. In section 4 we present the experimental results
of using SVMs for feature ranking. In section 5 we present the experimental results of using ANNs. In section 6 we
summarize our results and give a brief description of our proposed IDS architecture.

Mukkamala, Sung 2

2. THE DATA
In the 1998 DARPA intrusion detection evaluation program, an environment was set up to acquire raw TCP/IP
dump data for a network by simulating a typical U.S. Air Force LAN. The LAN was operated like a real
environment, but being blasted with multiple attacks. For each TCP/IP connection, 41 various quantitative and
qualitative features were extracted. Of this database a subset of 494021 data were used in our experiments reported
in this paper, of which approximately 20% represent normal patterns, the rest 80% of patterns are attacks belonging
to four different categories.

The four different categories of attack patterns are:
A. Denial of Service (DOS) Attacks: A denial of service attack is a class of attacks in which an attacker makes

some computing or memory resource too busy or too full to handle legitimate requests, or denies legitimate users
access to a machine. Examples are Apache2, Back, Land, Mail bomb, SYN Flood, Ping of death, Process table,
Smurf, Syslogd, Teardrop, Udpstorm.

B. User to Superuser or Root Attacks (U2Su): User to root exploits are a class of attacks in which an attacker starts
out with access to a normal user account on the system and is able to exploit vulnerability to gain root access to
the system. Examples are Eject, Ffbconfig, Fdformat, Loadmodule, Perl, Ps, Xterm.

C. Remote to User Attacks (R2L): A remote to user attack is a class of attacks in which an attacker sends packets to
a machine over a network−but who does not have an account on that machine; exploits some vulnerability to
gain local access as a user of that machine. Examples are Dictionary, Ftp_write, Guest, Imap, Named, Phf,
Sendmail, Xlock, Xsnoop.

D. Probing (Probe): Probing is a class of attacks in which an attacker scans a network of computers to gather
information or find known vulnerabilities. An attacker with a map of machines and services that are available on
a network can use this information to look for exploits. Examples are Ipsweep, Mscan, Nmap, Saint, Satan.

3. RANKING THE SIGNIFICANCE OF INPUTS
Feature selection and ranking (16,17) is an important issue in intrusion detection. Of the large number of features
that can be monitored for intrusion detection purpose, which are truly useful, which are less significant, and which
may be useless? The question is relevant because the elimination of useless features (the so-called audit trail
reduction) enhances the accuracy of detection while speeding up the computation, thus improving the overall
performance of an IDS. In cases where there are no useless features, by concentrating on the most important ones we
may well improve the time performance of an IDS without affecting the accuracy of detection in statistically
significant ways.

The feature ranking and selection problem for intrusion detection is similar in nature to various engineering
problems that are characterized by:
 Having a large number of input variables x = (x1, x2, …, xn) of varying degrees of importance to the output y; i.e.,
some elements of x are essential, some are less important, some of them may not be mutually independent, and
some may be useless or irrelevant (in determining the value of y)

 Lacking an analytical model that provides the basis for a mathematical formula that precisely describes the input-
output relationship, y = F (x)

 Having available a finite set of experimental data, based on which a model (e.g. neural networks) can be built for
simulation and prediction purposes

Due to the lack of an analytical model, one can only seek to determine the relative importance of the input
variables through empirical methods. A complete analysis would require examination of all possibilities, e.g., taking
two variables at a time to analyze their dependence or correlation, then taking three at a time, etc. This, however, is
both infeasible (requiring 2n experiments!) and not infallible (since the available data may be of poor quality in
sampling the whole input space). In the following, therefore, we apply the technique of deleting one feature at a time
(16) to rank the input features and identify the most important ones for intrusion detection using SVMs.

3.1 Performance-Based Ranking Method (PBRM)
We first describe a general (i.e., independent of the modeling tools being used), performance-based input ranking
methodology: One input feature is deleted from the data at a time; the resultant data set is then used for the training
and testing of the classifier. Then the classifier’s performance is compared to that of the original classifier (based on
all features) in terms of relevant performance criteria. Finally, the importance of the feature is ranked according to a
set of rules based on the performance comparison.

