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Abstract—We propose a versatile framework in which one used to identify patterns of behaviour for viruses in Window
can employ different machine learning algorithms to succesfully  exectable files.
distinguish between malware files and clean files, while aimg
to minimise the number of false positives. In this paper we  In this paper, we presentfeameworkfor malware detection
present the ideas behind our framework by working firstly aiming to get as few false positives as possible, by using
with cascade one-sided perceptrons and secondly with castea 5 gimple and a simple multi-stage combination (cascade) of
kernelized one-sided perceptrons. After having been sucssfully . . .
tested on medium-size datasets of malware and clean files,eth different verSIO_n_s O_f the pe_rceptron algorithm [12]. Othe_r
ideas behind this framework were submitted to a scaling-up @utomate classification algorithms [13] could also be used i
process that enable us to work with very large datasets of this framework, but we do not explore here this alternafives
malware and clean files. main stepgerformed through this framework are sketched as

follows:

I. INTRODUCTION ) . S
1. A set of featuresis computed for every binary file in the

M ALWARE is defined as software designed to 'nf"trat.?raining or testdatasets(presented in Section Il), based on

or damage a computer system without the owner’s in- . .
many possible ways of analyzing a malware.

formed consent. Malware is actually a generic definitiorfor 2 A machine leaming system based firstly on one-sided

kind of computer threats. A simple classification of malware .
: o erceptrons, and then on feature mapped one-sided perasptr
consists of file infectors and stand-alone malware. Anothgr

v : . . . and a kernelized one-sided perceptrons (Section Ill), ¢oeab
way of classifying malware is based on their particularacti _ . . : .
. . with feature selection based on the F1 and F2 scores, igttain
worms, backdoors, trojans, rootkits, spyware, adware etc.

Malware detection through standard, signature based me?[gI a medlum-glze_ dat_aset consisting of _clean and malware
. . o . es. Cross-validation is then performed in order to choose
ods [1] is getting more and more difficult since all currentfne right values for parameters. Finally, tests are peréatm
malware applications tend to have multiple polymorphielzy n another, non-related datasét The ’obtained results (see
to avoid detection or to use side mechanisms to autom@tica@ection V) ,were very encouragin.g

update themselves to a newer version at short periods of ti?eln the end (Section V) we will analyse different aspects

in order to avoid detection by any antivirus software. For at . : e
: ) . . involved in the scale-up of our framework to identifying
example of dynamical file analysis for malware detection, vi , L
. . . . malware files on very large training datasets.
emulation in a virtual environment, the interested reacar c
see [2]. Classical methods for the detection of metamorphic II. DATASETS

Viruses are _descnbeq in [3]. . . We used three datasets:trmining dataset, aest dataset,
An overview on different machine learning methods thgt

And a“scale-up” dataset. The number of malware files and
r%spectively clean files in these datasets is shown in the firs
two columns of Table I. As stated above, our main goal is
— In[5], boosted decision trees working @ergrams are found to achieve malware detection with only a few (if possible 0)
to produce better results than both the Naive Bayes clasiffatse positives, therefore the clean files in this datasetl (a
and Support Vector Machines. also in the scale-up dataset) is much larger than the number
— [6] uses automatic extraction of association rules aof malware files.

Windows API execution sequences to distinguish betweenFrom the whole feature set that we created for malware
malware and clean program files. Also using associatiorsyuleletection, 308 binary features were selected for the experi
but on honeytokens of known parameters, is [7]. ments to be presented in this paper. Files that generat@simi
— In [8] Hidden Markov Models are used to detect whetheralues for the chosen feature set were counted only once.
a given program file is (or is not) a variant of a previouShe last two columns in Table | show the total number of
program file. To reach a similar goal, [9] employs Profilenique combinations of the 308 selected binary featurelsen t
Hidden Markov Models, which have been previously used withaining, test and respectively scale-up datasets. Natethie
great success for sequence analysis in bioinformatics. number of clean combinations — i.e combinations of feature
— The capacity of neural networks to detect polymorphicalues for the clean files — in the three datasets is much
malware is explored in [10]. In [11], Self-Organizing Mapga smaller than the number of malware unique combinations

