
Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 735–741

ISBN 978-83-60810-22-4
ISSN 1896-7094

Malware Detection Using Machine Learning
Dragoş Gavriluţ1,2, Mihai Cimpoeşu1,2, Dan Anton1,2, Liviu Ciortuz1

1 - Faculty of Computer Science, “Al. I. Cuza” University of Iaşi, Romania
2 - BitDefender Research Lab, Iaşi, Romania

Email: {gdt, mcimpoesu, dan.anton, ciortuz}@info.uaic.ro

Abstract—We propose a versatile framework in which one
can employ different machine learning algorithms to successfully
distinguish between malware files and clean files, while aiming
to minimise the number of false positives. In this paper we
present the ideas behind our framework by working firstly
with cascade one-sided perceptrons and secondly with cascade
kernelized one-sided perceptrons. After having been successfully
tested on medium-size datasets of malware and clean files, the
ideas behind this framework were submitted to a scaling-up
process that enable us to work with very large datasets of
malware and clean files.

I. I NTRODUCTION

M ALWARE is defined as software designed to infiltrate
or damage a computer system without the owner’s in-

formed consent. Malware is actually a generic definition forall
kind of computer threats. A simple classification of malware
consists of file infectors and stand-alone malware. Another
way of classifying malware is based on their particular action:
worms, backdoors, trojans, rootkits, spyware, adware etc.

Malware detection through standard, signature based meth-
ods [1] is getting more and more difficult since all current
malware applications tend to have multiple polymorphic layers
to avoid detection or to use side mechanisms to automatically
update themselves to a newer version at short periods of time
in order to avoid detection by any antivirus software. For an
example of dynamical file analysis for malware detection, via
emulation in a virtual environment, the interested reader can
see [2]. Classical methods for the detection of metamorphic
viruses are described in [3].

An overview on different machine learning methods that
were proposed for malware detection is given in [4]. Here we
give a few references to exemplify such methods.

− In [5], boosted decision trees working onn-grams are found
to produce better results than both the Naive Bayes clasifier
and Support Vector Machines.
− [6] uses automatic extraction of association rules on
Windows API execution sequences to distinguish between
malware and clean program files. Also using association rules,
but on honeytokens of known parameters, is [7].
− In [8] Hidden Markov Models are used to detect whether
a given program file is (or is not) a variant of a previous
program file. To reach a similar goal, [9] employs Profile
Hidden Markov Models, which have been previously used with
great success for sequence analysis in bioinformatics.
− The capacity of neural networks to detect polymorphic
malware is explored in [10]. In [11], Self-Organizing Maps are

used to identify patterns of behaviour for viruses in Windows
exectable files.

In this paper, we present aframeworkfor malware detection
aiming to get as few false positives as possible, by using
a simple and a simple multi-stage combination (cascade) of
different versions of the perceptron algorithm [12]. Other
automate classification algorithms [13] could also be used in
this framework, but we do not explore here this alternative.The
main stepsperformed through this framework are sketched as
follows:

1. A set of featuresis computed for every binary file in the
training or testdatasets(presented in Section II), based on
many possible ways of analyzing a malware.
2. A machine learning system based firstly on one-sided
perceptrons, and then on feature mapped one-sided perceptrons
and a kernelized one-sided perceptrons (Section III), combined
with feature selection based on the F1 and F2 scores, is trained
on a medium-size dataset consisting of clean and malware
files. Cross-validation is then performed in order to choose
the right values for parameters. Finally, tests are performed
on another, non-related dataset. The obtained results (see
Section IV) were very encouraging.
3. In the end (Section V) we will analyse different aspects
involved in the scale-up of our framework to identifying
malware files on very large training datasets.

II. DATASETS

We used three datasets: atraining dataset, atest dataset,
and a“scale-up” dataset. The number of malware files and
respectively clean files in these datasets is shown in the first
two columns of Table I. As stated above, our main goal is
to achieve malware detection with only a few (if possible 0)
false positives, therefore the clean files in this dataset (and
also in the scale-up dataset) is much larger than the number
of malware files.

