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Abstract

Regular expressions are routinely used in a variety of different application domains. Building a
regular expression involves a considerable amount of skill, expertise and creativity. In this work
we investigate whether a machine may surrogate these qualities and construct automatically
regular expressions for tasks of realistic complexity. We discuss a large scale experiment
involving more than 1700 users on 10 challenging tasks. We compared the solutions constructed
by these users to those constructed by a tool based on Genetic Programming that we have
recently developed and made publicly available. The quality of automatically-constructed solutions
turned out to be similar to the quality of those constructed by the most skilled user group; and, the
time for automatic construction was similar to the time required by human users.

Introduction

Regular expressions are routinely used in a variety of different application domains and are widely
viewed as one of the fundamental tools that should be in a programmer’s toolbox. Building a
regular expression tailored to a specific problem is often difficult, tricky and time-consuming,
though. In March 2016 web site Stack Overflow, the most popular Question & Answer
programming forum, features more than 140,000 questions on this topic with “regex” being the
25-th most popular question tag in a set including more than 44,000 tags. Nearly all of the
question tags which are more popular than “regex” refer to a specific programming language or
library—“arrays” is the only general tag more popular than “regex”, while “ajax” and “json” are only
slightly more popular than “regex”.

There is no doubt that writing a regular expression requires a considerable amount of skill,
expertise and creativity by the programmer. In this work we investigate whether a machine may
surrogate these qualities and construct automatically regular expressions for tasks of realistic
complexity. We address this question based on a large scale experiment involving more than
1700 users on 10 challenging tasks. We asked users to construct a regular expression based on
a few examples of the desired behavior and then compared their solutions to those obtained with
an automatic tool that we recently developed and described in full detail in earlier works [1,2]. Our
tool is based on Genetic Programming. Both the users and the tool were given the very same
information: examples of the desired behavior without any hint about the structure of the target
expression. We compared the results along two axes: quality of the solution assessed on a
hold-out testing set and the time required for constructing the solution.

The quality of automatically-constructed solutions was very similar to the quality of solutions
constructed by (self-proclaimed) experienced users; and, the time that our tool took to construct a
solution was similar to that of humans performing the same task. The machine was thus able to
indeed surrogate expertise and creativity of programmers in a traditionally difficult synthesis
activity (see also the sidebar).



Problem Statement

Regular expressions are often used for binary classifying strings, depending on whether a string
matches or does not match the pattern encoded by the expression. We consider instead
extraction problems in which it is also required to identify all the substrings matching the specified
pattern. Extraction is more general than classification in the sense that a solution to the former is
also a solution to the latter, while the opposite is not true—a string could include many instances
of the specified pattern; the knowledge that at least one instance of the pattern occurs somewhere
in the string may not help very much in actually locating all those instances.

To specify the problem we need a few definitions. A regular expression applied on a string s
deterministically extracts zero or more substrings from s, that we call extractions. The problem
input consists of a set of examples, where an example is a string s coupled with a (possibly
empty) set X, of non-overlapping substrings of s. Set X, represents the desired extractions from s,
i.e., all the substrings in X, are to be extracted whereas any other substring of s is not to be
extracted. We do not make any assumptions on either the length or the internal structure of string
s, which may be a text line, or an email message, or a log file, and so on. In practice, substrings in
X, may be specified easily by annotating portions of s with a GUI (see next section).

The problem consists of learning a regular expression 7 whose extraction behavior is consistent
with the provided examples: for each example, 7 should extract from each string s all and only
the desired extractions X,. Furthermore, 7 should capture the pattern describing the extractions,
thereby generalizing beyond the provided examples. In other words, the examples constitute an
incomplete specification of the extraction behavior of an ideal and unknown regular expression
r*. The learning algorithm should infer the extraction behavior of r*.

Our Tool

Our tool is available as a live web app' and in source code on GitHub?. Internally it is based on
Genetic Programming (GP) and described in full detail in [1,2]. Space precludes a complete
description, hence we provide only a brief outline. We evolve a population of 500 regular
expressions, represented by abstract syntax trees, by applying classical genetic operators such
as mutation and crossover for 1000 iterations. We generate the initial population partly at random
and partly based on the desired extractions, i.e., for each desired extraction x we generate 4
different regular expressions with a deterministic heuristics ensuring that all these expressions
extract x. We drive evolution by means of a multiobjective optimization algorithm based on the
length of regular expressions (to be minimized) and their extraction performance computed on the
learning data (to be maximized). We use a separate-and-conquer heuristics for discovering
automatically whether the extraction task may be solved by a single regular expression or whether
a set R of multiple regular expressions, to be eventually joined by an “or” operator, is required [2].
In particular, every 200 iterations we check whether the currently best regular expression r;
exhibits perfect precision on a subset X of the desired extractions. In that case, we remove X from
the set of desired extractions, we insert r,in R and we let the search continue (R is initially empty).
Finally, we join all the elements in R and the best regular expression upon the end of the search
by an “or” operator.