give a few references to exemplify such methods.
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TABLE | Algorithm 1 The Perceptron Training Subroutine
NUMBER OF FILES ANDUNIQUE COMBINATIONS OF FEATURE VALUES IN i
THE TRAINING, TEST, AND SCALE-UP DATASETS. SubTrain (R, LR_M alware, LR_Clean) :
: : - 7i=0
Files Unique combinations i=1.....n
Database malware | clean || malware | clean for aI,I reé:ord ink do
Training 27475 273133 7822 415 e
Test 11605 6522 506 130 if :c:nne”ss(record)é record.labethen
Scale-up || approx. 3M | approx. 180M 12817 16437 Or_ all v do
if recordF; # 0 then
TABLE II if record.label = lthen
MALWARE DISTRIBUTION IN THE TRAINING AND TESTDATASETS. vi = vi + LR_Malware
|
| I Training Dataset | Test Dataset| else L LR CI
i = i ean
Malware Unique combinations| ’Z; it i -
type Files of feature values Files en_ !
Backdoor 35.52% 20.19% 9.16% end if
Hacktool 1.53% 1.73% 0.00% end for
Rootkit 0.09% 0.15% 0.04% end if
Trojan 48.06% 43.15% 37.17% end for
Worm 12.61% 12.11% 33.36% f
rall w;
Other malware|| 2.19% 2.66% 20.26% or all w; do
wi = Wi +
end for
d sub

. En
because most of the features were created to emphasize-an
aspect (either a geometrical form or behaviour aspect) of
mé_}_'}’:’: rgefgisﬁles in the training database are mainly syst f%rcing (i possible). a 100% detectip n rate for one caFegory
i . . . n the sequel we will use the following data structures:
files (from different versions of operating systems) and- exe
cutable and library files from different popular applicato — F = (fa1, fa2,- .-, fan) IS @n array representing the feature
We also use clean files that are packed or have the same foatues associated to a file, whefg are file features.
or the same geometrical similarities with malware files (sg — R; = (F;,label,) is a record, where"; is an array of file
the same packer) in order to better train and test the systefeature as above, andbel; is a boolean tag. The value of

The malware files in the training dataset have been tak@bel; identifies the file characterised by the array of feature
from the Virus Heaven collection. The test dataset contaimgluesF; as being either a malware file or a clean file.
malware files from the WildList collection and clean files- R = (R, R, ... R,,) is the set of records associated to
from different operating systems (other files that the orseslu the training files that we use.

in the first database). The malware collection in the trgnin We use non-stochastic versions of the perceptron algorithm

andthf‘St datasets é:ontsr,]lststof tI’OJE:nS, Ibackdo_(;rr]s, Pafkt?%) that we can parallelize the training process. This measur
rootKils, worms ana ofher ypes of maiware. Ine first anfy, - enaple us to speed up the training process on large
third columns in Table Il represent the percentage of thoagtasets

malware types from the total number of files of the- training Algorithm 1 is the the standarderceptronalgorithm. In-
and respectively test datasgts. The second column in Tabl.%tlead of working with floats, it uses a large integer repre-
represents the corresponding percentage of malware unique. —on for the weightss;, i = 1...n, wheren is the
D . o iio= 1...m,
g?:(gzltr;?g?/r;?u:gTo:r:ﬁet?rt:ilnir:]un:jt;et;so;uzgq:re]o(;\?nn}g'?g'%?&al number of attributes/features. This adaptation is-no
g cataset. restrictive, assuming multiplication with a certain factelated

and lasts column of Table Il, the distribution of malwaredgp to the representation. Other notations used by this atgarit
in this test dataset is significantly different from the mailey are:
distribution in the training dataset. '

The third, large dataset was used for testing the scaling-7i,7 = 1...n, are the additive values that will modify the
up capabilities of our learning algorithms. This datases waveightsw; after one iteration;
divided into 10 parts denoted &40, 520, .., 5100, whereS; — LR_Malware and LR_Clean are the learning rate con-
represents% of the total dataset, an; C S;.10. We used stants for the malware and respectively the clean sets sf file

these parts in order to evaluate the training speed and thel.he perceptron’s fitness function is defined as:

malware detection rate for larger and larger datasets. Fitness (R;) = Sign(Z?ZO w;R;.Fj — Threshold), where
R;.F; denotes the value of the featufg; in the file record
R;. We defineSign(z) = 1 if x > 0, and -1 otherwise.