The procedure is summarized as follows:
1. compose the training set and the testing set;

Mukkamala, Sung 3

for each feature do the following
2. delete the feature from the (training and testing) data;
3. use the resultant data set to train the classifier;
4. analyze the performance of the classifier using the test set, in terms of the selected performance criteria;
5. rank the importance of the feature according to the rules;

3.2 Performance Metrics
To rank the importance of the 41 features (of the DARPA data) in an SVM-based IDS, we consider three main
performance criteria: overall accuracy of (5-class) classification; training time; and testing time. Each feature will be
ranked as “important”, “secondary”, or “insignificant”, according to the following rules that are applied to the result
of performance comparison of the original 41-feature SVM and the 40-feature SVM:
1. If accuracy decreases and training time increases and testing time decreases, then the feature is important
2. If accuracy decreases and training time increases and testing time increases, then the feature is important
3. If accuracy decreases and training time decreases and testing time increases, then the feature is important
4. If accuracy unchanges and training time increases and testing time increases, then the feature is important
5. If accuracy unchanges and training time decreases and testing time increases, then the feature is secondary
6. If accuracy unchanges and training time increases and testing time decreases, then the feature is secondary
7. If accuracy unchanges and training time decreases and testing time decreases, then the feature is unimportant
8. If accuracy increases and training time increases and testing time decreases, then the feature is secondary
9. If accuracy increases and training time decreases and testing time increases, then the feature is secondary
10. If accuracy increases and training time decreases and testing time decreases, then the feature is unimportant

According to the above rules, the 41 features are ranked into the 3 types of {Important features},
<Secondary features>, or (Unimportant features), for each of the 5 classes of patterns, as follows:
class 1: {1,3,5,6,8-10,14,15,17,20-23,25-29,33,35,36,38,39,41}, <2,4,7,11,12,16,18,19,24,30,31,34,37,40>, (13,32)
class 2: {3,5,6,23,24,32,33}, <1,4,7-9,12-19,21,22,25-28,34-41>, (2,10,11,20,29,30,31,36,37)
class 3: {1,3,5,6,8,19,23-28,32,33,35,36,38-41}, <2,7,9-11,14,17,20,22,29,30,34,37>, (4,12,13,15,16,18,19,21,3)
class 4: {5,6,15,16,18,32,33}, <7,8,11,13,17,19-24,26,30,36-39>, (9,10,12,14,27,29,31,34,35,40,41)
class 5: {3,5,6,24,32,33}, <2,4,7-23,26-31,34-41>, (1,20,25,38)

3.3 SVM-specific Feature Ranking Method
Information about the features and their contribution towards classification is hidden in the support vector decision
function. Using this information one can rank their significance, i.e., in the equation

F (X) = ΣWiXi + b
The point X belongs to the positive class if F(X) is a positive value. The point X belongs to the negative class if
F(X) is negative. The value of F(X) depends on the contribution of each value of X and Wi. The absolute value of
Wi measures the strength of the classification. If Wi is a large positive value then the ith feature is a key factor for
positive class. If Wi is a large negative value then the ith feature is a key factor for negative class. If Wi is a value
close to zero on either the positive or the negative side, then the ith feature does not contribute significantly to the
classification. Based on this idea, a ranking can be done by considering the support vector decision function.

