
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

153 | P a g e

www.ijacsa.thesai.org

Comparison and Analysis of Different Software

Cost Estimation Methods

Sweta Kumari

Computer Science & Engineering

Birla Institute of Technology

Ranchi India

Shashank Pushkar

Computer Science &Engineering
Birla Institute of Technology

Ranchi India

Abstract- Software cost estimation is the process of predicting the

effort required to develop a software system. The basic input for

the software cost estimation is coding size and set of cost drivers,

the output is Effort in terms of Person-Months (PMôs). Here, the

use of support vector regression (SVR) has been proposed for the

estimation of software project effort. We have used the

COCOMO dataset and our results are compared to Intermediate

COCOMO as well as to MOPSO model results for this dataset. It

has been observed from the simulation that SVR outperforms

other estimating techniques. This paper provides a comparative

study on support vector regression (SVR), Intermediate

COCOMO and Multiple Object ive Particle Swarm Optimization

(MOPSO) model for estimation of software project effort.

We have analyzed in terms of accuracy and Error rate. Here,

data mining tool Weka is used for simulation.

Keywords--- Support vector regression; PM- person-months;

MOPSO- Multiple objective particle swarm optimization;

COCOMO- Constructive cost estimation; Weka data mining tools.

I. INTRODUCTION

Cost estimation is a process or an approximation of the
probable cost of a product, program, or a project, computed on
the basis of available information. Accurate cost estimation is
very important for every kind of project, if we do not estimate
the projects in a proper way; result the cost of the project is
very high sometimes it will be reached 150-200% more than
the original cost [19]. So in that case it is very necessary to
estimate the project correctly. The Cost for a project is a
function of many parameters. Size is a primary cost factor in
most models and can be measured using lines of code (LOC)
or thousands of delivered lines of code (KDLOC) or function
points. A number of models have been evolved to establish the
relation between size and effort for Software Cost Estimation.
Data mining software is one of a number of analytical tools for
analyzing data. It allows users to analyze data from many
different dimensions or angles, categorize it, and summarize
the relationships identified. Data mining help us to classify
the past project data and generate the valuable information.

Support vector regression (SVR) is a kernel method for
regression based on the principle of structural risk
minimization [11, 3]. Kernel methods have outperformed
more traditional techniques in a number of problems,
including classification and regression [11, 3]. Here, the use of
SVR has been proposed for the estimation of software project
cost and also, it has been found that this technique
outperforms the other popular cost estimation procedures in

terms of accuracy. The rest of the paper is organized as
follows: Literature review refers to some existing estimation
methods. Then the basic idea for this new approach for
estimation has been discussed. Then the simulated experiment
has been mention. We discuss the results and give the
concluding remarks.

II. LITERATURE REVIEW

Various effort estimation models have been developed
over the last four decades. The most commonly used methods
for predicting software development efforts are function Point
Analysis and Constructive Cost Model (COCOMO) [10].
Function point analysis is a method of quantifying the size and
complexity of a software system in terms of the functions that
the system delivers to the user [4]. The function does not
depend on the programming languages or tools used to
develop a software project [3]. COCOMO is developed by the
Boehm [2]. It is based on linear-least-squares regression.
Using line of code (LOC) as the unit of measure for software
size itself contains so many problems [7]. These methods
failed to deal with the implicit non-linearity and interactions
between the characteristics of the project and effort [5, 11].

In recent years, a number of alternative modelling
techniques have been proposed. They include artificial neural
networks, analogy-based reasoning, and fuzzy system and
ensemble techniques. Ensemble is used to combine the result
of individual methods [12, 17]. In analogy-based cost
estimation, similarity measures between a pair of projects play
a critical role [16]. This type of model calculates distance
between the software project being estimated and each of the
historical software projects and then retrieves the most similar
project for generating an effort estimate [14]. Further, Lefley
and Shepperd [9] applied genetic programming to improve
software cost estimation on public datasets with great success.
Later, Vinay kumar et al. [15] used wavelet neural networks
for the prediction of software cost estimation. Unfortunately
the accuracy of these models is not satisfactory so there is
always a scope for more accurate software cost estimation
techniques.

III. THE BASIC IDEA

Suppose we are given training dataset{(x1, y1), . . . ,(xl,
yl)}Ṓ… ᴙ, where … denotes the space of the input patterns
(e.g. … = ᴙd

). The goal of regression is to find the function
ä(x) that best models the training data. In our case, we are
interested in building a regression model based on the training

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

154 | P a g e

www.ijacsa.thesai.org

data to use it subsequently to predict the total effort in man-
months of future software projects. In linear regression, this is
done by finding the line that minimizes the sum of squares
error on the training set.

