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Abstract

In this paper, a multilevel thresholding method which allows the determination of the appropriate number of thresholds as well as the
adequate threshold values is proposed. This method combines a genetic algorithm with a wavelet transform. First, the length of the ori-
ginal histogram is reduced by using the wavelet transform. Based on this lower resolution version of the histogram, the number of thresh-
olds and the threshold values are determined by using a genetic algorithm. The thresholds are then projected onto the original space. In
this step, a refinement procedure may be added to detect accurate threshold values. Experiments and comparative results with multilevel
thresholding methods over a synthetic histogram and real images show the efficiency of the proposed method.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Image thresholding is widely used as a popular tool in
image segmentation. It is useful to separate objects from
background, or discriminate objects from objects that have
distinct grey levels. Thresholding involves bi-level thres-
holding and multilevel thresholding. Bi-level thresholding
classifies the pixels into two groups, one including those
pixels with grey levels above a certain threshold, the other
including the rest. Multilevel thresholding divides the pixels
into several classes. The pixels belonging to the same class
have grey levels within a specific range defined by several
thresholds. Both bi-level and multilevel thresholding meth-
ods can be classified into parametric and non-parametric
approaches. The non-parametric approach is based on a
search of the thresholds optimizing an objective function,
such as the between-class variance (Otsu’s function) [1],
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entropy (Kapur’s function) [2]. In the parametric
approach, the grey level distribution of each class has a
probability density function that is assumed to obey a given
distribution. An attempt to find an estimate of the param-
eters of the distribution that best fit the given histogram
data is made by using the least-squares method. It typically
leads to a nonlinear optimization problem, of which solv-
ing is time-consuming. A great number of thresholding
methods of parametric or non-parametric type have been
proposed in order to perform bi-level thresholding [3–6].
They are extendable to multilevel thresholding as well.
However, the amount of thresholding computation signifi-
cantly increases with this extension. To overcome this
problem, several techniques have been proposed. In [7],
the Otsu’s function is modified in order to be optimized
by a fast recursive algorithm along with a look-up-table.
In [8], Lin has proposed a fast thresholding computation
using the Otsu’s function. His approach is based on the
search of the thresholds where zero first partial derivatives
of the Otsu’s function occur by using a successive substitu-
tion technique. In [9], the resolution of the histogram is
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reduced using the wavelet transform. Using the reduced
histogram, the optimal thresholds are determined by opti-
mizing the Otsu’s function based on an exhaustive search.
The selected threshold values are then expanded to the ori-
ginal scale.

The pairwise nearest neighbour method previously used
in hierarchical clustering has been adapted to multilevel
thresholding [10]. Among all possible thresholds, the one
that increases the objective function is selected. The
selected threshold is then removed and the means of the
classes are updated. The selection and removing processes
are repeated until the desired number of thresholds is
reached. Another hierarchical clustering method used to
solve the multilevel thresholding problem was recently pro-
posed [11]. Initially, each non-empty grey level of the histo-
gram is considered as a separate mode representing a
cluster. Then the similarities between adjacent clusters are
computed and the most similar pairs are merged. The esti-
mated thresholds defined as the highest grey levels of the
clusters are obtained by iterating this operation until the
desired number of clusters is found.

Another fast multilevel thresholding technique has been
proposed by Yin [12]. The thresholds optimizing the Otsu’s
or the Kapur’s functions are searched by using an iterative
scheme. This technique starts from random initial thresh-
olds. Then, these thresholds are iteratively adjusted to
improve the value of the objective function. This improve-
ment process stops when the value of the objective function
does not increase between two consecutive iterations. The
implementation of this method is similar to the one pre-
sented by Luo and Tian, where the Kapur’s function is
maximized by using the Iterated Conditional Modes
(ICM) algorithm [13].

Several techniques using genetic algorithms (GAs) have
also been proposed to solve the multilevel thresholding
problem [14–20]. GAs are optimization algorithms based
on the mechanics of natural selection and natural genetics.
Yin [14] has proposed a fast thresholding method based on
a genetic algorithm, where the objective function is similar
to Otsu’s or Kapur’s function. The solution is encoded as a
binary string T such that T = t1, t2, . . ., tk�1, where ti, the
value of ith threshold, has log2(L) bits and a value within
[0,L � 1]. This same technique has been used in [15,16].
In [15], the objective function is similar to Kapur’s function
and in [16] it is assimilated to the relative entropy [21].
Chang and Yan have proposed a thresholding technique
using a Conditional Probability Entropy (CPE) based on
Bayesian theory. They have employed a GA to maximize
the CPE in order to determine the thresholds [17]. CPE
considers that the pixels with the same grey level in an
image may belong to different classes with different proba-
bilities. An optimal classification method for these pixels is
to classify them in the class with higher probability. The
chromosome structure in their GA is based on the condi-
tional probability function employed, with two parameters
for each class. The chromosome is then constituted of 2k