The main goal of this section is to modify the perceptron Algorithm 2, henceforth called thene-sided perceptrois
algorithm [12], so as to correctly detect malware files, whila modified version of Algorithm 1. It performs the training

IIl. ALGORITHMS
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Algorithm 2 One-Sided Perceptron K [15]. The resultingkernelized one-sided perceptris the
NumberO f Iterations «— 0 Algorithm 4 given below.
MaxIterations < 100
repeat Algorithm 4 Kernelized One-Sided Perceptron
Train (Rv 1, _1) for i =1ton do
while FP(R) > 0 do A; — 0
Train (R, O, -1) a; — 0
end while end for
NumberO fIterations «— NumberO fIterations + 1 for i=1ton do
until (TP(R) = NumberO f M alwareF'iles) or if (label; x Z?Zl(aj x K(i,7))) <0 then
(NumberO f Iterations = MaxIterations) A; — A, + label;
end if
end for

for one chosen label (in our case either malware or clean), sdor i = 1 ton do
that in the end the files situated on one side of the learned «; < a; +A;
linear separator have exactly that label (assuming thatwhbe A;—0
classes are separable). The files on the other side of tha line end for
separator can have mixed labels.

In the specification of the one-sided perceptron, FR¢R) The algorithms 1, 2 and 4 presented above will be used in
function is assumed to return the number of false positiges fthe sequel as bricks icascadgor: multi-stage) classification
the R set, while theTP(R) function returns the number of algorithms. Given a set of binary classification algorithms
true positives for theR set. {A1, As,..., Ay}, a cascadeover them is an aggregated

There are two steps inside the repeat loop of Algorithm 2lassification algorithm that classifies a given test instan
The first stepTrain (R, 1, -1), performs usual training on theas follows!
labeled data, obtaining a linear separator (see the peocept
algorithm). The second stepshile FP(R) > 0 do Train(R, Algorithm 5 Cascade Classification

0, -1), tries to further move the linear separator, until fean if A;, (z)orA;,(x)or... A; (x) then
file is eventually misclassified. return 1
For what we call thenapped one-sided perceptrome will else

use the previous perceptron algorithm, except we first map return -1
all our features in a different space using a simple featureend if
generation algorithm, namely Algorithm 3.

Remember that we notell = (faq, fag, s fan). We map

F to F' so thatF’ = (fl,, fro, .., [1,,), Wherem = n(n + IV. RESULTS
1)/2 and fo, = fai&faj,i = [k/n] +1,j = k%n+1,k = wWe performed cross-validation tests by running the three
1...m, where& denotes the logiceand operator. versions of the cascade one-sided perceptron presented ir
Section 1ll on the training dataset described in Section Il
Algorithm 3 Simple Feature Generation (7822 malware unique combinations, and 415 clean unique
pos «— 0 combinations).
for i = 1ton do For the kernelized one-sided perceptron, the following ker
for j =1ton do nel functions were used:
apos < Jai& faj « Polynomial Kernel Function:
pos — pos + 1 K(u,v) = (14 < u,v >)%, where
end for < u,v > denotes the dot product of theandv vectors;
end for « Radial-Base Kernel Fynction:
—|u—v
K(u,v) = exp(*QXJQ ).

The number of resulted features i will be n(n +1)/2,
wheren is the number of features id’. The computational
time increases heavily (e.g. for 308 featuresHn we will
have 47586 features ifi’. However, the detection rate (i.e
sensitivity) at cross-validation increases with about 18%oit
will be shown later in the results section.

Finally, we used the same one-sided perceptron (Algo-
rithm 2)1 but in the dual form [14] and with the training 11t is understood that the execution of thg, , Asy, ..., A, algorithms
entry mapped into a larger feature space via a kernel fumctibat occur in the definition of the cascade algorithm is danghis order.