From the whole feature set that we created for malware
detection, 308 binary features were selected for the experi-
ments to be presented in this paper. Files that generate similar
values for the chosen feature set were counted only once.
The last two columns in Table I show the total number of
unique combinations of the 308 selected binary features in the
training, test and respectively scale-up datasets. Note that the
number of clean combinations — i.e combinations of feature
values for the clean files — in the three datasets is much
smaller than the number of malware unique combinations

735

736 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

TABLE I
NUMBER OF FILES ANDUNIQUE COMBINATIONS OF FEATURE VALUES IN

THE TRAINING , TEST, AND SCALE-UP DATASETS.

Files Unique combinations
Database malware clean malware clean

Training 27475 273133 7822 415
Test 11605 6522 506 130
Scale-up approx. 3M approx. 180M 12817 16437

TABLE II
MALWARE DISTRIBUTION IN THE TRAINING AND TEST DATASETS.

Training Dataset Test Dataset

Malware Unique combinations
type Files of feature values Files

Backdoor 35.52% 40.19% 9.16%
Hacktool 1.53% 1.73% 0.00%
Rootkit 0.09% 0.15% 0.04%
Trojan 48.06% 43.15% 37.17%
Worm 12.61% 12.11% 33.36%
Other malware 2.19% 2.66% 20.26%

because most of the features were created to emphasize an
aspect (either a geometrical form or behaviour aspect) of
malware files.

The clean files in the training database are mainly system
files (from different versions of operating systems) and exe-
cutable and library files from different popular applications.
We also use clean files that are packed or have the same form
or the same geometrical similarities with malware files (e.guse
the same packer) in order to better train and test the system.

The malware files in the training dataset have been taken
from the Virus Heaven collection. The test dataset contains
malware files from the WildList collection and clean files
from different operating systems (other files that the ones used
in the first database). The malware collection in the training
and test datasets consists of trojans, backdoors, hacktools,
rootkits, worms and other types of malware. The first and
third columns in Table II represent the percentage of those
malware types from the total number of files of the training
and respectively test datasets. The second column in Table II
represents the corresponding percentage of malware unique
combinations from the total number of unique combinations
of feature values for the training dataset. As shown in the first
and lasts column of Table II, the distribution of malware types
in this test dataset is significantly different from the malware
distribution in the training dataset.

The third, large dataset was used for testing the scaling-
up capabilities of our learning algorithms. This dataset was
divided into 10 parts denoted asS10, S20, .., S100, whereSi

representsi% of the total dataset, andSi ⊂ Si+10. We used
these parts in order to evaluate the training speed and the
malware detection rate for larger and larger datasets.

III. A LGORITHMS

The main goal of this section is to modify the perceptron
algorithm [12], so as to correctly detect malware files, while

Algorithm 1 The Perceptron Training Subroutine
SubTrain (R, LR Malware, LR Clean) :
γi = 0
i = 1, . . . , n
for all record inR do

if Fitness(record)6= record.labelthen
for all γi do

if record.Fi 6= 0 then
if record.label = 1then

γi = γi + LR Malware
else

γi = γi + LR Clean
end if

end if
end for

end if
end for
for all wi do

wi = wi + γi

end for
End sub

forcing (if possible) a 100% detection rate for one category.
In the sequel we will use the following data structures:

− F = (fa1, fa2, . . . , fan) is an array representing the feature
values associated to a file, wherefai are file features.
− Ri = (Fi, labeli) is a record, whereFi is an array of file
feature as above, andlabeli is a boolean tag. The value of
labeli identifies the file characterised by the array of feature
valuesFi as being either a malware file or a clean file.
− R = (R1, R2, . . . Rm) is the set of records associated to
the training files that we use.

We use non-stochastic versions of the perceptron algorithm
so that we can parallelize the training process. This measure
will enable us to speed up the training process on large
datasets.