A screenshot of the web app is given in Figure 1. The user may load examples as UTF-8 files and
then annotate text in these files graphically to identify desired extractions. The number of
examples is irrelevant; what matters is the number of desired extractions: 10—20 usually suffice to
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obtain good solutions. We used 24 in the experiment described below. Examples and the
resulting expressions may be saved for later analysis and reuse.
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Figure 1: Snapshot of our tool taken during a search. The tool shows the best solution currently found.

The Challenge Platform

For our experiment, we developed a challenge web app for assisting human operators in the task
of developing a regular expression for text extraction based on examples of the desired behavior®.
The challenge web app starts by presenting concise instructions (“write a reqular expression for
extracting text portions which follow a pattern specified by examples”) and asks the user to
indicate his/her perceived level of familiarity with regular expressions: novice, intermediate, or
experienced. Then, the challenge web app proposes a sequence of extraction tasks. Each task is
presented as a text area in which the substrings to be extracted are highlighted.

The user writes a regular expression in a dedicated input field and the challenge web app
highlights, with negligible latency, the substrings extracted by the expression along with the
corresponding extraction mistakes. An example is in Figure 2. The user may refine the regular
expression interactively, that is, he may modify the expression at will and obtain an immediate
feedback about the modified expression. We emphasize that the interactive nature of the
challenge web app should make it easier for human operators to solve the proposed tasks, both in
terms of quality of solutions and time required for their construction.

The challenge web app also shows the F-measure on the current task. To avoid the need of
understanding what the F-measure actually represents, the user is informed that a value of 100%
means a perfect score on the task. The user is not required to obtain a perfect F-measure before
going to the next task and could even leave a task completely unanswered. Furthermore, the user
need not execute all the tasks in a single session: when connecting, the challenge web app
presents to the user the extraction task he was working on when disconnecting. The challenge
web app records, for each task and for each user, the authored regular expression and the overall
time spent on the task, excluding disconnection intervals.

In practice, users craft regular expressions in many ways. They may describe them using natural
language, examples of matching strings, or with a combination of both. Users' descriptions may

3 The web app is available at http://play.inginf.units.it/



be underspecified, in the sense that they do not specify how every possible input sequence
should be classified, and their descriptions can be refined during several iterations. The challenge
web app specifies an extraction tasks solely by means of examples. This is necessarily an
approximation of user behavior, but it nevertheless preserves the essence of the problem of
constructing a regular expression, and it is simple for users to understand. The annotations can
be done quickly, which is important because the challenge web app presented examples already
annotated but a user willing to use our tool instead of crafting a regex would have to annotate
examples. In the experiments described in the next section, we considered extraction tasks
specified with 24 desired extractions; annotating the corresponding data took 1.5-2.5 minutes,
depending on the task.
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Figure 2 Snapshot of the challenge web app presented to users. The user has inserted the regex “\w+\w
\w+” and the webapp highlights the extractions of this regex in blue: it can be seen that this regex results in
undue extractions (i.e., highlighted text outside of the dashed boxes) and missed extractions (i.e., non
highlighted text within the dashed boxes).

Procedure

We constructed 10 challenging extraction tasks, summarized in Table 1. Task names consist of
the corpus name followed by the name of the entity type to be extracted:
e ReLIE-HTML: portions of a subset of the 50,000 web pages obtained from the publicly
available University of Michigan Web page collection (used also in [1,3]).
e RellE-Email: portions of the 10,000 emails obtained from the publicly available Enron
email collection (used also in [3,4]).
Cetinkaya-HTML: full HTML source of 3 web pages (used also in [1,5]).
Cetinkaya-Text: plain text of the above web pages after rendering (used also in [1,5]).
Log: log entries collected from our lab firewall (used also in [1]).
Web: full HTML source of a richer collection of web pages than Cetinkaya.
BibTeX: BibTeX elements obtained by querying Google Scholar.
References: references in the Springer LNCS format obtained from the BibteX corpus.