The results shown by the tables in this section have been
obtained for the previously presented algorithms.
The following notations will be used in the sequel:
o COS-P — Cascade One-Sided Perceptron;
o COS-P-Map-F1 and COS-P-Map-F2 — Cascade One-
Sided Perceptron with explicitly mapped features, after
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statistical scores;
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. . . TABLE Il
application of feature selection based on the F1 and F23.¢o.p CrossvALIDATION RESULTS ON THETRAINING DATASET.

o COS-P-Poly2/Poly3/Poly4 — Cascade One-Sided Percepy _ Algorithm TP | FP SE SP ACC
tron with the Polynomial Kernel Function shown above, cos-p 2269 | 9 | 87.04% | 93.01% | 87.34%
with the dearee 2/3/4- COS-P-Map-F1| 2023| 36 | 97.62% | 69.70% | 96.08%

9 ’ . ) COS-P-Map-F2| 2029 | 40 | 97.38% | 69.05% | 95.71%

o COS-P-Radial - Cgscac_le One-Sided Perceptron using the—cosp_poly2 | 2535 | 41 | 97.24% | 70.12% | 95.87%
RBF Kernel Function withr = 0.4175. COS-P-Poly3 | 2551 | 48 | 97.84% | 64.82% | 96.18%

o TP — the number of true positives; COS-P-Poly4 | 2554 | 54 | 97.95% | 60.97% | 96.09%

o FP — the number of false positives; COS-P-Radial | 2534 | 48 | 70.49% | 58.79% | 69.90%

o SE - the sensitivity measure value;

TABLE IV

o SP — the specificity measure value;
o ACC - the accuracy measure value [16].

5-FOLD CROSSVALIDATION RESULTS ON THETRAINING DATASET.

For feature selectiorin conjunction with one-sided percep- Algorithm TP | FP SE SP ACC
trons we used the F-scores statistical measures. Therdiscri Ccos-p 1342 | 5 | 85.83% | 93.98% | 86.24%
. . . . . -P- - 0, 0, 0,
inative power of thei’” feature is described commonly by [ £OS-P-Map-F1| 1209 | 18 | 97.25% | 74.09% | 95.97%
the statistical F1 and F2 scores defined below. The larger the——oor-Map-F2| 1212 | 17 | 96.98% | 77.50% | 95.83%

th ) : ) 9er e —Cosp-Poly2 | 1518 | 23 | 97.05% | 71.57% | 95.76%
values for the™* feature, the more likely this feature possesses cos-p-poly3 | 1532 | 29 | 97.95% | 64.10% | 96.25%
discriminative importance. COS-P-Poly4 | 1533 | 31 | 98.01% | 61.69% | 96.18%
i _ + o - 9 COS-P-Radial | 1524 | 30 | 73.70% | 60.00% | 73.01%
o Wl W )+ (k) 1)
- —+ —? - -+ —
lo;m — o] (077)2 + (0, )?

Here, i /u; ando;" /o; denote the means and standard Cross-validationtests for 3, 5, 7, and 10 folds were per-
deviations of the positive (+) and respectively negative (formed for each algorithm (COS-P, COS-P-Map, COS-P-Poly
subsets of the training dataset. The numerator descrilges dhd COS-P-Radial) on theining dataset. For each algorithm,
discrimination between the two classes, while the denomye used the best result from maximum 100 iterations.
inator measures the discrimination within each of the two Figure 1 shows a comparative view between Fameasure

classes [17]. values produced by our algorithms at cross-validation @n th
2(SPxPPV)

Our measurements have shown that there is a quite QQPﬂning set. F-measure is defined &sn —

(although non-linear)correlation between the F1 and F2
scores. That means that most probably we will get simildf
training results when taking the same percentage of (F1 ah
respectively F2) best-scored features.

Then we performed feature selection based on the F1 dha

will produce similar classification results with those adb
when using all features. Towards this aim, we have split the
training dataset in 2 partitions, i.e a training partitionithw

TABLE V
about 66% records and another one for testing with the rest7-FOLD CROSSVALIDATION RESULTS ON THETRAINING DATASET.