Algorithm 1 is the the standardperceptronalgorithm. In-
stead of working with floats, it uses a large integer repre-
sentation for the weightswi, i = 1 . . . n, where n is the
total number of attributes/features. This adaptation is non-
restrictive, assuming multiplication with a certain factor related
to the representation. Other notations used by this algorithm
are:

− γi, i = 1 . . . n, are the additive values that will modify the
weightswi after one iteration;
− LR Malware and LR Clean are the learning rate con-
stants for the malware and respectively the clean sets of files.

The perceptron’s fitness function is defined as:
Fitness (Ri) = Sign(

∑n

j=0
wjRi.Fj − Threshold), where

Ri.Fj denotes the value of the featurefaj in the file record
Ri. We defineSign(x) = 1 if x ≥ 0, and -1 otherwise.

Algorithm 2, henceforth called theone-sided perceptronis
a modified version of Algorithm 1. It performs the training

DRAGOŞ GAVRILUŢ ET. AL: MALWARE DETECTION USING MACHINE LEARNING 737

Algorithm 2 One-Sided Perceptron
NumberOfIterations← 0
MaxIterations← 100
repeat

Train (R, 1, -1)
while FP(R) > 0 do

Train (R, 0, -1)
end while
NumberOfIterations← NumberOfIterations + 1

until (TP(R) = NumberOfMalwareF iles) or
(NumberOfIterations = MaxIterations)

for one chosen label (in our case either malware or clean), so
that in the end the files situated on one side of the learned
linear separator have exactly that label (assuming that thetwo
classes are separable). The files on the other side of the linear
separator can have mixed labels.

In the specification of the one-sided perceptron, theFP(R)
function is assumed to return the number of false positives for
the R set, while theTP(R) function returns the number of
true positives for theR set.

There are two steps inside the repeat loop of Algorithm 2.
The first step,Train (R, 1, -1), performs usual training on the
labeled data, obtaining a linear separator (see the perceptron
algorithm). The second step,while FP(R) > 0 do Train (R,
0, -1), tries to further move the linear separator, until no clean
file is eventually misclassified.

For what we call themapped one-sided perceptron, we will
use the previous perceptron algorithm, except we first map
all our features in a different space using a simple feature
generation algorithm, namely Algorithm 3.

Remember that we notedF = (fa1, fa2, ..., fan). We map
F to F ′ so thatF ′ = (f ′

a1
, f ′

a2
, ..., f ′

am), wherem = n(n +
1)/2 and f ′

ak = fai&faj , i = [k/n] + 1, j = k%n + 1, k =
1 . . .m, where& denotes the logicaland operator.

Algorithm 3 Simple Feature Generation
pos← 0
for i = 1 to n do

for j = 1 to n do
f ′

apos ← fai&faj

pos← pos + 1
end for

end for

The number of resulted features inF ′ will be n(n + 1)/2,
wheren is the number of features inF . The computational
time increases heavily (e.g. for 308 features inF , we will
have 47586 features inF ′. However, the detection rate (i.e
sensitivity) at cross-validation increases with about 10%, as it
will be shown later in the results section.

Finally, we used the same one-sided perceptron (Algo-
rithm 2), but in the dual form [14] and with the training
entry mapped into a larger feature space via a kernel function

K [15]. The resultingkernelized one-sided perceptronis the
Algorithm 4 given below.

Algorithm 4 Kernelized One-Sided Perceptron
for i = 1 to n do

∆i ← 0
αi ← 0

end for
for i = 1 to n do

if (labeli ×
∑n

j=1
(αj ×K(i, j))) ≤ 0 then

∆i ← ∆i + labeli
end if

end for
for i = 1 to n do

αi ← αi + ∆i

∆i ← 0
end for

The algorithms 1, 2 and 4 presented above will be used in
the sequel as bricks incascade(or: multi-stage) classification
algorithms. Given a set of binary classification algorithms
{A1, A2, . . . , Ak}, a cascadeover them is an aggregated
classification algorithm that classifies a given test instance x
as follows.1

Algorithm 5 Cascade Classification

if Ai1(x) or Ai2 (x) or . . . Aik
(x) then

return 1
else

return -1
end if

IV. RESULTS

We performed cross-validation tests by running the three
versions of the cascade one-sided perceptron presented in
Section III on the training dataset described in Section II
(7822 malware unique combinations, and 415 clean unique
combinations).