3.4 Support Vector Decision Function Ranking Method (SVDFRM)
The input ranking is done as follows: First the original data set is used for the training of the classifier. Then the
classifier’s decision function is used to rank the importance of the features. The procedure is:
1. Calculate the weights from the support vector decision function;
2. Rank the importance of the features by the absolute values of the weights;

According to the ranking method, the 41 features are placed into the 3 categories of {Important features},
<Secondary features> or (Unimportant features), for each of the 5 classes of patterns, as follows:
class 1: {1-6,10,12,17,23,24,27,28,29,31-34,36,39}, <11-14,16,19,22,25,26,30,35,37,38, 40,41>, (7-9,15,18,20,21)
class 2: {1-6,23,24,29,32,33}, <10,12,22,28,34-36,38-41>, (7-9,11,13-21,25-27,30,31,37,40)
class 3: {1,5,6,23-26,32,36,38,39}, <2,3,4,10,12,29,33,34>, (7-9,11,13-22,27,28,30,31,35-37,40,41)
class 4: {1-6,12,23,24,32,33}, <4,10,13,14,17,22,27,29,31,34,36,37,39>,

(7-9,11,15,16,18-21,25,26,28,30,35,38,40,41)
class 5: {1,3,5,6,32,33}, <2,4,10,12,22-24,29,31,34,36,37,38,40>, (7,-9,11,13-21,25-28,30,35,39,41)

Mukkamala, Sung 4

4. EXPERIMENTS USING SVMs
SVMs are used, in each of the two methods, for ranking the importance of the input features. Once the importance of
the input features was ranked, the classifiers were trained and tested with only the important features. Further, we
validate the ranking by comparing the performance of the classifier using all input features to that using the
important features; and we also compare the performance of a classifier using the union of the important features for
all fives classes. (Because SVMs are only capable of binary classifications, we will need to employ five SVMs for
the five-class identification problem in intrusion detection. But since the set of important features may differ from
class to class, using five SVMs becomes an advantage rather than a hindrance, i.e., in building an IDS using five
SVMs, each SVM can use only the important features for that class which it is responsible for making
classifications.)

4.1 SVMs Briefly Explained
Support vector machines, or SVMs, are learning machines that place the training vectors in high-dimensional feature
space, labeling each vector by its class. SVMs classify data by determining a set of vectors from the training set,
called support vectors, which outlines a hyper plane in the feature space (18,19,20).

SVMs provide a generic mechanism to fit the surface of the hyper plane to the data through the use of a
kernel function. The user may provide a function (e.g., linear, polynomial, or sigmoid) to the SVMs during the
training process, which selects support vectors along the surface of this function. The number of free parameters
used in the SVMs depends on the margin that separates the two classes but not on the number of input features, thus
SVMs do not require a reduction in the number of features in order to avoid over fitting--an apparent advantage in
applications such as intrusion detection. Another primary advantage of SVMs is the low expected probability of
generalization errors.

There are other reasons that we use SVMs for intrusion detection. The first is speed: as real-time
performance is of primary importance to IDSs, any classifier that can potentially run “fast” is worth considering.
The second reason is scalability: SVMs are relatively insensitive to the number of data points and the classification
complexity does not depend on the dimensionality of the feature space (18), so they can potentially learn a larger set
of patterns and thus be able to scale better than neural networks. Finally, SVMs give highly accurate classification of
the patterns, as will be seen in the next section.

4.2 SVM Performance Statistics
Our results are summarized in the following tables. Table 1 gives the performance results of the five SVMs for each
respective class of data. Table 2 shows the results of SVMs performing classification, with each SVM using as input
the important features for all five classes. Table 3 shows the results of SVMs performing classification, with each
SVM using as input the important and secondary features for each respective class. Table 4 shows the result of
SVMs performing classification, with each SVM using as input the union of the important features for each class as
obtained from PBR; the union has 30 features. Table 5 shows the results of SVMs performing classification, with
each SVM using as input the union of the important features for each class as obtained from the SVDFR ranking;
the union has 23 features.