~SP+PPV
here PPV (Positive Predictive Value) :%

E/FP designate the number of true/false positives.
The cross-validation results found in Tables I1I-VI show
t although the COS-P-Poly4 algorithm has the best malwar

F2 scores to see whether we can find a subset of features #ifction rate (i.e sensitivity) on training dataset, thenber
e Of false alarms produced by this algorithm is much higher

0, -Sj -

e o s s ol T [ [ s T T e
g Ising the first 10%, 20%, 30% ... o features COSP 957 | 3 | 85.67% | 94.94% | 86.14%
selected with F1 and respectively F2 scores. The results (N0 cos-p-Map-F1| 863 | 13 | 97.25% | 74.37% | 95.99%
shown here) indicate that both F1 and F2 with the first 30% [ COS-P-Map-F2| 866 | 13 | 96.95% | 76.47% | 95.74%
features have similar results compared to the results reddai COS-P-Poly2 | 1084 | 16 | 97.01% | 72.05% | 95.75%
by the same (COS-P) algorithm when using all features. COS-P-Poly3 | 1092 | 20 | 97.74% | 64.81% | 96.08%
The COS-P-Map algorithm, i.e the one-sided perceptron| COS-P-Poly4 | 1094 | 21 | 97.92% | 63.12% | 96.16%
COS-P-Radial | 1085 | 30 | 74.09% | 61.92% | 73.47%

with explicitly mapping, uses a lot of features. This wilbal
down the training algorithm. This is why for the COS-P-Map-

best F1 score values, after which they were transformed into

_ w _ TABLE VI
F1 algorithm we used 30% of the original features given by the 10-roLb CRoSSVALIDATION RESULTS ON THETRAINING DATASET.

1830 new features using Algorithm 3. It should be taken into A'g‘gghg“ GTE'; sz 8552E7‘V 9454'37(y 82%20/

. . . - . (1] . (] . (1
account thgt after sglgctlng the first 30% features, dmla:a COSPMapFIl 603 | 8 | 97.10% | 75.43% | 95.91%
appeared in the training datasets and after the _ellmln,atlon COS-P-Map-F2| 605 | 7 | 96.77% | 80.06% | 95.79%
6580 entries remained. COS-P-MAP-F2 works similarly t0 [T cos-P-poly2 | 758 | 11 | 97.00% | 72.29% | 95.75%
COS-P-Map-F1, with the only difference that we sorted the | COS-P-Poly3 | 764 | 15 | 97.79% | 63.83% | 96.08%
original features using the F2 score; 6644 records remained| COS-P-Poly4 | 766 | 15 | 97.97% | 61.65% | 96.14%
after duplicate elimination. COS-P-Radial | 761 14 85.07% | 94.95% | 85.57%
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TABLE VIl
100% - ! L - . : TIME AND MEMORY CONSUMPTION AT TRAINING.
. T 1. e L # iy B
80% - E} y A% %: ey 5 . 5 Algorithm Time (min) | Size (MB)
-4 ;_gi: ] o3 H cme COS-P 6.25 0.1216
ox T BN 23Ry B Y =y COS-P-MapFi| 135 0.732
L & 2 - 38 ‘;‘— : i—:ﬁ 3 COS-P-Map-F2 145 0.732
s 3 5 :‘E: RESEANE 3 E COS-P-Poly2 22 532
0% < s 3 % § =3 Ho =3 Ay COS-P-Poly3 22.25 532
-3 :_-.;E NE SN ). COS-P-Poly4 22.75 532
0% ~ma2 el Feod—aed HoN—cas dRl Cos R 5 —
3-fold 5-fold 7-fold 10-fold
Eease it v I i D L Algorithm 6 Optimised One-Sided Perceptron
HCOos-P-Poly3 “ COS-P-Polyd COSs-P-Radial NumberOfIterations — 0

MazxlIterations < 100
Fig. 1. Comparison of F-measure values for 3, 5, 7, 10-fotssvalidation repeat
with the cascade one-sided perceptron (COS-P) algorithnthentraining Train (R 1 _1)
dataset. I
R’ = R—{all malware samplés