For the kernelized one-sided perceptron, the following ker-
nel functions were used:

• Polynomial Kernel Function:
K(u, v) = (1+ < u, v >)d, where
< u, v > denotes the dot product of theu andv vectors;

• Radial-Base Kernel Function:

K(u, v) = exp(
−|u−v|2

2×σ2).

The results shown by the tables in this section have been
obtained for the previously presented algorithms.

The following notations will be used in the sequel:

• COS-P – Cascade One-Sided Perceptron;
• COS-P-Map-F1 and COS-P-Map-F2 – Cascade One-

Sided Perceptron with explicitly mapped features, after

1It is understood that the execution of theAi1
, Ai2

, . . . , Aik
algorithms

that occur in the definition of the cascade algorithm is done in this order.

738 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

application of feature selection based on the F1 and F2
statistical scores;

• COS-P-Poly2/Poly3/Poly4 – Cascade One-Sided Percep-
tron with the Polynomial Kernel Function shown above,
with the degree 2/3/4;

• COS-P-Radial – Cascade One-Sided Perceptron using the
RBF Kernel Function withσ = 0.4175.

• TP – the number of true positives;
• FP – the number of false positives;
• SE – the sensitivity measure value;
• SP – the specificity measure value;
• ACC – the accuracy measure value [16].
For feature selectionin conjunction with one-sided percep-

trons we used the F-scores statistical measures. The discrim-
inative power of theith feature is described commonly by
the statistical F1 and F2 scores defined below. The larger the
values for theith feature, the more likely this feature possesses
discriminative importance.

F1 =
|µ+

i − µ−

i |

|σ+

i − σ−

i |
, F2 =

(µ+

i − µi)
2 + (µ−

i − µi)
2

(σ+

i)2 + (σ−

i)2
(1)

Here,µ+

i /µ−

i and σ+

i /σ−

i denote the means and standard
deviations of the positive (+) and respectively negative (-)
subsets of the training dataset. The numerator describes the
discrimination between the two classes, while the denom-
inator measures the discrimination within each of the two
classes [17].

Our measurements have shown that there is a quite good
(although non-linear)correlation between the F1 and F2
scores. That means that most probably we will get similar
training results when taking the same percentage of (F1 and
respectively F2) best-scored features.

Then we performed feature selection based on the F1 and
F2 scores to see whether we can find a subset of features that
will produce similar classification results with those obtained
when using all features. Towards this aim, we have split the
training dataset in 2 partitions, i.e a training partition with
about 66% records and another one for testing with the rest
of 33%. We tested the cascade one-sided perceptron (COS-P)
algorithm using the first 10%, 20%, 30% . . . 100% features
selected with F1 and respectively F2 scores. The results (not
shown here) indicate that both F1 and F2 with the first 30%
features have similar results compared to the results obtained
by the same (COS-P) algorithm when using all features.

The COS-P-Map algorithm, i.e the one-sided perceptron
with explicitly mapping, uses a lot of features. This will slow
down the training algorithm. This is why for the COS-P-Map-
F1 algorithm we used 30% of the original features given by the
best F1 score values, after which they were transformed into
1830 new features using Algorithm 3. It should be taken into
account that after selecting the first 30% features, duplicates
appeared in the training datasets and after the elimination,
6580 entries remained. COS-P-MAP-F2 works similarly to
COS-P-Map-F1, with the only difference that we sorted the
original features using the F2 score; 6644 records remained
after duplicate elimination.

TABLE III
3-FOLD CROSS-VALIDATION RESULTS ON THETRAINING DATASET.

Algorithm TP FP SE SP ACC
COS-P 2269 9 87.04% 93.01% 87.34%

COS-P-Map-F1 2023 36 97.62% 69.70% 96.08%
COS-P-Map-F2 2029 40 97.38% 69.05% 95.71%
COS-P-Poly2 2535 41 97.24% 70.12% 95.87%
COS-P-Poly3 2551 48 97.84% 64.82% 96.18%
COS-P-Poly4 2554 54 97.95% 60.97% 96.09%
COS-P-Radial 2534 48 70.49% 58.79% 69.90%

TABLE IV
5-FOLD CROSS-VALIDATION RESULTS ON THETRAINING DATASET.