The features identified as important by both ranking methods are described below:
 Duration: Length of the connection made by the destination system to the host system
 Service: Network service used by the destination system to connect to the host system
 Source bytes: Number of bytes sent from the host system to the destination system
 Destination bytes: Number of bytes sent from the destination system to the host system
 Count: Number of connections made to the same host system in a given interval of time
 Service count: Number of connections made to the same service on the same host system in a given interval of
time

 Destination host count: Number of connections made by the same destination system to the same host system in a
given interval of time

 Destination host service count: Number of connections made by the same destination system to the same service
on the same host system in a given interval of time

5. EXPERIMENTS USING NEURAL NETWORKS
This section summarizes the authors’ recent work in comparing ANNs and SVMs for intrusion detection (12,13,14).
Since a (multi-layer feedforward) ANN is capable of making multi-class classifications, a single ANN (Scaled

Mukkamala, Sung 5

Conjugate Gradient Decent), is employed to perform the intrusion detection, using the same training and testing sets
as those for the SVMs.

Neural networks are used for ranking the importance of the input features, taking training time, testing
time, and classification accuracy as the performance measure; and a set of rules is used for ranking. Therefore, the
method is an extension of the feature ranking method described in (16) where the cement bonding quality problem
was studied. Once the importance of the input feature was ranked, the ANNs are trained and tested with the data set
containing only the important features. We then compare the performance of the trained classifier against the
original ANN trained with data containing all input features.

5.1 Artificial Neural Networks
Artificial neural network (in the present context, multilayer, feedforward type networks) consists of a collection of
highly-interconnected processing elements to perform an input-output transformation. The actual transformation is
determined by the set of weights associated with the links connecting elements. The neural network gains
knowledge about the transformation to be performed by iteratively learning from a sufficient training set of samples
or input-output training pairs. A well-trained network can perform the transformation correctly and also possess
some generalization capability.

This section summarizes the use of different neural network training functions for the problem of intrusion
detection. Since multi-layer feedforward ANNs are capable of making multi-class classifications, an ANN is
employed to perform the intrusion detection, using the same training and testing sets as those for the SVMs. Table 6
gives the description of the different neural network training functions used for detecting intrusions (21).

5.2 ANN Performance Statistics
Table 8 gives the comparison of the ANN with all 41 features to that of using 34 important features that have been
obtained by our feature-ranking algorithm described in section 3.1.

6. SUMMARY & CONCLUSIONS
A number of observations and conclusions are drawn from the results reported:
 SVMs outperform ANNs in the important respects of

a. scalability (SVMs can train with a larger number of patterns, while ANNs would take a long time to train
or fail to converge at all when the number of patterns gets large)

b. training time and running time (SVMs run an order of magnitude faster)
c. prediction accuracy.

 SVMs easily achieve high detection accuracy (higher than 99%) for each of the 5 classes of data, regardless of
whether all 41 features are used, only the important features for each class are used, or the union of all important
features for all classes are used.

We note, however, that the difference in accuracy figures tend to be very small and may not be statistically
significant, especially in view of the fact that the 5 classes of patterns differ in their sizes tremendously. More
definitive conclusions can only be made after analyzing more comprehensive sets of network traffic data.

Regarding feature ranking, we observe that
 The two feature ranking methods produce largely consistent results: except for the class 1 (Normal) and class 4
(U2Su) data, the features ranked as Important by the two methods heavily overlap.

 The most important features for the two classes of ‘Normal’ and ‘DOS’ heavily overlap.
 ‘U2Su’ and ‘R2L’, the two smallest classes representing the most serious attacks, each has a small number of
important features and a large number of secondary features.

 The performances of (a) using the important features for each class, Table 2, (b) using the union of important
features, Table 4 and Table 5, and (c) using the union of important and secondary features for each class, Table 3,
do not show significant differences, and are all similar to that of using all 41 features.

 Using the important features for each class gives the most remarkable performance: the testing time decreases in
each class; the accuracy increases slightly for one class ‘Normal’, decreases slightly for two classes ‘Probe’ and
‘DOS’, and remains the same for the two most serious attack classes.

Our ongoing experiments include making 23-class (22 attack classes plus normal) feature identification
using SVMs, for the purpose of designing a cost-effective and real time intrusion detection tool. Finally, we propose
a five-SVM-based intrusion detection architecture as shown in figure 2, where the set of features to be used for each
class can be selected by the user to optimize the overall performance of intrusion detection.