TABLE VI while FP(R’) > 0 do
RESULTS ON THETESTDATASET. Train (R/, 0’ _1)

Algorithm TP | FP SE SP ACC R’ = R’—{all samples correctly classifi¢d
COS-P 356 | 3 | 68.73% | 97.46% | 74.06% end while
COS-P-Map-F1| 356 | 2 | 83.76% | 96.97% | 85.54% NumberO fIterations «— NumberO fIterations + 1
COS-P-Map-F2| 357 | 2 | 83.22% | 97.14% | 85.17% until (TP(R) = NumberO f M alwareF'iles) or

COS-P-Poly2 | 455 | 9 87.84% | 92.37% | 88.68%
COS-P-Poly3 | 466 | 19 | 89.96% | 83.90% | 88.84%
COS-P-Poly4 | 465 | 20 | 89.77% | 83.05% | 88.52%
COS-P-Radial | 451 | 17 | 50.97% | 83.90% | 57.08%

(NumberO fIterations = MaxIterations)

in such a way that it will not use all the data when it tries
minimize the number of false alarms. This can be easily
hieved as follows.

One could immediately see that inside the OS-P algorithm’s
op, the second step, i.e the one where the weight vecters ar

0
than the one obtained for the COS-P algorithm. (Note that tég
number of files that are actually detected is much higheresinc
the algorithm works with unique combinations of featured an,

not with actual files.) modified so as to reduce the number of false alarms, onl
The results for theestdataset (Table VII) show that both : . ) - Oy
agects the weights corresponding to the clean files.

COS-P-Map-F1 and COS-P-Map-F2 algorithms produce goo Lt tht. — the feat |
results, with a good specificity (83%) and very few (2) fals? et us assume v far,... fa." are the fealure vailes
or a clean file, andv;,7 = 1,...,n is the weight vector of

ositives, even if the malware distribution in this dataiset . . . :
giﬁerent from the one in the training dataset the OS-P algorithm (Algorithm 2 in Section Ill). Also, let us
: fssume that at the iteratiénof the execution of that (second)

From the technical point of view, the most convenie inside the OS-P alaorith here th ber of fal
algorithms are the cascade one-sided perceptron (COSdP) JyFP Inside the LUs-algorthm — where the humber of false

its explicitly mapped version (COS-P-Map). Both have a $m§:arms getsE) r'eAducIed d_ ngo:)talr? suchka va}’l]yeuﬁprthat h
memory footprint, a short training time (Table VIII), a goo wifa; < 0. As already said, further work at this step in the

detection rate and few false alarms. OS—E algorithm aﬁeqts only the clean files, which means that
w; will decrease until the number of false alarms eventually
V. WORKING WITH VERY LARGE DATASETS becomes 0. More exactly, at iteratiér-1, the elements of the
All the results presented in this section are obtained on ti&ight vector will become smaller or equal to the values they
large (‘'scale-up”) dataset that was described in Section 1. wBave had at the previous step. Therefore) jfw; fa; < 0 at
will present two main optimisations that we incorporatethia iterationk, theny - w; fa; will be even smaller (or 0) at every
implementation of the one-sided perceptron (OS-P) algarit Subsequent iteration. That is why we no longer need to do
introduced in Section 111, and then we will address the peabl training on that (clean) samplg, after iteration.
of overfitting caused by human adnotation errors in theimgin ~ Algorithm 6 incorporates thidirst main optimisationinto
datasets. the OS-P algorithm. It sequentially reduces the size of the
Obviously, on a very big dataset (e.g. millions of botitraining lot and thus increases the training speed. Usiigy th
malware and clean files), the time required for training magptimised version of the OS-P algorithm we obtained a speed-
be a problem. Since we used the non-stochastic version of thefactor of ten or even better (see Figure 3 and Figure 3).
perceptron algorithm, this problem could be easily overeom Now we present thesecond main optimisationA quite
by using distributed computing on a grid system. Another seimple idea that in fact was already incorporated in the
lution is to modify the one-sided perceptron (OS-P) aldponit code of the one-sided perceptron algorithm (Algorithm 2 in
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TABLE IX
3500000
TIME CONSUMPTION INCPU TiCKS FOR THESUMS
3000000 A
/ Zwifai AND Zwl&fal
2500000 /
2000000 Standard sum Ticks|| Optimised sum Ticks
1500000 / mov ecx, 0 1 mov ecx, 0 1
/ mov esi, 0 1 mov esi, 0 1
1000000 sum loop: sum loop:
/ mov eax, featuresf[ecx] | 1 mov eax, featuresf[ecx] | 1
500000 mov ebx, weights[ecx] | 1 and ebx, weights[ecx] | 1
0 - . ! i i . imul ebx 10 add esi, eax 1
510 520 530 540 550 560 570 580 580 5100 add esi, eax 1 inc ecx 1
inc ecx 1 cmp ecx, nrof_features| 2
==#=5tandard COS-P Algorithm == Optimized COS-P Algorithm _Cmp ecx, nrof features| 2 Ja M—IO—OQ 1
ja sum loop 1
Fig. 2. Training time (measured in milliseconds) for thecza®e one-sided