Algorithm TP FP SE SP ACC
COS-P 1342 5 85.83% 93.98% 86.24%

COS-P-Map-F1 1209 18 97.25% 74.09% 95.97%
COS-P-Map-F2 1212 17 96.98% 77.50% 95.83%
COS-P-Poly2 1518 23 97.05% 71.57% 95.76%
COS-P-Poly3 1532 29 97.95% 64.10% 96.25%
COS-P-Poly4 1533 31 98.01% 61.69% 96.18%
COS-P-Radial 1524 30 73.70% 60.00% 73.01%

Cross-validationtests for 3, 5, 7, and 10 folds were per-
formed for each algorithm (COS-P, COS-P-Map, COS-P-Poly
and COS-P-Radial) on thetraining dataset. For each algorithm,
we used the best result from maximum 100 iterations.

Figure 1 shows a comparative view between theF-measure
values produced by our algorithms at cross-validation on the
training set. F-measure is defined asFm =

2(SP×PPV)
SP+PPV

,

where PPV (Positive Predictive Value) = TP
TP+FP

and
TP/FP designate the number of true/false positives.

The cross-validation results found in Tables III–VI show
that although the COS-P-Poly4 algorithm has the best malware
detection rate (i.e sensitivity) on training dataset, the number
of false alarms produced by this algorithm is much higher

TABLE V
7-FOLD CROSS-VALIDATION RESULTS ON THETRAINING DATASET.

Algorithm TP FP SE SP ACC
COS-P 957 3 85.67% 94.94% 86.14%

COS-P-Map-F1 863 13 97.25% 74.37% 95.99%
COS-P-Map-F2 866 13 96.95% 76.47% 95.74%
COS-P-Poly2 1084 16 97.01% 72.05% 95.75%
COS-P-Poly3 1092 20 97.74% 64.81% 96.08%
COS-P-Poly4 1094 21 97.92% 63.12% 96.16%
COS-P-Radial 1085 30 74.09% 61.92% 73.47%

TABLE VI
10-FOLD CROSS-VALIDATION RESULTS ON THETRAINING DATASET.

Algorithm TP FP SE SP ACC
COS-P 667 2 85.27% 94.47% 85.74%

COS-P-Map-F1 603 8 97.10% 75.43% 95.91%
COS-P-Map-F2 605 7 96.77% 80.06% 95.79%
COS-P-Poly2 758 11 97.00% 72.29% 95.75%
COS-P-Poly3 764 15 97.79% 63.83% 96.08%
COS-P-Poly4 766 15 97.97% 61.65% 96.14%
COS-P-Radial 761 14 85.07% 94.95% 85.57%

DRAGOŞ GAVRILUŢ ET. AL: MALWARE DETECTION USING MACHINE LEARNING 739

Fig. 1. Comparison of F-measure values for 3, 5, 7, 10-fold cross-validation
with the cascade one-sided perceptron (COS-P) algorithm onthe training
dataset.

TABLE VII
RESULTS ON THETEST DATASET.

Algorithm TP FP SE SP ACC
COS-P 356 3 68.73% 97.46% 74.06%

COS-P-Map-F1 356 2 83.76% 96.97% 85.54%
COS-P-Map-F2 357 2 83.22% 97.14% 85.17%
COS-P-Poly2 455 9 87.84% 92.37% 88.68%
COS-P-Poly3 466 19 89.96% 83.90% 88.84%
COS-P-Poly4 465 20 89.77% 83.05% 88.52%
COS-P-Radial 451 17 50.97% 83.90% 57.08%

than the one obtained for the COS-P algorithm. (Note that the
number of files that are actually detected is much higher since
the algorithm works with unique combinations of features and
not with actual files.)

The results for thetest dataset (Table VII) show that both
COS-P-Map-F1 and COS-P-Map-F2 algorithms produce good
results, with a good specificity (83%) and very few (2) false
positives, even if the malware distribution in this datasetis
different from the one in the training dataset.