Mukkamala, Sung 6

7. ACKNOWLEDGEMENTS
Partial support for this research received from ICASA (Institute for Complex Additive Systems Analysis, a division
of New Mexico Tech) and IASP capacity building grant are gratefully acknowledged. We would also like to
acknowledge many insightful suggestions from Dr. Jean-Louis Lassez that helped clarify our ideas and contributed
to our work. Mr. Sanjay Veeramachaneni and Ms. Guadalupe Torres helped perform or repeat some of the
experiments and we acknowledge their valuable assistance.

8. REFERENCES
1. Hertz J., Krogh A., Palmer R. G. (1991) Introduction to the Theory of Neural Computation, Addison –Wesley.
2. Joachims T. (1998) “Making Large-Scale SVM Learning Practical,” LS8-Report, University of Dortmund, LS

VIII-Report.
3. Denning D. (1987) “An Intrusion-Detection Model,” IEEE Transactions on Software Engineering, Vol. SE-13,

No. 2, pp.222-232.
4. Kumar S., Spafford E. H. (1994) “An Application of Pattern Matching in Intrusion Detection,” Technical

Report CSD-TR-94-013. Purdue University.
5. Ghosh A. K. (1999). “Learning Program Behavior Profiles for Intrusion Detection,” In Proceedings of the 1st

USENIX Workshop on Intrusion Detection and Network Monitoring.
6. Cannady J. (1998) “Applying Neural Networks for Misuse Detection,” Proceedings of 21st National Information

Systems Security Conference, pp.368-381.
7. Ryan J., Lin M-J., Miikkulainen R. (1997) “Intrusion Detection with Neural Networks,” in Advances in Neural

Information Processing Systems, Vol. 10, Cambridge, MA: MIT Press.
8. Debar H., Becke M., Siboni D. (1992) “A Neural Network Component for an Intrusion Detection System,”

Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy, pp.240-250.
9. Debar H., Dorizzi. B. (1992) “An Application of a Recurrent Network to an Intrusion Detection System,”

Proceedings of the IEEE International Joint Conference on Neural Networks, pp.78-83.
10. Luo J., Bridges S. M. (2000) “Mining Fuzzy Association Rules and Fuzzy Frequency Episodes for Intrusion

Detection,” International Journal of Intelligent Systems, John Wiley & Sons, Vol. 15, No. 8, pp.687-704.
11. Cramer M., et. al. (1995) “New Methods of Intrusion Detection using Control-Loop Measurement,”

Proceedings of the Technology in Information Security Conference (TISC) ’95, pp.1-10.
12. Mukkamala S., Janoski G., Sung A. H. (2001) “Monitoring Information System Security,” Proceedings of the

11th Annual Workshop on Information Technologies & Systems, pp.139-144.
13. Mukkamala S., Janoski G., Sung A. H. (2002) “Intrusion Detection Using Neural Networks and Support Vector

Machines,” Proceedings of IEEE International Joint Conference on Neural Networks, pp.1702-1707.
14. Mukkamala S., Janoski G., Sung A. H. (2002) “Comparison of Neural Networks and Support Vector Machines

in Intrusion Detection,” Workshop on Statistical and Machine Learning Techniques in Computer Intrusion
Detection, 2002, http://www.mts.jhu.edu/~cidwkshop/abstracts.html

15. http://kdd.ics.uci.edu/databases/kddcup99/task.htm.
16. Sung A. H. (1998) “Ranking Importance of Input Parameters of Neural Networks,” Expert Systems with

Applications, Vol. 15, pp.405-41.
17. Lin, Y., Cunningham, G. A. (1995) “A New Approach to Fuzzy-Neural System Modeling,” IEEE Transactions

on Fuzzy Systems, Vol. 3, No. 2, pp.190-198.
18. Joachims T. (2000) “SVMlight is an Implementation of Support Vector Machines (SVMs) in C,”

http://ais.gmd.de/~thorsten/svm_light. University of Dortmund. Collaborative Research Center on “Complexity
Reduction in Multivariate Data” (SFB475).