Task name Number of Number of desired
characters (x 10°%) extractions
ReLIE-HTML/AIl-URL 4,240 502

Click here to access index histor
<
>. * volume represents sell-side only *

Hub High Low Wtd Avg Index Change ($) Vol (Mwh) Ciner

ReLIE-Email/Phone-Number 4,240 499

3784 SSWB<br> _<br> <a

href=\mailto:ddaviesQumich.edu\>ddaviesQumich.edu</a> </td> abs Client

Services Center at:</FONT><TD align=middle><FONT face=Arial size=2>
(Local), d (Michigan Only) or

(Outside Michigan) </FONT> </TD>

Cetinkaya-HTML/HREF 154 214

<a ISR - oot-" parent">Project
Gutenberg</a>
— target="_parent">Scitation</a>

<a
Cetinkaya-Text/All-URL 39 168

Fedora Extras

(ftp)
(ftp)
(ftp / rsync)

Log/IP 4,126 75,958

Jan 13 05:49:47: ACCEPT service dns from _ to

firewall (pub-nic-dns), prefix: "none" (in: ethO
-00:80:38:fa:8a:7e):51027 ->
(00:00:76:fe:75:e2) :53 UDP len:80 ttl:49)

Log/MAC 4,126 38812

Jan 13 17:44:52: DROP service 68->67 (udp) from 172.45.240.237 to

217.70.177.60 refix: "spoof iana-0/8" (in: ethO
216.34.90.16( 68 —->
69.43.85.253( 67 UDP len:328 ttl:064)

Web-HTML/Heading 4,541 1,083

'n sul passo d'Arno<br/> _

e se non fosse che

Libero.HF.adjust800 = function () {

Web-HTML/Heading-Content 4,541 1,083

e se non fosse che 'n sul passo d'Arno<br/> <h2>-




<h5 </h5> Libero.HF.adjust800 = function () {

Bibtex/Author 54 589

@inproceedings{arellano2004study,
title={Study of the structure changes caused by earthquakes in Chile
applying the lineament analysis to the Aster (Terra) satellite data.},
author={ and and _},
booktitle={35th COSPAR Scientific Assembly},

References/Lead-Author 30 198

130. _, Holton, J.R., Leovy, C.B.: Middle atmosphere

dynamics. Number 40. Academic press (1987)

Table 1. Extraction tasks. A short snippet with each desired extraction highlighted in green outlines the
nature and difficulty of each task. Note that the snippet of Web-HTML/Heading contains two desired
extractions that are adjacent but separate.

For each task, we randomly selected a set of examples containing 24 desired extractions (note
that this corresponds, for each task, to a very small portion of the full corpus) and embedded the
corresponding set in the web app. We published a post on Reddit encouraging users to challenge
themselves*. Next, we executed our tool by using the very same set of examples as the learning
set. We repeated each execution four times and averaged the performance indexes (see next
section).

We chose not to distribute different sets of examples to different users because we did not expect
to receive thousands of submissions and in a preliminary experiment we observed that many
tasks were left unanswered. We thought that presenting different data to different users might
have not allowed collecting a meaningful set of results. We have assessed the performance of our
tool also with different learning sets, by executing a 5-fold procedure on each task. The resulting
slight difference in the actual values of the indexes was negligible. We included two simple tasks
at the beginning of the task sequence aimed solely at allowing users to practice and familiarize
with the web app interface. We did not include these tasks in the analysis (their results are
qualitatively similar to those of the other tasks, though).

Results

We gathered results from a large population: 1,764 users participating from July 23-rd 2015 to
September 20-th 2015. These users qualified themselves as follows: 44% novice, 38%
intermediate, and 18% experienced. Users completed 10,439 out of the 17,640 tasks. Novice
users completed 52% of the tasks, intermediate users 61%, and experienced users 71%.

We analyze results along two axes: quality of the solution assessed with F-measure and the time
required for constructing the solution. We report average values for each category of users by
taking into account only completed tasks with construction time between percentiles 1% and 99%
(Figure 3). Execution times for our tool have been obtained on a 6-core Intel Xeon 2.4 GHz with
32 GB RAM.

The key finding is that, on average, our tool delivered solutions with F-measure almost always
greater than or equal to the one obtained by each category of human users, both on the learning
data and on the testing data. Furthermore, on average, the time required by our tool was almost
always smaller than the time required by human operators. We believe these results are

4 https://www.reddit.com/r/programming/comments/3eblji/how_good_are you_in_writing_regex_challange/



remarkable and highly significant. Indeed, we are not aware of any similar tool exhibiting such
human-competitive performance indexes.