From the technical point of view, the most convenient
algorithms are the cascade one-sided perceptron (COS-P) and
its explicitly mapped version (COS-P-Map). Both have a small
memory footprint, a short training time (Table VIII), a good
detection rate and few false alarms.

V. WORKING WITH VERY LARGE DATASETS

All the results presented in this section are obtained on the
large (“scale-up”) dataset that was described in Section II. We
will present two main optimisations that we incorporated inthe
implementation of the one-sided perceptron (OS-P) algorithm
introduced in Section III, and then we will address the problem
of overfitting caused by human adnotation errors in the training
datasets.

Obviously, on a very big dataset (e.g. millions of both
malware and clean files), the time required for training may
be a problem. Since we used the non-stochastic version of the
perceptron algorithm, this problem could be easily overcome
by using distributed computing on a grid system. Another so-
lution is to modify the one-sided perceptron (OS-P) algorithm

TABLE VIII
T IME AND MEMORY CONSUMPTION AT TRAINING .

Algorithm Time (min) Size (MB)
COS-P 6.25 0.1216

COS-P-Map-F1 13.5 0.732
COS-P-Map-F2 14.5 0.732
COS-P-Poly2 22 532
COS-P-Poly3 22.25 532
COS-P-Poly4 22.75 532
COS-P-Radial 2 532

Algorithm 6 Optimised One-Sided Perceptron
NumberOfIterations← 0
MaxIterations← 100
repeat

Train (R, 1, -1)
R′ = R−{all malware samples}
while FP(R′) > 0 do

Train (R′, 0, -1)
R′ = R′−{all samples correctly classified}

end while
NumberOfIterations← NumberOfIterations + 1

until (TP(R) = NumberOfMalwareF iles) or
(NumberOfIterations = MaxIterations)

in such a way that it will not use all the data when it tries
to minimize the number of false alarms. This can be easily
achieved as follows.

One could immediately see that inside the OS-P algorithm’s
loop, the second step, i.e the one where the weight vectors are
modified so as to reduce the number of false alarms, only
affects the weights corresponding to the clean files.

Let us assume thatRx = fa1, . . . fan are the feature values
for a clean file, andwi, i = 1, . . . , n is the weight vector of
the OS-P algorithm (Algorithm 2 in Section III). Also, let us
assume that at the iterationk of the execution of that (second)
step inside the OS-P algorithm — where the number of false
alarms gets reduced — we obtain such a value forwi that∑

wifai < 0. As already said, further work at this step in the
OS-P algorithm affects only the clean files, which means that
wi will decrease until the number of false alarms eventually
becomes 0. More exactly, at iterationk+1, the elements of the
weight vector will become smaller or equal to the values they
have had at the previous step. Therefore, if

∑
wifai < 0 at

iterationk, then
∑

wifai will be even smaller (or 0) at every
subsequent iteration. That is why we no longer need to do
training on that (clean) sampleRx after iterationk.

Algorithm 6 incorporates thisfirst main optimisationinto
the OS-P algorithm. It sequentially reduces the size of the
training lot and thus increases the training speed. Using this
optimised version of the OS-P algorithm we obtained a speed-
up factor of ten or even better (see Figure 3 and Figure 3).

Now we present thesecond main optimisation. A quite
simple idea that in fact was already incorporated in the
code of the one-sided perceptron algorithm (Algorithm 2 in

740 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

Fig. 2. Training time (measured in milliseconds) for the cascade one-sided
perceptron (COS-P) algorithm, on thescale-updataset.

Fig. 3. Comparing the optimised COS-P algorithm with the standard COS-P
algorithm, on thescale-updataset. On the vertical axis: the training speed-up
factor.

Section III) consists in writing the whole algorithm using 32
bit integer values rather than float values. This can be easily
achieved by multiplying the threshold and the weights with
a big number (usually a power of 2; we used216). Now the
learning rate will become 1− the smallest non-zero value that
can be represented using an 32 bit integer.

