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a b s t r a c t

The vehicle routing problem (VRP) is an important scientific problem addressed in distribution manage-
ment. In classical VRP and its variants, the vehicle load is often regarded as a constant during transpor-
tation; therefore the loading cost associated with the amount of the load on the vehicle, are neglected in
the objective function when optimizing a vehicle routine. However, in real-world, the vehicle load varies
from one customer to another in a vehicle route. Thus, the vehicle route without considering the effect of
loading cost may lead to sub-optimal routes. In this paper, we investigate VRP with loading cost (VRPLC),
which considers the costs associated with the amount of the load on the vehicle when determining the
vehicle routes. Considering the features of the VRPLC, a scatter search (SS) is proposed. By introducing
customer-oriented three-dimensional encoding method, sweep algorithm and optimal splitting proce-
dure are combined to obtain better trial solutions. The arc combination and improved nearest neighbor
heuristic are adopted as a solution combination method and an improvement method to generate and
improve new solutions, respectively. Computational experiments were carried out on benchmark prob-
lems of capacitated VRP with seven categories of distribution scenarios. The computational results show
that the SS is competitive and superior to other algorithms on most instances, and that the VRPLC can
more reasonably and exactly formulate the vehicle routing problem with more cost savings than general
VRP models.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Vehicle routing problem (VRP) is an important scientific prob-
lem proposed by Dantzig and Ramser (1959) firstly. It can be de-
fined as the problem of designing the optimal routes for a fleet of
homogeneous vehicles to serve some geographically scattered cus-
tomers to minimize the total operation cost. Since then, VRP has
received much attention with respects to various aspects of the
problem. They are: (1) capacitated vehicle routing problem (CVRP)
that is an elementary version of VRP and only considers capacity
constraint (Laporte & Nobert, 1983); (2) vehicle routing problem
with time windows (VRPTW) that considers the due service time
bound of every customer (Bent & Van Hentenryck, 2004); (3) mul-
ti-depot vehicle routing problem (MDVRP) that considers multiple
depots instead of a single depot (Lim & Wang, 2005); (4) periodic
vehicle routing problem (PVRP) that considers the service time as
a period instead of a day (Francis & Smilowitz, 2006); (5) split
delivery vehicle routing problem (SDVRP) in which customer can
be served more than once (Belenguer, Martinez, & Mota, 2000)
and so on. The above-mentioned problems are special classes of
general VRP and they correspond to some real scenarios of trans-
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portation in distribution management. Most of the aforementioned
VRPs are formulated as 0-1 integer programming problems (Chu,
2005; Lim & Wang, 2005; Lu & Dessouky, 2004; Mingozzi, Giorgi,
& Baldacci, 1999), 0-1 mixed integer programming problems
(Bookbinder & Reece, 1988; Tavakkoli, Safaei, Kah, & Rabbani,
2007) and network optimization models (Yi & Ozdamar, 2007).

In general VRP models and its variants, the transportation cost
usually includes two parts: fixed cost and variable cost. The fixed
part is the dispatching cost for a vehicle, which depends only on
the volume of goods loaded in the vehicle and distance of a trip.
The variable cost is in proportion to the sum of the distance trav-
eled. In summary of the literature, the aforementioned models
for various forms of VRP consider the vehicle load as constant on
a whole route, and hence the cost associated with the amount of
the load, referred to loading cost hereafter in this paper, is a con-
stant and neglected in the objective function. The loading cost is
an important part of charge for consumption of gas that changes
due to the amount of the load of the vehicle. However, in real-
world distribution activities, the vehicle load varies greatly from
one customer to another on a whole route, because the goods will
be unloaded when a vehicle visited the customer. The vehicle load
will decrease as the vehicle visits customers one by one and finally
equals the quantity of demand at the last customer on a trip. In
practice, when transporting some special freight, such as hazard-
ous materials, perishable food, livestock or something with special
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handling, extra cost can be charged in real-world distribution
activity. This part of cost is commonly a function of weight of the
load and accounts for about fifty percent of the transportation cost.

In fact, the vehicle load is considered as a kind of variable, called
flow variable, to formulate traveling salesman problem and a vari-
ety of related transportation problems, e.g. network flow problem
(Dumas, Desrosiers, & Soumis, 1991; Gavish & Graves, 1978; Gou-
veia, 1995). The load variable appears in constraints or appears as a
threshold in objective function. Thus, the aforementioned VRP
models without considering the loading cost could only provide
an approximate and simplified formulation of practical VRP, and
subsequently the vehicle routes determined without considering
the effect of loading cost may lead to inexact optimal routes.