parameters and each parameter has log2(L) bits. In [18], a
multilevel optimal thresholding technique based on an
approach using a GA has been proposed. The intensity dis-
tributions of objects and background in an image are
assumed to be Gaussian distributions with distinct means
and standard deviations. The histogram of a given image
is fitted to a mixture Gaussian probability density function.
The GA is used to estimate the parameters in the mixture
density function so that the square error between the den-
sity function and the actual histogram is minimal. Tao
et al. use a genetic algorithm in order to find the optimal
combination of all the fuzzy parameters by maximizing
the fuzzy entropy [19]. The fuzzy parameters describe the
membership functions of three parts of the image, namely
dark, grey and white parts. The optimal parameters are
then used to define two threshold values. More recently,
Bazi et al. use a genetic algorithm to provide the initial
parameters to the expectation-maximization (EM) algo-
rithm. The parameters are the objects and background
classes, which are assumed to follow generalized Gaussian
distributions [20]. Each chromosome is viewed as a vector
representing statistical parameters defining the mixture of
the class distributions.

Beside GAs, particle swarm optimization (PSO) is
another latest evolutionary optimization technique which
was used for the multilevel thresholding [22–24]. In [22],
PSO is used in conjunction with the simplex method for
the Gaussian curve fitting and for the Otsu’s function opti-
mization. The method presented in [23] uses PSO to opti-
mize the cross entropy [25] and in [24] the histogram is
approximated by a mixture Gaussian model. The Gauss-
ian’s parameter estimates are iteratively computed by com-
bining PSO with EM algorithm. Like the genetic algorithms
and PSO, simulated annealing algorithm has been exploited
to optimize the modified Otsu’s function [26].

The main problem associated with the aforementioned
methods is that the number of thresholds with which the
grey level image should be segmented cannot be automati-
cally determined. To overcome this problem, Yen et al. pro-
posed a new criterion for multilevel thresholding, called
Automatic Thresholding Criterion (ATC) [27]. This crite-
rion is used with a sequential dichotomization technique
[27,28]. In this strategy, the histogram is dichotomized in
two distributions by using a bi-level thresholding and the
distribution with the largest variance is further dichoto-
mized in two more distributions by applying the same bi-
level thresholding. This dichotomization process is repeated
until a cost function (ATC) reaches its minimum. In [29],
the same dichotomization process is repeated until a cost
function derived from Otsu’s function becomes higher than
a specified value. The dichotomization techniques are faster
algorithms; unfortunately, they are sub-optimal techniques,
they do not allow providing the optimal threshold values.

In this paper, we propose a fast multilevel thresholding
technique based on a GA able to determinate the appropri-
ate number of thresholds, as well as appropriate threshold
values, by optimizing ATC proposed by Yen et al. The pro-
posed GA uses a new string representation of the chromo-
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some, which is different from those previously mentioned.
It is combined with a wavelet transform-based technique
in order to reduce the time computation. This proposed
method can be considered as similar to the multilevel thres-
holding method presented by Kim et al. [9], except that the
proposed GA is used to search for the optimal thresholds.
The using of GAs has many advantages over traditional
searching techniques [30]. Particularly, GA-based methods
are global searching techniques capable, most often, to pre-
vent from trapping into locally optimal solutions. Another
advantage is that the GA-based methods can become faster
through parallel implementations.

In the next section, the proposed multilevel thresholding
technique using a GA is described. In Section 3, the perfor-
mance of the proposed method is tested on several exam-
ples and is compared with other multilevel thresholding
methods. Concluding remarks are given in Section 4.

2. The proposed multilevel thresholding method

Suppose that an image I having N pixels with L grey lev-
els L = {0,1, . . .,L � 1} is to be classified into k classes
(C1,C2, . . .,Ck) with the set of thresholds T = {t1, t2,
. . ., tk�1}. For convenience, we assume two other thresh-
olds t0 = 0 and tk = L � 1. The histogram of the image is
indicated by h(i), i = 0, . . .,L � 1, where h(i) represents
the number of pixels with the grey level i.

The proposed genetic thresholding technique is based on
a standard GA. It allows the determination of the number
of thresholds as well as appropriate threshold values. The
major steps of this method are summarized in Algorithm 1.

Algorithm 1. Main steps of the proposed thresholding

technique

1. Compute the histogram of the image.
2. Reduce the length of the histogram.
3. Generate an initial population.
4. Store the best string A* with the best fitness in a sep-

arate location.
5. Apply the learning strategy to improve the fitness

value of A*.
6. Generate the next population by performing selec-

tion, crossover and mutation operations.
7. Compare the best string A of the current population

with A*. If A has a better fitness value than A*, then
replace A* with A.