This simple representation issue can lead to an important
optimisation in the implementation of the one-sided perceptron
(OS-P) algorithm. Remember that the testing function for the
perceptron is:

∑
wifai, wherewi. Let us assume thatfai has

two values (0 and 0xFFFFFFFF) instead of the usual values
0 and 1. In this case we can write the testing function for the
OS-P algorithm as

∑
wi&fai, since it has the same as the

classical testing function
∑

wifai.
As shown in Table IX, at assembler level, the number

of CPU ticks necessary for computing the
∑

wifai sum is
2 + 17 × nr of features, while the sum

∑
wi&fai requires

2 + 7× nr of featuresCPU ticks. Since using the OS-P-Map
algorithm implies that the number of features will be very
large, it follows that the second (optimised) code will be about
2.5 times faster than the first (standard) one.

Finally, a problem that occurs when working with large
datasets isoverfitting caused by the noise appearing in the

TABLE IX
T IME CONSUMPTION IN CPU TICKS FOR THESUMS

∑
wifai AND

∑
wi&fai .

Standard sum Ticks Optimised sum Ticks
mov ecx, 0
mov esi, 0
sum loop:
mov eax, features[ecx]
mov ebx, weights[ecx]
imul ebx
add esi, eax
inc ecx
cmp ecx, nr of features
ja sum loop

1
1

1
1
10
1
1
2
1

mov ecx, 0
mov esi, 0
sum loop:
mov eax, features[ecx]
and ebx, weights[ecx]
add esi, eax
inc ecx
cmp ecx, nr of features
ja sum loop

1
1

1
1
1
1
2
1

Fig. 4. Comparison of the detection rate (SE) reduction for the COS-P and
COS-P-Map algorithms on the scale-up (large) dataset.

form of human adnotation errors. Not all of the malware
designated samples are actually malware, and not all of the
clean samples are clean indeed. That is why, the bigger the
database, the more likely is to get misclassified samples in
the training set. Because our algorithms aim to reduce the
number of false alarms to 0, the detection rate (sensitivity)
obtained on a large dataset will be much smaller (due to
the misclassification issue). In Figure 4 we can see how
the detection rate decreases when the data base gets larger.
Table X shows that the accuracy, specificity and the number of
false positives roughly decrease while the size of the database
increases.

VI. CONCLUSION AND FUTURE WORK

Our main target was to come up with a machine learning
framework that generically detects as much malware samples
as it can, with the tough constraint of having a zero false
positive rate. We were very close to our goal, although we
still have a non-zero false positive rate. In order that this
framework to become part of a highly competitive commercial
product, a number of deterministic exception mechanisms have
to be added. In our opinion, malware detection via machine
learning will not replace the standard detection methods used
by anti-virus vendors, but will come as an addition to them.
Any commercial anti-virus product is subject to certain speed
and memory limitations, therefore the most reliable algorithms

DRAGOŞ GAVRILUŢ ET. AL: MALWARE DETECTION USING MACHINE LEARNING 741

TABLE X
DETECTIONRATE (SE) COMPARISON ON THESCALE-UP (LARGE)

DATASET WHEN TRAINING THE COS-P ALGORITHM.

Dataset TP FP SE SP ACC
S10 170 5 51.76% 97.75% 71.94%
S20 309 5 46.94% 98.91% 69.73%
S30 438 6 44.24% 99.22% 68.32%
S40 555 6 42.13% 99.36% 67.18%
S50 648 5 39.32% 99.61% 65.72%
S60 764 5 38.66% 99.68% 65.39%
S70 842 2 36.55% 99.89% 64.29%
S80 969 2 36.82% 99.90% 64.45%
S90 1092 3 36.89% 99.87% 64.48%
S100 1100 3 33.45% 99.88% 62.56%

among those presented here are the cascade one-sided percep-
tron (COS-P) and and its explicitly mapped variant (COS-P-
Map).

Since most AntiVirus products manage to have a detection
rate of over 90%, it follows that an increase of the total detec-
tion rate of3%− 4% as the one produced by our algorithms,
is very significant. (Note that the training is performed on the
malware samples that are not detected by standard detection
methods.)