This paper focuses on a new formulation of VRP, short for VRPLC
hereafter in the paper, taking into account the loading cost in the
objective function when optimizing vehicle routes. Distinguished
from the traditional models of VRP, the loading cost is regarded
as a variable in objective function rather than zero. When the load-
ing cost is zero, the VRPLC is CVRP.

CVRP is a NP-hard problem and has been intensively studied. As
a generalization of CVRP, VRPLC is a NP-hard problem. There has
been no report on solution algorithms for VRPLC in the literature.
However, algorithms for solving various CVRP received much atten-
tion. The algorithms for solving CVRP can be divided into two cate-
gories: exact algorithms and heuristics. The detailed survey of exact
algorithms for CVRP can be found in Cordeau, Laporte, Savelsbergh,
and Vigo (2007). The largest CVRP instance that has been solved
optimally using an exact algorithm is of 134 customers (Fukasawa
et al., 2006). With the size of instances increasing, the computation
time of exact algorithm becomes intolerable. Thus, heuristic algo-
rithms have received more attention and they are suitable to solve
practical instances. The heuristics for solving CVRP and its variants
are classified into two categories: classical heuristic and meta-heu-
ristic. The famous classical heuristics are those like CW saving heu-
ristic (Clarke & Wright, 1964), sweep algorithm (Gillett & Miller,
1974), insertion heuristic (Gendreau, Hertz, Laporte, & Stan, 1998)
and other iterative improvement heuristics (Tan, Lee, Zhu, & Ou,
2001; Waters, 1987). The classical heuristic algorithms terminate
with satisfactory solution quickly and are easy to be implemented;
but, in general, the gap between the heuristic solution and the opti-
mal solution is large. A systematic review on classical heuristics can
be found in the literatures (Laporte, Gendreau, Potvin, & Semet,
2000; Laporte, 2007; Laporte & Semet, 2002).

Compared with classical heuristic, meta-heuristic algorithms
can obtain better solutions than classical heuristics or even global
optimal solutions in a reasonable time. The well-known meta-heu-
ristic algorithms include tabu search (TS) (Glover, 1986), simulated
annealing (SA) (Kirkpatrick & Gelatt, 1983), genetic algorithm
(GA) (Mitchell, 1996), ant colony optimization algorithm (ACO)
(Doerner, Hartl, Benkner, & Lucka, 2006) and neural networks
(Smith, 1999). TS and SA are based on local search principle (Kytöj-
oki, Nuortio, Bräysy, & Gendreau, 2007) and usually start searching
from one initial solution and explore more promising solutions in
the solution region. Some efficient implementation of TS and SA
for CVRP can be found in Tavakkoli-Moghaddam et al. (2007) and
Brandão (2009). GA and ACO are representative methods ground-
ing in population search principle (Smith, 1999). The meta-heuris-
tics based on population search principle maintain a pool of
solutions and update the solutions in the pool by rules. Recently,
several ACO algorithms are developed to solve CVRP successfully
(Doerner et al., 2006). Over the last 2 year, some meta-heuristic
algorithms, like variable neighborhood search (VNS) (Kytöjoki
et al., 2007), large neighborhood search (LNS) (Goel & Gruhn,
2008), adaptive large neighborhood search(ALNS) (Pisinger &
Ropke, 2007), scatter search (SS) (Russell & Chiang, 2006) are ap-
plied to the vehicle routing problem. Gendreau, Laporte, and Potvin
(2002) Cordeau, Gendreau, Hertz, Laporte, and Sormany (2005)
gave an extensive review of the above-mentioned meta-heuristics
in the past decades and recent years.

Among the aforementioned meta-heuristics, scatter search (SS)
can be regarded as an efficient algorithms for VRP (Glover, Laguna,
& Marti, 2000). SS is a population-based meta-heuristic and intro-
duced by Glover (1977) firstly for solving integer programming.
Distinguished from other population-based meta-heuristic, SS
operates on some solutions called reference set (Glover, Laguna, &
Marti, 2003). It selects more than two solutions of reference set in
a systematic way aiming at producing new solutions. In the domain
of solving routing problem the SS can yield better results than some
often used meta-heuristics (Alegre, Laguna, & Pacheco, 2007; Mota,
Campos, & Corberán, 2007; Russell & Chiang, 2006).