19. Vladimir V. N. (1995) The Nature of Statistical Learning Theory. Springer.
20. Joachims T. (2000) “Estimating the Generalization Performance of a SVM Efficiently,” Proceedings of the

International Conference on Machine Learning, Morgan Kaufman.
21. Demuth H., Beale M. (2000) Neural Network Toolbox User’s Guide. Math Works Inc. Natick, MA.

Mukkamala, Sung 7

List of Tables and Figures:

Tables:
 Table 1 Performance of SVMs using 41 features
 Table 2 Performance of SVMs using important features
 Table 3 Performance of SVMs using important and secondary features
 Table 4 Performance of SVMs using union of important features (total 30)
 Table 5 Performance of SVMs using union of important features (total 23) as ranked by SVDF
 Table 6 Description of different neural network training functions
 Table 7 Performance of different neural network training functions
 Table 8 Neural network results using all 34 important features

Figures:
 Figure 1 Data distribution
 Figure 2 Proposed 5 class SVM intrusion detection architecture

Mukkamala, Sung 8

TABLE 1 Performance of SVMs Using 41 Features

Class Training
Time (sec)

Testing
Time (sec) Accuracy (%)

Normal 7.66 1.26 99.55

Probe 49.13 2.10 99.70

DOS 22.87 1.92 99.25

U2Su 3.38 1.05 99.87

R2L 11.54 1.02 99.78

Mukkamala, Sung 9

TABLE 2 Performance of SVMs Using Important Features

Class No of Features
Identified

Training
Time (sec)

Testing
Time (sec) Accuracy (%)

 PBRM SVDFRM PBRM SVDFRM PBRM SVDFRM PBRM SVDFRM

Normal 25 20 9.36 4.58 1.07 0.78 99.59 99.55

Probe 7 11 37.71 40.56 1.87 1.20 99.38 99.36

DOS 19 11 22.79 18.93 1.84 1.00 99.22 99.16

U2Su 8 10 2.56 1.46 0.85 0.70 99.87 99.87

R2L 6 6 8.76 6.79 0.73 0.72 99.78 99.72

Mukkamala, Sung 10

TABLE 3 Performance of SVMs Using Important and Secondary Features

Class No of Features
Identified

Training
Time (sec)

Testing
Time (sec) Accuracy (%)

 PBRM SVDFRM PBRM SVDFRM PBRM SVDFRM PBRM SVDFRM

Normal 39 34 8.15 4.61 1.22 0.97 99.59 99.55

Probe 32 21 47.56 39.69 2.09 1.45 99.65 99.56

DOS 32 19 19.72 73.55 2.11 1.50 99.25 99.56

U2Su 25 23 2.72 1.73 0.92 0.79 99.87 99.87

R2L 37 20 8.25 5.94 1.25 0.91 99.80 99.78

Mukkamala, Sung 11

TABLE 4 Performance of SVMs Using Union of Important Features (Total 30)

Class Training
Time (sec)

Testing
Time (sec) Accuracy (%)

Normal 7.67 1.02 99.51
Probe 44.38 2.07 99.67
DOS 18.64 1.41 99.22
U2Su 3.23 0.98 99.87

R2L 9.81 1.01 99.78

Mukkamala, Sung 12

TABLE 5 Performance of SVMs Using Union of
Important Features (Total 23) as Ranked by SVDFM

Class Training time
(sec)

Testing time
(sec) Accuracy (%)

Normal 4.85 0.82 99.55
Probe 36.23 1.40 99.71
DOS 7.77 1.32 99.20
U2Su 1.72 0.75 99.87
R2L 5.91 0.88 99.78

Mukkamala, Sung 13

TABLE 6 Description of Different Neural Network Training Functions
Function Description
Traingd Basic gradient descent. Slow response, can be used in incremental mode training.