As of this moment, our framework was proven to be a
valuable research tool for the computer security experts at
BitDefender AntiMalware Research Labs. For the near future
we plan to integrate more classification algorithms to it, for
instance large margin perceptrons [18] and Support Vector
Machines [14], [19], [20].

ACKNOWLEDGMENTS

The authors would like to thank the management staff of
BitDefender for their kind support they offered on these issues.

REFERENCES

[1] I. Santos, Y. K. Penya, J. Devesa, and P. G. Garcia, “N-grams-based file
signatures for malware detection,” 2009.

[2] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, “Learning and
classification of malware behavior,” inDIMVA ’08: Proceedings of the
5th international conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 108–125.

[3] E. Konstantinou, “Metamorphic virus: Analysis and detection,” 2008,
Technical Report RHUL-MA-2008-2, Search Security Award M.Sc.
thesis, 93 pages.

[4] P. K. Chan and R. Lippmann, “Machine learning for computer security,”
Journal of Machine Learning Research, vol. 6, pp. 2669–2672, 2006.

[5] J. Z. Kolter and M. A. Maloof, “Learning to detect and classify malicious
executables in the wild,”Journal of Machine Learning Research, vol. 7,
pp. 2721–2744, December 2006, special Issue on Machine Learning in
Computer Security.

[6] Y. Ye, D. Wang, T. Li, and D. Ye, “Imds: intelligent malware detection
system,” in KDD, P. Berkhin, R. Caruana, and X. Wu, Eds. ACM,
2007, pp. 1043–1047.

[7] M. Chandrasekaran, V. Vidyaraman, and S. J. Upadhyaya, “Spycon:
Emulating user activities to detect evasive spyware,” inIPCCC. IEEE
Computer Society, 2007, pp. 502–509.

[8] M. R. Chouchane, A. Walenstein, and A. Lakhotia, “Using Markov
Chains to filter machine-morphed variants of malicious programs,”
in Malicious and Unwanted Software, 2008. MALWARE 2008. 3rd
International Conference on, 2008, pp. 77–84.

[9] M. Stamp, S. Attaluri, and S. McGhee, “Profile hidden markov models
and metamorphic virus detection,”Journal in Computer Virology, 2008.

[10] R. Santamarta, “Generic detection and classification of polymorphic
malware using neural pattern recognition,” 2006.

[11] I. Yoo, “Visualizing Windows executable viruses usingself-organizing
maps,” inVizSEC/DMSEC ’04: Proceedings of the 2004 ACM workshop
on Visualization and data mining for computer security. New York,
NY, USA: ACM, 2004, pp. 82–89.

[12] F. Rosenblatt, “The perceptron: a probabilistic modelfor information
storage and organization in the brain,” pp. 89–114, 1988.

[13] T. Mitchell, Machine Learning. McGraw-Hill Education (ISE Editions),
October 1997.

[14] N. Cristianini and J. Shawe-Taylor,An introduction to Support Vector
Machines and other kernel-based learning methods. Cambridge
University Press, March 2000.

[15] B. Schölkopf and A. J. Smola,Learning with Kernels: Support Vector
Machines, Regularization, Optimization and Beyond. MIT Press, 2002.

[16] P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen, and H. Nielsen,
“Assessing the accuracy of prediction algorithms for classification,”
Bioinformatics, no. 5, pp. 412–424, May 2000.

[17] S. N. N. Kwang Loong and S. K. K. Mishra, “De novo SVM classi-
fication of precursor microRNAs from genomic pseudo hairpins using
global and intrinsic folding measures.”Bioinformatics, January 2007.

[18] Y. Freund and R. E. Schapire, “Large margin classification using the
perceptron algorithm,” inMachine Learning, vol. 37, 1999, pp. 277–
296.

[19] C. Cortes and V. Vapnik, “Support-vector networks,” inMachine Learn-
ing, 1995, pp. 273–297.

[20] V. N. Vapnik, The Nature of Statistical Learning Theory (Information
Science and Statistics). Springer, November 1999.