In this paper, we study VRP with loading cost (VRPLC), which
determines a route in order to minimize the total transportation
cost considering the costs incurred by vehicle load in objective
function. With the formulation of VRPLC, the vehicle load is viewed
as varying from a customer to another one instead of a constant
during a trip. Thus, the loading cost brought by the volumes of
goods loaded in a vehicle is considered as a part of the transporta-
tion cost. Considering the features of VRPLC, a scatter search (SS)
algorithm is developed. The SS algorithm adapts customer-ori-
ented three-dimensional encoding and combines the sweep and
optimal splitting procedure (Prins, 2004) to construct the initial
trial solutions pool. New solutions are generated by combining
the arc selected. The improved nearest neighbor method is used
to improve new solutions. Seven types of benchmark datasets of
CVRP with different node distribution are chosen, in the form of
random, cluster (one and several), mixing random and cluster, reg-
ulation(dispersive and dense), and similar magnetic field. The
experiments to test the performance, stability and sensitivity of
parameters of the SS on benchmark problems are conducted.

Following the introduction, the paper is organized as follows.
The mathematical model is described in Section 2, along with the
problem assumption. In Section 3, combining the features of the
model, a SS is developed to solve the VRPLC. In Section 4, compu-
tational results of the SS on seven types of benchmark instances
are reported. Finally, conclusions are made in Section 5.
2. Mathematical model for VRPLC

Consider a distribution network in which one product is
shipped from a depot to a set of customers. The VRPLC can be de-
fined on a graph G = (V,A), where V is vertex set and A is the arc set.
The vertex set V includes the depot v0 and customers Vc ¼
fv1;v2; . . . ;vNg. The index of the depot is 0 while customers are in-
dexed from 1 to N. A ¼ fðv i; v jÞjv i; v j 2 V ; i – jg is the arc set. A
distance matrix D ¼ ðdijÞ is defined on A, which is associated to
each arc ðv i;v jÞ. We assume that D is symmetric and satisfies the
triangle inequality. The depot owns homogeneous vehicles, and
the vehicle number is assumed to be unlimited. Each customer’s
demand is known and less than the vehicle capacity. The following
notations are used throughout the paper to formulate the model:

N = the number of the customers;
K = the number of the vehicles;
Q = the capacity of the vehicle;
Cd = the cost of traveling per unit-distance by a vehicle, called
distance coefficient hereafter;
Cg = the cost of delivering product of per unit-weight and per
unit-distance, called load coefficient hereafter;
Cv = the fixed cost of dispatching a vehicle called vehicle coeffi-
cient hereafter;
dij = the distance from node i to j, i, j = 0,1,2, . . . ,N;
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qi = the demand of customer i, i = 1,2, . . . ,N;
xijk = a binary variable, which is equal to 1 when arc (i, j) is tra-
versed by vehicle k, otherwise is equal to 0, i, j = 0,1,2, . . . ,N,
k = 0,1,2, . . . ,K;
yijk = the load of the vehicle k on arc (i, j), the value is nonnega-
tive real number and less than Q when vehicle k pass the arc
form i to j, otherwise yijk is equal to 0, i, j = 0,1,2, . . . ,N,
k = 0,1,2, . . . ,K.

The VRPLC aims to minimize the transportation cost including
distance cost, loading cost brought by the weight of goods distrib-
uted and the dispatching cost. It is formulated as follows:

Min cost¼
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The objective function includes the distance cost, the loading
cost brought by the weight of freight and the dispatching cost.
The constraint (2) is the vehicle capacity constraint. The formula
(3)–(5) represent that every customer is visited exactly once and
that served only by one vehicle. The constraint (6) guarantees that
the vehicles starts from and return to the depot. The constraint (7)
is the sub-tour elimination constraint. Eq. (8) shows the logic rela-
tionship between the demand of customer i and the vehicle loads
on the two arcs linking customer i.

The mathematical formulation of VRPLC can be regarded as the
generalization of CVRP, since the model of VRPLC can be trans-
formed to the classical CVRP when the Cg and Cv are equal to 0
and neglecting the constraints (8) and (9). In the next section, a
scatter search algorithm is proposed.
Fig. 1. The solution encoding structure.
3. A scatter search algorithm to solve VRPLC

In recent years, much attention have been attracted on SS for
solving various kinds of VRP. Corberán, Fernández, Laguna, and
Marti (2002) proposed a SS to solve a real-life problem with multi-
ple objectives. Two different heuristics construct the initial trial
solutions in the SS. SWAP and INSERT, two simple exchange proce-
dures are used to improve solutions. The combination method is
based on a voting scheme. The experiments testing on real data
show that the SS can solve the practical problem efficiently. Russell
and Chiang (2006) solved a classical VRPTW by SS. Their SS also
adopts two different construction heuristics to generate the initial
trial solutions. A common arc method and an optimization-based
set covering model are used to combine solutions. A more recent
application of SS is Mota et al. (2007), who presented a SS for
SDVRP. Local search is adopted as the improvement method. Four
kinds of critical clients is defined to produce new solutions.