perceptron (COS-P) algorithm, on teeale-updataset.

100

\
NN
" \}ﬁ
/ 60
_— s
/ 40 -

14.00

12.00

10.00 == C05-P

200 == CO5-P-Map

6.00

4.00

200

510 520 530 540 550 560 570 S5B0 580 5100

0.00 T T T T T T . . . :
510 520 530 sS40 550 360 570 SBO 580 5100 Fig. 4. Comparison of the detection rate (SE) reduction lier €OS-P and

COS-P-Map algorithms on the scale-up (large) dataset.

Fig. 3. Comparing the optimised COS-P algorithm with thexdéad COS-P
algorithm, on thescale-updataset. On the vertical axis: the training speed-up ]
factor. form of human adnotation errors. Not all of the malware

designated samples are actually malware, and not all of the
clean samples are clean indeed. That is why, the bigger the

Section Il1) consists in writing the whole algorithm using 3 database, the more likely is to get misclassified samples in
bit integer values rather than float values. This can beyeasihe training set. Because our algorithms aim to reduce the
achieved by multiplying the threshold and the weights withumber of false alarms to 0, the detection rate (sensijivity
a big number (usually a power of 2; we usef). Now the obtained on a large dataset will be much smaller (due to
learning rate will become 1- the smallest non-zero value thathe misclassification issue). In Figure 4 we can see how
can be represented using an 32 bit integer. the detection rate decreases when the data base gets large

This simple representation issue can lead to an importarable X shows that the accuracy, specificity and the number of
optimisation in the implementation of the one-sided petrmap false positives roughly decrease while the size of the da&b
(OS-P) algorithm. Remember that the testing function fer thncreases.
perceptron isd | w; fa;, wherew;. Let us assume thata; has
two values (0 and OxFFFFFFFF) instead of the usual values VI.
0 and 1. In this case we can write the testing function for the Our main target was to come up with a machine learning
OS-P algorithm a$° w;& fa;, since it has the same as thgramework that generically detects as much malware samples
classical testing functiod} w; fa;. as it can, with the tough constraint of having a zero false

As shown in Table IX, at assembler level, the numbejositive rate. We were very close to our goal, although we
of CPU ticks necessary for computing the€ w; fa; sum is still have a non-zero false positive rate. In order that this
2 + 17 x nr_of_features while the sum}_ w;& fa; requires framework to become part of a highly competitive commercial
247 x nr_of_featuresCPU ticks. Since using the OS-P-Mapproduct, a number of deterministic exception mechanisms ha
algorithm implies that the number of features will be veryo be added. In our opinion, malware detection via machine
large, it follows that the second (optimised) code will beatb learning will not replace the standard detection methoesi us
2.5 times faster than the first (standard) one. by anti-virus vendors, but will come as an addition to them.