8. Go to step 3 if the desired number of generations is
not reached.

9. Expand the best thresholds.
10. Refine the expanded thresholds.
2.1. Reduction of the histogram length

Before searching for thresholds through the GA, the
length of the histogram must be reduced in order to acceler-
ate the convergence of the GA. The histogram reduction is
performed by using the wavelet transform technique [9].
The original histogram is decomposed into two signals at
the next lower level. One signal is the trend signal, or the
approximation signal, while the other signal is the detail sig-

nal. At the lower level, the trend signal gives the reduced
dimension version of the original histogram, which still con-
tains the overall characteristics of the original histogram.

The wavelet transform at a level r (r 2 Z) is performed
with decimation operation by 2r after the convolution of
the histogram h(i) with the wavelet function W(t) and scal-
ing function U(t).

hrðjÞ ¼ WT r½hðiÞ�; r 2 hrðjÞ þ hr
W ðjÞ;

where hr(j) is the trend of the original histogram and hr
W ðjÞ

is the detail of the original histogram at the rth level. Each
trend signal at level r is decomposed into two reduced
dimension signals at level r + 1, i.e.:

hrðjÞ ¼ hrþ1ðjÞ þ hrþ1
W ðjÞ:

Hence, for a level r, the length of the reduced histogram
hr(j) is denoted Lr, such that Lr = L/2r.

2.2. String representation

In the proposed thresholding GA, the chromosome is
encoded as a binary string A of the same size Lr of the
reduced histogram, such that A ¼ a0; a1; . . . ; ar

L�1 , where
the character ai is equal to 0 or 1. ai indicates the peak or
the valley of the histogram. If ai = 0, then (i,hr(i)) is a val-
ley, else it is a peak. The position i for which ai = 0 indi-
cates the value of a threshold. Hence, the number of
zero-bits occurred in A indicates the number of thresholds.

Example . Let Lr = 16 and consider the following string:
A = 1,1,0,1,1,1,0,1,1,1,0,1,1,1,1,1.

The number of thresholds is equal to 3, since A contains
three zero-bits. The three thresholds are then t1 = 2, t2 = 6
and t3 = 10, respectively. They correspond to the positions
of zero-bits in the string.

2.3. Fitness computation

To allow determining the optimal number of thresholds
as well as the optimal thresholds values, the fitness of a
string is computed using the cost function ACT proposed
by Yen et al. [27].

Let Pi, mi and m be the probability of the class Ci, the
mean grey level of the class Ci and the total mean grey level
of the image, respectively:

P i ¼
Xti�1

j¼ti�1

pj; mi ¼
ri

P i
; ri ¼

Xti�1

j¼ti�1

jpj; m ¼
XLr�1

j¼0

jpj;

where pj = hr(j)/N is the normalized probability at level j.
Let r2

W, r2
B and r2

T be the within-class variance, the
between-class variance and the total class variance, respec-
tively. They are given by the following expressions:
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r2
WðkÞ ¼

Xk�1

i¼0

Xtiþ1�1

j¼ti

ðj� miþ1Þ2pj;

r2
BðkÞ ¼

Xk

i¼1

P iðmi � mÞ2; r2
T ¼

XLr�1

j¼0

ðj� mÞ2pj:

The fitness F(k) of a string is:

F ðkÞ ¼ q � ðDiskðkÞÞ1=2 þ ðlog2ðkÞÞ
2
:

Here Disk(k) represents the within-class variance DiskðkÞ ¼
r2

WðkÞ ¼ r2
T � r2

BðkÞ.
The first term of F(k) measures the cost incurred by the

discrepancy between the thresholded image and the origi-
nal image. The second term measures the cost resulted
from the number of bits used to represent the thresholded
image. In this equation, q is a positive weighting constant.
The (k � 1) number of thresholds is determined by count-
ing the number of zero-bits in the string and the threshold
values are determined by the positions occupied by these
zero-bits in the string. The function F(k) has a unique min-
imum, which is an important advantage. The optimum
class number k* and the (k* � 1) best thresholds can be
determined by the following equation:

F ðk�Þ ¼ minfF ðkÞg:
2.4. Population initialization

The genetic algorithm starts with a randomly generated
population of solutions. The initial population is of fixed
size P: A1, A2, . . ., AP. For each string i in the population
(i = 1,2, . . .,P), Lr bits (0 or 1) are randomly generated.

2.5. Learning strategy

In the proposed GA, the best string with the best fitness
value in each generation is copied to an isolated place in
order to record the current best solution. Then, before
starting the next generation, the best string can improve
its fitness value by looking at the neighbouring values.
Let the best string of the current population be
T = {t1, t2, . . ., tk�1}, it has a very high probability to
improve its fitness value by ranging (t1 to t1 � 1, t1 + 1),
(t2 to t2 � 1, t2 + 1), . . ., (tk�1 to tk�1 � 1, tk�1 + 1). As it
was proved in [14], this simple movement may save many
generations. This learning strategy does not affect the
behaviour of the GA and can accelerate the movement
towards the optimal thresholds.