Most SS algorithms generally use heuristics to obtain initial trial
solutions and adopt methods with few runtime to improve solu-
tions. The procedure of generating new solutions is usually devel-
oped according to the characteristic of problem, which is the
essential of an SS algorithm. However, generating the initial trial
solutions and the methods of improving solution are important
in SS. Combining the features of the VRPLC, a customer-oriented
three-dimensional encoding method, arc combination and solution
improvement methods based on the nearest neighbor heuristic are
developed, and they are given in detail as follows.

3.1. Customer-oriented three-dimensional encoding method

According to the characteristics of the VRPLC, we design a struc-
ture to represent the solution based on the customer. The structure
is shown in Fig. 1.

In our implementation, the solution is encoded as an n-dimen-
sional vector of customers. Every entry of the vector denotes cus-
tomer information that includes three components: the customer
number; the vehicle serving the customer, and the position in the se-
quence of the customer visited. The example of Fig. 1 can tell us that
the customer 1 is visited secondly by vehicle 4. However, the solu-
tion encoding cannot display the route directly. When the solution
is obtained, the route can be known from the customers’ information
by ordering the vehicle number and the sequence number in turn.

Fig. 2 is an example to show how to translate encoded solution
to route. The solution displayed each customer’s information in
Fig. 2a, which has five customers. By ordering the second and third
items as above-mentioned, we can obtain the routes: 0-1-4-0, 0-3-
0 and 0-2-5-0 as shown in Fig. 2b, where 0 denote the depot.

3.2. Diversification generation method

The initial trial solution set of SS usually needs solutions with
higher quality or better diversity in the solution space. The random
initialization based on optimal splitting procedure (RIOSP) is pro-
posed to generate the initial trial solution. RIOSP comprise three
steps: (1) select a start point randomly; (2) construct a TSP route
by sweep algorithm (Gillett & Miller, 1974) beginning from the start
point; (3) apply the optimal splitting procedure (Prins, 2004) to split
the TSP. Repeating the above process p times one can build a trial
solution set denoted by P. All trial solutions are feasible.

For example, we use the date of benchmark problem (P-n16-k8)
of CVRP to demonstrate the process of RIOSP. In Fig. 3a, the algo-
rithm selects the 8th customer randomly as start point and the line
from the depot to the 8th customer is set as the polar axis. Then
use sweep method to obtain a visiting sequence shown in
Fig. 3b, which is 8-3-10-1-12-15-4-11-14-5-7-9-6-13-2. After that,
apply the optimal splitting procedure to generate the initial trail
solution as shown in Fig. 3c, which is 0-8-0, 0-3-10-0, 0-1-0,
0-12-15-0, 0-4-11-0, 0-14-5-0, 0-7-9-0, 0-6-0, 0-13-0 and 0-2-0
(0 denote the depot). When a route is decided, yijk the vehicle load
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Fig. 2. An example of the conversion from solution to route.

Fig. 3. An example of the optimal splitting procedure.

Fig. 4. An example of solution combination method.
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variable can be determined. For example, given the route 0-3-10-0
served by vehicle 2, Q = 35, q3 ¼ 16 and q10 ¼ 8. The computational
results are y0;3;2 ¼ 24; y3;10;2 ¼ 8 and y10;0;2 ¼ 0. Although yijk is ob-
tained according to the route, yijk is considered simultaneously
during the route decision.

Diversification generation method can construct initial trial
solution set quickly. The start point selected by random enhances
the diversity of the solution. The sweep algorithm and the optimal
splitting procedure can help obtain the route of high quality fast.
For instance, Fig. 3, 0-8-0, 0-3-10-0, 0-1-12-0, 0-15-4-0, 0-11-14-
0, 0-5-7-9-0, 0-6-0, 0-13-0 and 0-2-0, is the result of simple split-
ting procedure with objective value of 3266.4, while the result of
optimal splitting procedure is with the objective value of 3072.4.