Traingdm Gradient descent with momentum. Generally faster than traingd. Can be used in incremental
mode training.

Traingdx Adaptive learning rate. Faster training than traingd, but can only be used in batch mode
training.

Trainrp Resilient back propagation. Simple batch mode training algorithm with fast convergence and
minimal storage requirements.

Traincgf Fletcher-Reeves conjugate gradient algorithm. Have smallest storage requirements of the
conjugate gradient algorithms.

Traincgp Polak-Ribiere conjugate gradient algorithm. Slightly larger storage requirements than traincgf.
Faster convergence on some problems.

Traincgb Powell-Beale conjugate gradient algorithm. Slightly larger storage requirements than traincgp.
Generally faster convergence.

Trainscg Scaled conjugate gradient algorithm. The only conjugate gradient algorithm that requires no
line search. A very good general purpose training algorithm.

Trainbfg
BFGS quasi-Newton method. Requires storage of approximate Hessian matrix and has more
computation in each iteration than conjugate gradient algorithms, but usually converges in
fewer iterations.

Trainoss One step secant method. Compromise between conjugate gradient methods and quasi-Newton
methods.

Trainlm Levenberg-Marquardt algorithm. Fastest training algorithm for networks of moderate size. Has
memory reduction feature for use when the training set is large.

Mukkamala, Sung 14

TABLE 7 Performance of Different Neural Network Training Functions

Function
No of

epochs
Trial 1

No of
epochs
Trial 2

Accuracy
(%)

Trail 1

Accuracy
(%)

Trail 2
Traingd 3500 3500 61.70 48.14

Traingdm 3500 3500 51.60 48.14
Traingdx 3500 3500 95.38 92.83
Trainrp 67 66 97.04 95.44
Traincgf 891 891 82.18 82.18
Traincgp 313 274 80.54 78.19
Traincgb 298 256 91.57 83.11
Trainscg 351 303 80.87 95.25
Trainbfg 359 359 75.67 75.67
Trainoss 638 638 93.60 93.60
Trainlm 17 16 76.23 74.04

Mukkamala, Sung 15

TABLE 8 Neural Network Results Using all 41 Features and 34 Important Features
Number of

features Accuracy (%) False positive rate
(%)

False negative
rate (%)

Number of
epochs

41 87.07 6.66 6.27 412
34 81.57 18.19 0.25 27

Mukkamala, Sung 16

FIGURE 1 Data distribution

Attack Breakdown

smurf.
57.32215%

neptune.
21.88491% portsweep.

0.21258%

satan.
0.32443%

Other
0.93391%

ipsweep.
0.25480%

normal.
19.85903%

loadmodule.
0.00018%

perl.
0.00006%

spy.
0.00004%

phf.
0.00008%

multihop.
0.00014%

pod.
0.00539%

guess_passwd.
0.00108%

ftp_write.
0.00016%

rootkit.
0.00020%

imap.
0.00024%

nmap.
0.04728%

back.
0.04497%

warezclient.
0.02082%

teardrop.
0.01999%

buffer_overflow.
0.00061%

warezmaster.
0.00041%

land.
0.00043%

smurf.

neptune.

normal.

satan.

ipsweep.

portsweep.

nmap.

back.

warezclient.

teardrop.

pod.

guess_passwd.

buffer_overflow.

land.

warezmaster.

imap.

rootkit.

loadmodule.

ftp_write.

multihop.

phf.

perl.

spy.

Mukkamala, Sung 17

FIGURE 2 Proposed 5 class SVM intrusion detection architecture

Servers

Network Data
Preprocessor

IDS

SVM 1 (Normal)

SVM 2 (Probe)

SVM 3 (DOS)

SVM 4 (U2Su)

SVM 5 (R2L)

Flag?

System

Administrator

Firewall

Internet