A. Support Vector Regression

In this work we propose to use ὑ-SVR, which defines the
ὑ-insensitive loss function. This type of loss function defines a
band around the true outputs sometimes referred to as a tube,
as shown in Fig. 1.

Fig.1 Regression using ὑ-SVR

The idea is that errors smaller than a certain threshold ὑ ι
0 are ignored. That is, errors inside the band are considered to
be zero. On the other hand, errors caused by points outside the
band are measured by variables ɝ and ɝ* as shown in Fig. 1.

In the case of SVR for linear regression, ä()x is given ä

()x = xw, +b, with w ɴ…, b ɴᴙ. .,. denotes the dot

product. For the case of nonlinear regression, ä()x = ,w ‰

)(x +b, where ‰ is some nonlinear function which maps the

input space to a higher (maybe infinite) dimensional feature
space. In ὑ-SVR, the weight vector w and the threshold b are
chosen to optimize the following problem [11]:

minimize w,b,ξ,ξ*
2

1
ww, +Cä

=

+
l

i

ii
1

*),(xx

subject to (àw, ‰ (תi)ð+ b) ╖ ώi¢ɛ+ ,ix

 ώi ï (àw, ‰ (תi)ð+ b)¢ ɛ+*,ix

 ,ix *ix ² 0éééé(1)

The constant Cι0 determines the trade-off between the
flatness of ä and the amount up to which deviations larger than
ὑ are tolerated. ɝ and ɝ* are called slack variables and measure
the cost of the errors on the training points. ɝ measures
deviations exceeding the target value by more than ὑ and ɝ*
measures deviations which are more than ὑ below the target
value, as shown in Fig. 1.

The idea of SVR is to minimize an objective function
which considers both the norm of the weight vector w and the
losses measured by the slack variables (see Eq. (1)). The
minimization of the norm of w is one of the ways to ensure the
flatness of ä [11].

The SVR algorithm involves the use of Lagrangian
multipliers, which rely solely on dot products of ‰(x). This
can be accomplished via kernel functions, defined as K (xi, xj)

= à(xi), (xj)ð. Thus, the method avoids computing the

transformation ‰(x) explicitly. The details of the solution can
be found in [11].

IV. EXPERIMENTS

The regression methods considered in this paper were
compared using the well-known COCOMO software project
dataset, reproduced in Table I .This dataset consists of two
independent variables-Size and EAF (Effort Adjustment
Factor) and one dependent variable-Effort. Size is in KLOC
(thousands of lines of codes) and effort is given in man-
months [1].In this work we are interested in estimating the
effort of future projects, where the effort is given in man-
months. The simulations were carried out using the Weka tool
[13]. In Weka, SVR is implemented using the Sequential
Minimal Optimization (SMO) algorithm [6].

TABLE I. COCOMO DATASET.

Project

No.

Size EAF Effort

1 46 1.17 240

2 16 0.66 33

3 4 2.22 43

4 6.9 0.4 8

5 22 7.62 107

6 30 2.39 423

7 18 2.38 321

8 20 2.38 218

9 37 1.12 201

10 24 0.85 79

11 3 5.86 73

12 3.9 3.63 61

13 3.7 2.81 40

14 1.9 1.78 9

15 75 0.89 539

16 90 0.7 453

17 38 1.95 523

18 48 1.16 387

19 9.4 2.04 88

20 13 2.81 98

21 2.14 1 7.3

The following section describes the experimentation part
of work, and in order to conduct the study and to establish the
affectivity of the models from COCOMO dataset were used.
We calculated an

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

155 | P a g e

www.ijacsa.thesai.org

Intermediate COCOMO effort by using the following
equations:

Effort = a*(size)
b
 * EAF (2)

where a and b are the set of values depending on the
complexity of software (for organic projects a=3.2, b=1.05,
for semi-detached a=3.0, b=1.12 and for embedded a=2.8,
b=1.2) and the MOPSO model effort[18]is calculated by using
following equations:

Effort = a*(size)
b
 * EAF + C (3)

where a and b are cost parameters and c is bias factor.
a=3.96, b=1.12 and c=5.42.The performance measures

considered in our work are Mean Absolute Relative Error
(MARE) and Prediction (25). The MARE is given by the
following equation:

MARE=
n

1
 ä
=

n

i 1

fi - yi (4)

Pred (25) is defined as the percentage of predictions falling
within 25% of the actual known value, Pred (25). fi is the
Estimated and yi is the Actual value respectively, n is the
number of data points.