3.3. Improvement method

The improvement method is used after generating new solu-
tions. The new solutions are the initial trial solutions or solutions
generated by combination method. Hence, the improvement meth-
od need treat with feasible and infeasible solutions. Improving the
solution generated by the solution combination method can affect
the reference set updated and a tradeoff between the quality and
computational time is needed. Hence, we apply a simple method
to complete improvement towards reducing the runtime of SS.
The procedure is given below.
1. If there are routes of the input solution violating vehicle

capacity limit then

For (i = 1 to the number of the routes which violate vehi-
cle capacity limit)

2. Order all the customers of the route i according to
insertion cost.

do
3. Remove the customer with the highest insertion

cost.
until (satisfy the vehicle capacity limit)

End for
4. Insert each customer removed in the position with satis-

fying vehicle capacity limit and having the smallest inser-
tion cost. If no such position exists, apply the Optimal
Splitting Procedure to the entire customer unplaced to con-
struct the new route.
End if

5. Order every route of the solution using the improved near-
est neighbor method.
The improved nearest neighbor method select next visiting cus-
tomer by heuristic rule.
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Rule: The vertex j with the highest qj=dij value and the lowest dij

is preferential, when vertex i ði 2 VÞ select the next vertex visited
from J ¼ fjjj 2 Vg. qj equals 0, when j = 0.

The rule is derived from the observation of the objective func-
tion. For a given route, the total demands of all customers are
determined. Given m customers in one route and the correspond-
ing demand set Q 0 ¼ fq1; q2; . . . ; qmg, the arcs comprised the route
belong to arc set A0 ¼ fr1; r2; . . . ; rmþ1g. The length of each arc is
represented by dr0

i
; i0 2 f1;2; . . . ;mþ 1g. Then, the objective func-

tion of this route can be computed by following formula:

cos t ¼ Cdðdr1 þ dr2 þ � � � þ drmþ1 Þ þ Cg ½ðq1 þ q2 þ � � � þ qmÞdr1

þ ðq2 þ � � � þ qmÞdr2 þ � � � þ qmdrm � þ Cv ð11Þ

To reduce the value of objective function, the idea is to reduce the
value of each item in the function. The intuitional method is to re-
duce each element in the first and second item of the function. The
third item is constant. The most complex part is the second non-lin-
ear item. When a route is determined, the total demand, i.e.
q1 þ q2 þ � � � þ qm, is determined. To reduce the value of the second
item, we want to make the value of each element in this item be
lower. Hence, we hope q1 > q2 > � � � > qm and dr1 < dr2 < � � � < drm .
The improved nearest neighbor method can satisfy it. The method
may result in the value of drmþ1 being high, but it influences on
the objective function little.

3.4. Reference set update method

The reference set is the foundation of generating new solutions
and is very important part of SS. Reference set update method
completes building the initial reference set and updating the refer-
ence set when the new solution is created. The detailed descrip-
tions for the two parts of reference set update method are given
in the following.

3.4.1. Building initial reference set
As usual, the reference set, Refset, consists of two subsets. One is

Refset1 with b1 higher quality solutions and the other is Refset2
which includes b2 solutions with better diversification. To find di-
verse solutions, how to measure the diversification degree, i.e. dis-
tance, between two solutions need be defined. Given two solutions
x1 and x2 with e1 and e2 arcs, respectively, there are ec common
arcs between the two solutions. The distance can be defined as
dðx1; x2Þ ¼ 1� 2�ec

e1þe2
. The value of the distance is in the range

[0,1]. The degree of the diversification is biggest when the value
is equal to 1. If the two solutions are same, the distance value is 0.

Take first 3 solutions with the minimum objective function va-
lue from P to build Refset1. During determining Refset2, calculate
the distance between solutions in Refset and P-Refset and maximize
the distance minimum (Glover et al., 2003) to obtain a solution and
repeat this process b2 times.

3.4.2. Updating reference set
Updating Refset starts from the new solution generated by com-

bination and improvement method. The basic static update process
of the reference set is chosen (Marti, Laguna, & Glover, 2006). The
reference set is updated when the objective function value of a new
solution is better than the worst solution in the Refset.

3.5. Subset generation method

Subset generation method is the foundation to construct new
solutions in SS. The subsets are built based on the reference set.
The general rule (Glover et al., 2003) to generate subsets is suit
for most problems solved by SS. The only difference is the type
of the subsets applied in different problems. In our implementa-
tion, we use four types of subsets, which are 2-element subsets,
3-element subsets, 4-element subsets and the subsets consisting
of the best i (for i = 5 to b) elements.

3.6. Solution combination method

Solution combination method is used to create new solutions
on the subsets. The basic SS can obtain more than one solutions,
but only one new solution is generated in our implementation.
The new solution is perhaps infeasible; however, they all satisfy
the other constraints except the vehicle capacity limit. The combi-
nation method is a method of arc combination with selecting high
quality arcs and common arcs. ‘‘The arcs appears with a high fre-
quency in elite solutions will have a higher probability of being
in an optimal solution” (Rochat & Taillard, 1995). The subset is
based on the reference set and the solutions in the reference set
are the elite solutions of set P. It is the reason of selecting common
arcs. The criterion of high quality arcs are those with the minimum
distance and according with the rule described in Section 3.3.