Finally, a problem that occurs when working with largéAny commercial anti-virus product is subject to certainespe
datasets isoverfitting caused by the noise appearing in thand memory limitations, therefore the most reliable alionis

CONCLUSION AND FUTURE WORK
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TABLE X

DETECTIONRATE (SE) COMPARISON ON THESCALE-UP (L ARGE) [3] E. Konstantinou, “Metamorphic virus: Analysis and dgien,” 2008,
DATASET WHEN TRAINING THE COS-P A GORITHM. Technical Report RHUL-MA-2008-2, Search Security Award Sil.
thesis, 93 pages.
[4] P. K. Chan and R. Lippmann, “Machine learning for compuecurity,”
Dgtfget 1T7F; F5P 5187'56% 97572% 7?%2% Journal of Machine Learning Researctol. 6, pp. 2669-2672, 2006.
' ' ' [5] J.Z. Kolter and M. A. Maloof, “Learning to detect and ci#fy malicious
S20 309 5 | 46.94% | 98.91% | 69.73% executables in the wild Journal of Machine Learning Researcbol. 7,
S30 438 | 6 | 44.24% | 99.22% | 68.32% pp. 2721-2744, December 2006, special Issue on Machinenibeain
S40 555 6 42.13% | 99.36% | 67.18% Computer Security_
S50 648 5 | 39.32% | 99.61% | 65.72% [6] Y. Ye, D. Wang, T. Li, and D. Ye, “Imds: intelligent malwardetection
S60 764 5 | 38.66% | 99.68% | 65.39% system,” inKDD, P. Berkhin, R. Caruana, and X. Wu, Eds. ACM,
S70 | 842 | 2 | 36.55% | 99.89% | 64.29% 2007, pp. 1043-1047.
s80 969 | 2 | 36.82% | 99.90% | 64.45% [7] M. Chandrasekaran, V. Vidyaraman, and S. J. Upadhyagpycon:
S90 1092 | 3 | 36.89% | 99.87% | 64.48% Emulating user activities to detect evasive spyware [P€CC. |IEEE
s100 | 1100 | 3 | 33.45% | 99.88% | 62.56% Computer Society, 2007, pp. 502-509.

[8] M. R. Chouchane, A. Walenstein, and A. Lakhotia, “Usingafkov
Chains to filter machine-morphed variants of malicious paogs,”

. in Malicious and Unwanted Software, 2008. MALWARE 2008. 3rd

among those presented here are the cascade one-sided-percepinternational Conference gr2008, pp. 77-84.

tron (COS-P) and and its explicitly mapped variant (COS-PI9] M. Stamp, S. Attaluri, and S. McGhee, “Profile hidden nuimodels

M and metamorphic virus detectionJournal in Computer Virology2008.
ap). [10] R. Santamarta, “Generic detection and classificatibrpaymorphic

Since most AntiVirus products manage to have a detection malware using neural pattern recognition,” 2006.

rate of over 90%, it follows that an increase of the total letelll] I. Yoo, “Visualizing Windows executable viruses usisglf-organizing
0 d maps,” inVizSEC/DMSEC '04: Proceedings of the 2004 ACM workshop

tion rate of3% — 4% as the one produced by our algorithms, ¢, Visualization and data mining for computer securityNew York,
is very significant. (Note that the training is performed bae t NY, USA: ACM, 2004, pp. 82-89.
malware samples that are not detected by standard detectigh . Rosenblatt, “The perceptron: a probabilistic mottel information
storage and organization in the brain,” pp. 89-114, 1988.
methOdS-) [13] T. Mitchell, Machine Learning McGraw-Hill Education (ISE Editions),
As of this moment, our framework was proven to be a  October 1997.

valuable research tool for the computer security experts [&4] N. Cristianini and J. Shawe-TayloAn introduction to Support Vector
Machines and other kernel-based learning methods Cambridge

BitDefender AntiMalware Research Labs. For the near future jiersity press, March 2000.
we plan to integrate more classification algorithms to it, fq15] B. Scholkopf and A. J. Smold,earning with Kernels: Support Vector

Machi 141 119 20] 16] P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen, and Helsén,
acnines [ ]’ [ ]’ [ : “Assessing the accuracy of prediction algorithms for dfasgion,”
Bioinformatics no. 5, pp. 412—424, May 2000.
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