We have carried out simulations considering estimating the
SVR effort using both independent variables (Size and EAF).
The results of our simulations are shown in Table II .

TABLE II. ESTIMATED EFFORTS OF DIFFERENT TYPES OF MODELS

P
ro

je
c
t
N

o
.

S
iz

e

E
A

F

M
e

a
s
u
re

d

E
ff
o

rt

C
O

C
O

M
O

E
ff
o

rt

M
O

P
S

O
 E

ff
o

rt

S
V

R
 E

ff
o

rt

C
O

C
O

M
O

E
rr

o
r

M
O

P
S

O
 E

rr
o

r

S
V

R
 E

rr
o

r

1 46 1.17 240 208.56 342.84 239.66 31.44 102.84 0.34

2 16 0.66 33 38.82 63.74 88.51 5.82 30.74 55.51

3 4 2.22 43 30.45 46.95 42.32 12.55 3.95 0.68

4 6.9 0.4 8 9.73 19.2 43.21 1.73 11.2 35.21

5 22 7.62 107 626.11 967.39 174.9 519.11 860.39 67.9

6 30 2.39 423 271.97 432.46 174.31 151.03 9.46 248.69

7 18 2.38 321 158.41 245.41 115.85 162.59 75.59 205.15

8 20 2.38 218 176.93 275.46 126.52 41.07 57.46 91.48

9 37 1.12 201 158.85 258.53 201.34 42.15 57.53 0.34

10 24 0.85 79 76.52 123.71 135.91 2.48 44.71 56.91

11 3 5.86 73 59.43 84.85 72.27 13.57 11.85 0.73

12 3.9 3.63 61 48.49 71.43 55.16 12.51 10.43 5.84

13 3.7 2.81 40 35.52 53.59 53.51 4.48 13.59 13.51

14 1.9 1.78 9 11.17 19.88 37.39 2.17 10.88 28.39

15 75 0.89 539 336.18 449.18 391.82 202.82 89.82 147.18

16 90 0.7 453 324.32 433.52 465.13 128.68 19.48 12.13

17 38 1.95 523 284.42 459.45 219.21 238.58 63.55 303.79

18 48 1.16 387 216.23 356.28 263.17 170.77 30.72 123.83

19 9.4 2.04 88 68.64 104.78 80.45 19.36 16.78 7.55

20 13 2.81 98 132.89 202.22 105.03 34.89 104.22 7.03

21 2.14 1 7.3 7.12 14.71 38.13 0.18 7.41 30.83

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

156 | P a g e

www.ijacsa.thesai.org

Fig.2: Measured Effort Vs Estimated Effort of various Models.

Figure 2 shows the graph of measured effort versus
estimated effort of Intermediate COCOMO, MOPSO and SVR
model.

From the figure 2, one can notice that the SVR estimated
efforts are very close to the measured effort.

V. RESULTS AND DISCUSSIONS

The results are tabulated in Table III . It was observed that
the SVR gives better results in comparison with Intermediate
COCOMO and MOPSO model. The MARE and Prediction
accuracy is good. These results suggest that using data mining
and machine learning techniques into existing software cost
estimation techniques can effectively improve the accuracy of
models.

TABLE III : PERFORMANCE AND COMPARISONS

Results Intermediate

COCOMO

MOPSO SVR

MARE 85.62 77.74 68.72

Prediction

(25%)

38.09 42.86 47.62

The following figure 3 shows the performance measures of
Intermediate COCOMO, MOPSO and SVR model.

Fig.3. Performance Measure

VI. CONCLUDING REMARKS

This paper provides the use of Support Vector Regression
for estimation of software project effort. We have carried out
simulations using the COCOMO dataset. We have used weka
tools for simulations because it consist of different-different
machine learning algorithms that can be help us to classify the
data easily.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Measured Effort

COCOMO Effort

MOPSO Effort

SVR Effort

0
10
20
30
40
50
60
70
80
90

MARE

Prediction(25%)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

157 | P a g e

www.ijacsa.thesai.org

The results were compared to both Intermediate
COCOMO and MOPSO models. The accuracy of the model is
measured in terms of its error rate. It is observed from the
results that SVR gives better results. On testing the
performance of the model in terms of the MARE and
Prediction the results were found to be useful. The future work
is the need to investigate some more data mining algorithms
that can be help to improve the process of software cost
estimation and easy to use.