To be convenient for calculation, we use a ð1þ NÞ � ð1þ NÞ 0-1
matrix, A ¼ ðaijÞ i; j 2 0;1; . . . ;N, to represent a solution. If there is
an arc from vertex i to j, aij equals 1. Otherwise aij equals 0. Each
solution can only be represented by one matrix according to the or-
der of customers visited.

The implementation process of combination method can be
shown below.
1. Transform all the solutions in a subset to matrixes

Al ¼ ðaijÞ, respectively, l 2 ½1;num�; num represent the
number of solutions in the subset

2. Add up all the matrixes transformed in step1, A0 ¼
Pnum

l¼1 Al

3. For i = the second row of A0 to the row 1 + n of A0

4. Save the column number with the biggest value aij

located in the variable column
If there are more than one column with the same

biggest value then
5. Update variable column with the column number

where qj=dij with the biggest value is located
End if

6. Set j to equal the number which is saved in the var-
iable column. Then, set aij equals 1 and others equal 0.
End for

7. For j = the second column of A0 to the 1 + n column of A0

If there is no any location of the column j being set in
step 3 to step 6 then

8. Save the row number which aij with the biggest
value is located in the variable row

If there are more than one column with the same
biggest value then

9. Update variable row with the row number
where qi=dji with the biggest value is located

End if
10. Set i to equal the number which is saved in the

variable row. Then, set aij equals 1 and others equal 0.
Else

11. Maintain the location set, the other rows in this
column equal 0.

End if
End for

12. Traverse the route starting from the distribution center,
and cut the relationship between the customers which
aren’t visited and other customers. Construct a new route
between each customer which is not visited and the dis-
tribution center.
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In the process of combination, the constraints (3)–(6) are met
by step 3 to step 11. The step 12 makes the route without the

sub-tour.

An example is illustrated to explain the implementation process
in Fig. 4.

The example in Fig. 4 is the solution combination process in a
subset which includes three solutions. Firstly, we use three ma-
trixes to represent the three solutions, respectively, as shown in
Fig. 4a–c. Secondly, by adding the three matrixes, we can obtain
the matrix shown in Fig. 4d. Thirdly, we determine the value of
each row in the frame. In the frame only one position can be equal
to 1 in each row to ensure the out-degree of the customer equals 1.
The position is decided according to the rule described from step 3
to step 6 in the implementation process. In Fig. 4d, given the value
of q1=d41 is the biggest, so customer 1 will be visited following cus-
tomer 4. Finally, set the value of each column in the frame of Fig. 4f
as described from step 7 to step 11 in the implementation process.
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Table 1
Description of testing problems.

aBreedam-P1 and Breedam-P2 are instance 19.
bGWKC-P1 is instance 13, GWKC-P2 is instance 10, GWKC-P3 is instance 16, GWKC-P4

Table 2
Comparison of the results for VRPLC among SS, ACOs and best known solutions.

Testing problem no. Instance Improved C-W CVRP

v(s) t (s) v(s)

P6 E-n33-k4 622,590 2.7 577,739
P10 F-n72-k4 600,671 49.5 589,297
P1 P-n76-k4 24,346 59.5 21,349
P2 P-n76-k5 19,912 59.4 19,690
P3 E-n101-k8 18,016 194.5 17,664
P4 E-n101-k14 15,102 183.8 14,898
P7 Breedam-P1 12,181 184.8 –
P8 Breedam-P2 11,093 184.1 –
P9 F-n135-k7 250,795 592.6 243,786
P5 M-n200-k17 30,285 995.2 –
P14 GWKC-P4 17,723 2564.8 18,084
P11 GWKC-P1 94,196 2451.9 89,415
P12 GWKC-P2 82,539 7310.6 75,781
P15 GWKC-P5 33,232 13,173.6 33,639
P16 GWKC-P6 44,343 24,775.9 43,897
P13 GWKC-P3 175,952 99,552.1 165,053

a Coded in Matlab, seconds using Pentium 4, 2.66 GHz with 512 MB RAM under the M
b Time unit is second.
The result of the solution combination method is 0-2-0, 0-4-1-0
and 0-5-3-0 where 0 denote the depot.
4. Computational experiments and analysis

In this section, we examine the performance of the proposed SS
described above. The SS is coded in JAVA and all the tests were per-
formed on Pentium 4 at 3.0 GHz with 1 GB RAM under the Micro-
soft Windows XP operation system.
4.1. Introduction of testing problems

We adopt the benchmark instances of CVRP to test the proposed
SS. The benchmark problems selected as the testing problems are
obtained from the webpage of http://www.neo.lcc.uma.es/radi-
aeb/WebVRP/Problem_Instances/instances.html. These testing
is instance 17, GWKC-P5 is instance 19, and GWKC-P6 is instance 20.