By looking at the actual distributions of F-measure®, one may always find a significant fraction of
humans which obtain better results than our tool. In other words, while our tool is not
systematically better than humans, it does deliver F-measure that is comparable to humans and
that, on average, is even better. Actual distributions of construction time indicate that our tool
tends to be systematically faster than most humans on most tasks. This indication is also
statistically significant.

The only task in which our tool delivers unsatisfactory F-measure on the testing data, despite a
very good value on training data, is ReLIE-Email/Phone-Number. A closer inspection of the
dataset shows that, for this task, the training data happens not to be adequately representative of

the testing data, in particular, concerning substrings that look like phone numbers but are not.
Executing our tool on a larger training set result in F-measure around 85%.
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Figure 3: F-measure on the learning set (upper chart), F-measure on the remaining part of each dataset,
i.e., on a hold-out testing set (middle), and the construction time (lower chart).

Concluding remarks

While we do not claim that a tool like ours may be effective in each and every possible application
of regular expressions, we do believe to have provided strong indications that a machine may
indeed constitute a practically viable tool for synthesizing regular expressions from scratch. In our
challenging tasks, the machine has proven its ability to surrogate the expertise and skills required

5 Space constraints preclude a more detailed statistical analysis, that can be found at
http://machinelearning.inginf.units.it/data-and-tools/can-a-machine-replace-humans-in-building-reqular-expres
sions-a-case-study.
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by human programmers. We believe that this result is relevant in itself and, more broadly, as a
further demonstration of the practical capabilities of Genetic Programming techniques even on
commodity hardware.

An issue that we have not yet addressed is readability of the solutions. While this property is
orthogonal to F-measure, it may nevertheless be important in practice: users might not trust a
result that they do not fully understand or whose behavior in corner cases might be difficult to
predict. As an aside, these remarks apply also to other popular machine learning paradigms, e.g.,
neural networks. Manual inspection of a few solutions suggest that human operators tend to
construct shorter solutions, but we could not find any clear cut between the categories: even
automatically-constructed solutions may be very compact and highly readable; and, there is
ample variability between operators with task difficulty playing a key role.

We plan to assess readability of the solutions as part of a broader investigation on this important
question: what are the key differences between solutions constructed by human programmers
and automatically-constructed solutions? Is it possible to distill such differences—for example
including readability—into a fitness definition capable of driving the evolutionary search toward
regions of the solution space closer to those explored by human operators? We believe that ideas
of this kind may provide an exciting line of research in evolutionary computing.
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Related Work Sidebar

The problem of synthesizing a regular expression automatically, based solely on examples of the
desired behavior, has attracted considerable interest, for a long time and from different research
communities.

An important line of research considered classification problems in formal languages [1,2,3].
These works aimed at inferring an acceptor for a regular language based on sample strings
described by the language and on sample strings not described by the language. Learning of
deterministic finite automata (DFA) from examples was also a very active area [4,5,6]. Such
research, however, usually considered problems that were not inspired by any real world
application [5] and the applicability of the corresponding learning algorithms to other application
domains is unexplored [6]. The problem setting typical in this field of research considered short
sequences of binary symbols, with training data drawn uniformly from the input space. Settings of
this sort do not fit the needs of practical text processing applications, which have to cope with
much longer sequences of symbols, from a much larger alphabet, not drawn uniformly from the
space of all possible sequences.

Entity extraction on realistic business- or web-related data has been considered for improving a
regular expression to be initially provided by the user [7,8,9], as well as for inferring an expression
fully from scratch [10,11,12]. Our proposal cited in the main text falls in the latter category and
advances significantly over those approaches, in terms of improved quality of the solutions and
smaller amount of training data required. Indeed, we are not aware of any other approach that
could use human operators as a baseline. Approaches tailored to very specific domains have also
been proposed, e.g., [13,14].

An approach for optimizing expressions constructed by expert developers was recently proposed
in [15], consisting of a loop in which the behavior of candidate solutions is assessed in
crowdsourcing followed by an evolutionary optimization of the best solutions found so far. This
approach is aimed at investigating the possibility of crowdsourcing difficult programming tasks
specified by examples of desired behavior. The experiment that we discuss in this work considers
more complex extraction tasks on much larger datasets and analyzes solutions constructed in a
fully automatic way.

Finally, we mention recent proposals for automating submissions to regex writing challenges
consisting in writing the shortest regular expression that matches all strings in a given list and
does not match any string in another given list [16,17]. Such proposals aim at merely oveffitting
examples without inferring any general pattern.
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