ACKNOWLEDGMENT

The author would like to thank the anonymous referees for
their helpful comments and suggestions.

REFERENCES

[1] J.W. Bailey, V.R. Basili, A meta model for software development
resource expenditure, in: Proceedings of the Fifth International
Conference on Software Engineering, San Diego, California, USA,
1981, pp. 107ï116.

[2] B.W.Boehm, ñSoftware Engineering Economics,ò Prentice- Hall,
Englewood Cliffs, NJ, USA, 1981.

[3] A.J. Albrecht and J.E. Gaffney, ñSoftware function, source lines of code,
and development effort prediction: a software science validation,ò IEEE
Transactions on Software Engineering, 1983, pp. 639ï647.

[4] J.E. Matson, B.E Barrett and J.M. Mellichamp, ñSoftware development
cost estimation using function points,ò IEEE Transactions on Software
Engineering, 1994, pp. 275ï287.

[5] A.R. Gray,ñA simulation-based comparison of empirical modelling
techniques for software metric models of development effort,ò In:
Proceedings of ICONIP, Sixth International Conference on Neural
Information Processing, Perth, WA, Australia, 1999, pp. 526ï531.

[6] G.W. Flake, S. Lawrence, Efficient SVM regression training with SMO,
Mach. Learn. 46 (1ï3) (2002) 271ï290.

[7] A.Idri, T.M. Khosgoftaar and A. Abran, ñCan neural networks be easily
interpreted in software cost estimation,ò World Congress on
Computational Intelligence, Honolulu, Hawaii, USA, 2002, pp. 12ï17.

[8] X.Huang, L.F.Capetz,J. Ren and D.Ho, ñA neuro-fuzzy model for
software cost estimation,ò Proceedings of the third International
Conference on Quality Software, 2003, pp. 126-133 .

[9] M. Lefley and M. J. Shepperd, ñUsing Genetic Programming to Improve
Software Effort Estimation Based on General Data Setsò, LNCS,
Genetic and Evolutionary Computation ð GECCO 2003, ISBN: 978-3-
540-40603-7, page-208.

[10] B. Kitchenham, L.M. Pickard, S. Linkman and P.W. Jones, ñModelling
software bidding risks,ò IEEE Transactions on Software Engineering,
2003, pp. 542ï554.

[11] A.J. Smola, B. Scholkopf, A tutorial on support vector regression, Stat.
Comput. 14 (3) (2004) 199ï222.

[12] K.K. Aggarwal, Y. Singh, P.Chandra and M.Puri, ñAn expert committee
model to estimate line of code,ò ACM New York, NY, USA, 2005, pp.
1-4.

[13] I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools
and Techniques, second ed., Morgan Kaufmann, San Francisco, 2005.

[14] N.H. Chiu and S.J.Huang, ñThe adjusted analogy-based software effort
estimation based on similarity distances,ò System and Software, 2007,
pp.628-640.

[15] K. Vinaykumar, V. Ravi, M. Carr and N. Rajkiran, ñSoftware cost
estimation using wavelet neural networks,ò Journal of Systems and
Software, 2008, pp. 1853-1867.

[16] Y.F. Li, M. Xie and T.N. Goh, ñA study of project selection and feature
weighting for analogy based software cost estimation,ò Journal of
Systems and Software, 2009, pp. 241ï252.

[17] K. Vinay Kumar, V. Ravi and Mahil Carr, ñSoftware Cost Estimation
using Soft Computing Approaches,ò Handbook on Machine Learning
Applications and Trends: Algorithms, Methods and Techniques, Eds. E.
Soria, J.D. Martin, R. Magdalena, M.Martinez, A.J. Serrano, IGI Global,
USA, 2009.

[18] Prasad Reddy P.V.G.D, Hari CH.V.M.K and Srinivasa Rao, ñMulti
Objective Particle Swarm Optimization for Software Cost Estimation,ò
International Journal of Computer Applications, 2011, Vol.-32.

[19] Narendra Sharma and Ratnesh Litoriya, ñIncorporating Data Mining
Techniques on Software Cost Estimation: Validation and Improvement,
ò International Journal of Emerging Technology and Advanced
Engineering, 2012, vol.-2