IMMASa PMMASa SSb

v(s) t (s) v(s) t (s) v(s) t (s)

613,206 4.3 467,149 4.5 467,302 0.1
598,322 11.3 314,446 11.4 313,368 0.8
27,706 11.6 11,885 12.1 11,112 0.5
22,230 11.5 12,018 12.0 11,130 0.5
21,140 18.1 13,914 18.7 12,624 0.9
16,335 21.6 13,861 18.9 12,715 2.8
12,496 18. 2 12,476 19.0 11,867 7.7
11,680 18.3 11,600 18.1 11,515 4.9
261,070 29.9 162,142 31.3 161,282 1.5
32,846 66.1 25,264 67.1 25,001 5.1
18,239 87.7 17,100 96.5 16,442 24.4
96,830 96.6 71,451 101.0 63,561 15.5
86,469 156.6 59,635 164.8 57,144 34.0
37,756 193.5 30,721 209.9 31,050 48.6
47,681 262.9 40,147 306. 2 40,742 177.4
188,155 341. 3 132,766 356.1 121,641 64.1

icrosoft Windows XP operating system.

http://www.neo.lcc.uma.es/radi-aeb/WebVRP/Problem_Instances/instances.html
http://www.neo.lcc.uma.es/radi-aeb/WebVRP/Problem_Instances/instances.html
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problems are classified into seven types. Each type represent a sce-
nario of customer’s distribution, hence they have different distri-
bution characteristics. These testing problems are from small
sizes with 32 customers to large size with 480 customers and have
different vehicle capacity. Detailed information of these testing
problems is shown in Table 1. The parameter values of the model
are set with Cd ¼ 1:5; Cg ¼ 0:2 and Cv ¼ 100. The parameter values
are determined according to an investigation in some local trans-
portation company.

All the benchmark problems only have vehicle capacity
restriction.
Table 3
The results of SS over 50 independent runs.

Fig. 5. Data set of E-n33-k4 and the correspo

Fig. 6. Data set of M-n200-k17 and the corresp
4.2. The comparison analysis of the SS

To test the performance of SS, the best known solutions of the
benchmark problems, improved C-W algorithm and two Ant Col-
ony Optimization (ACO) algorithms are used to compare with SS.
One ACO algorithm is Improved MAX-MIN Ant System (IMMAS)
and the other is Partition based MAX-MIN Ant System (PMMAS).
The improved C-W algorithm adopts the objective function of
VRPLC and considers the influence of sequence of visiting. IMMAS
is based on the MAX-MIN Ant System for TSP proposed by Stützle
and Hoos (2000). It solves the VRPLC by partitioning the TSP route.
The partition only considers vehicle capacity constraint. The parti-
tion of the PMMAS is by optimal splitting (Prins, 2004).

The comparison results are reported in Table 2, the column of
‘‘v(s)” represents the objective function value of the solution and
‘‘t” represents the computational time. The column of ‘‘CVRP” is
the objective function value of the VRPLC corresponding to the best
known solutions of CVRP problem. The last column is the best solu-
tion of SS over 50 independent runs. The computational results
indicate that the SS is much better than other four algorithms for
the 12 testing problems among the 16 testing problems. As for
the testing problems P6, P8, P15 and P16, the solution gap between
the SS and the best solutions of other algorithm is not more than
3.6%, while the other algorithm consumed more time. Thus, one
can conclude that the SS is competitive both in quality and compu-
tational time for most instances in Table 2.

From the perspective of running time, the testing problems
with the same customers’ distribution and different vehicle capac-
ity, computational time reduces along with increase of vehicle
capacity. That is because in the problem with the relatively small
vehicle capacity, more feasible solutions are generated. The
results in Table 2 also show that for the instances with the same
nding results over 50 independent runs.

onding results over 50 independent runs.
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distribution, the computational time increases with the size of the
customers on the whole. From the results in Table 2, we can con-
clude that algorithms with best known solutions of CVRP are not
suitable for the VRPLC. It can be observed that the methods for
CVRP cannot produce better solution than SS.
Fig. 7. Data set of GWKC-P3 and the correspo

Fig. 8. Data set of GWKC-P6 and the correspo

Table 4
The results of SS with different parameter setting of model.

*Time unit is second. MAX, MIN and AVG are the maximum, minimum and average valu
4.3. The experiment on the stability of the SS

To test the stability of the SS, we run the SS algorithm indepen-
dently over 50 times for each testing problem. For each testing
problem, the best solution (MIN), worst solution (MAX) and the
nding results over 50 independent runs.

nding results over 50 independent runs.

es of the solutions among the 50 independent runs.



Fig. 9. Total costs varying with load cost coefficient under SS and best solution of CVRP.

Fig. 10. The total costs varying with the size of trial solution set.
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average values of the objective function (AVG) are given in Table 3.
The ‘‘Avg gap” is defined as ((MAX � AVG)/AVG) � 100% in the
‘‘Max” column and as ((AVG �MIN)/AVG) � 100% in the ‘‘MIN” col-
umn. The results in Table 3 indicates that the gaps either between
maximum and average or between minimum and average are not
more than 3% among the testing problems, which lead us to con-
clude that the SS is stable.
Table 5
The results of SS with different size initial solution sets.
4.4. The improvement effect of SS

This part of experiments is carried out to illustrate the roles of
the improvement method by comparing the best trial solution with
the final solution. Four typical distributions are selected to observe
the performance of SS. Figs. 5–8 report the best trial solution and
final result over 50 independent runs. The left ones show the data
distribution of the benchmark instances. From the result in Fig. 5b,
it can be observed that the initial best solution is not improved fur-
ther when the data size is small. Owing to the randomization of SS,
there exists one solution distinguished from others. However, from
Figs. 6–8, it indicates that the improved rates of the other three in-
stances with large sizes data sets are about 10%, 5% and 14%,
respectively. The effect of improvement is not good for the regular
distribution.
4.5. The influence of cost coefficients variation on solution

This part of experiments is to illustrate how the cost coefficients
affect the solution to demonstrate that VRPLC is more reasonable
and practical than VRP in formulating distribution management.
Cd ¼ 1:0, 1.5, Cg ¼ 0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0 and
Cv ¼ 0, 100, 500 are selected and the experiments are done on
two benchmark instances, E-n101-k14 and GWKC-P1 . When Cg

and Cv are equal to 0, VRPLC is transformed to the classical CVRP.
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The best known solution of CVRP and the solution of SS under dif-
ferent values of parameters are given in Table 4. The total cost
varying with load coefficients for the instance E-n101-k14 and
GWKC-P1 under CVRP and SS is shown in Fig. 9. It is observed from
Table 4 that the best known solutions of CVRP are poorer than SS
when Cg is not equal to 0. In Fig. 9, the ‘‘CVRP” represent the costs
of the best known solution of CVRP, and the ‘‘SS” represent the pro-
posed SS algorithm. Fig. 9 shows that, when the value of Cg is less
than 0.05, the cost of ‘‘CVRP” is less than the ‘‘SS”. It indicates that
the load cost affects the transportation cost slightly, whereas the
costs of ‘‘SS” are much less than ‘‘CVRP” with the value of Cg

increasing. It means that considering the factor of load cost can
lead a reduction of the total cost. The results demonstrate the SS
is more suitable for VRPLC. As a consequence, this SS for VRPLC
is not good for solving general CVRP, if there is no any modification.
The experiments demonstrate that VRPLC not only can more rea-
sonably and exactly formulate the vehicle routing problem, but
also can provide better solution than VRP.
4.6. Experiments on solution varying with the size of initial trial
solution

Reference sets is an important concept of SS, the initial trial
solution sets affect the building of initial reference sets. So we test
the effect of different size of the initial trial solution sets on the
solution in this section. Fig. 10 depicts the solutions varying with
different sizes of the initial trial solution. Because the results in Ta-
ble 3 are obtained when the size of the reference set equals 10.
Considering Table 3, Table 5 and Fig. 10 together, it is concluded
that the sizes have no considerable effect on the solution.
5. Conclusions

Taking into account the loading cost in objective function, a new
formulation of vehicle routing problem (VRPLC) is proposed. A
scatter search algorithm is developed for solving VRPLC in this pa-
per. Distinguished from the traditional VRP models, the vehicle
load is viewed as a variable rather than a constant from one cus-
tomer to another in a trip. Experimenting on some benchmark in-
stances demonstrated that VRPLC can more reasonably and exactly
formulate the vehicle routing problem, but also can provide cost
saving than VRP formulation.
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