2.6. Genetic operations

The current population evolves to the next population
of the same size using three standard genetic operations:
selection, crossover and mutation. The evolution process
is iterated until a specified number of generations is
reached.
2.6.1. Selection

Selection is a process which mimics the natural survival
of the fittest creatures. Each string has a fitness value
obtained by evaluating the fitness function. The probability
of each string to be selected is proportional to its fitness
value. In this paper, the tournament selection procedure
is performed as follows: two strings A 0 and A00 of the cur-
rent population are randomly selected and the string with
the best fitness value is chosen to belong to the mating
pool. This procedure is repeated, until filling a mating pool
of the same size P that the population.

2.6.2. Crossover

The crossover operator chooses two strings A 0 and A00 of
the current population. Single crossover is applied as fol-
lows: generate a random integer number q within
[0,Lr�1] and create two offspring by swapping all the char-
acters of A 0 and A00 after position q. The crossover is per-
formed with the crossover probability Pc. A random
number can be generated within [0, 1], associated with each
pair of strings selected in the mating pool. If the random
value is less than Pc, then the crossover is performed, other-
wise no crossover is performed.

2.6.3. Mutation

Mutation is an occasional alteration of a character with
a low probability Pm. The proposed mutation is performed
in two steps. First, a standard mutation is used in the fol-
lowing way: for each string produced by crossover opera-
tion, a random value is generated within [0,1]. If the
random number is less than Pm, then a character at a ran-
dom position is chosen and its value is altered (i.e. one
changes 0 to 1, or 1 to 0).

However, the crossover and standard mutation operators
can create strings with several successive zero-bits. In this sit-
uation, several thresholds with successive values appear. To
overcome this undesirable situation, a solution consists in
keeping, among successive zero-bits, only the first one, and
in mutating the remaining successive zero-bits.

Example . Let Lr = 16 and consider the following string:
A = 1,1,0,0,1,1,0,0,0,1,0,0,0,0,0,1.

The number of thresholds is equal to 10, since A con-
tains 10 characters with zero value. The values of the 10
thresholds are, respectively, t1 = 2, t2 = 3, t3 = 6, t4 = 7,
t5 = 8, t6 = 10, t7 = 11, t8 = 12, t9 = 13 and t10 = 14. They
form three threshold series with successive values: (t1, t2),
(t3, t4, t5) and (t6, t7, t8, t9, t10). By applying the proposed
mutation, A becomes A = 1,1,0,1,1,1,0,1,1,1,0,1,1,1,
1,1 and the number of thresholds is reduced to 3. The cor-
responding threshold values are t1 = 2, t2 = 6 and t3 = 10,
respectively.

2.7. Expansion of the best thresholds

Because of the reduced dimension of the histogram, the
threshold values ti determined by the GA are at lower level,
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i.e. ti 2 [0 L]. Thus, the thresholds determined by the GA
must be expanded in the original space. In this case, each
threshold ti is multiplied by a factor 2r, as follows [9]:

t̂i ¼ tix2r; for i ¼ 1; . . . ; k � 1; such that t̂i 2 ½0 L�:
2.8. Refinement of the expanded thresholds

Since a GA is a stochastic technique, the expanded
threshold values change at each run of the algorithm and
are generally located in a range around the desired optimal
threshold values. In these conditions, a refinement proce-
dure can be added to obtain stable and more accurate
threshold values. The refinement procedure that we have
used is described by Algorithm 2 where only very few iter-
ations are needed before convergence.
Algorithm 2. Refinement procedure

1. Compute the mean grey level mi(s) of the class Ci,
i = 1, 2, . . ., k � 1 where s denotes the time of
iteration.

2. Update the value of ti(s) according to the following
equation:

tiðsþ 1Þ ¼ miðsÞ þ miþ1ðsÞ
2

:

3. Repeat steps 1 and 2 until the iteration converges, i.e.
ti(s + 1) = ti(s) i = 1, 2, . . ., k � 1.
3. Experimental results and comparison with other methods

In this section, we will evaluate the performance of the
proposed multilevel thresholding method using a GA.
Some experiments with a synthetic histogram and real
images are presented to illustrate the key features of the
proposed method in the determination of the number of
thresholds and its efficiency for thresholding computation.
Comparisons are performed with results provided by other
multilevel thresholding methods.

Eight well-known images named Lena, Blood, Peppers,
House, Airplane, Lac, Boats and Bridge with 256 grey levels
are used. The seven first images have a size (256 · 256),
while the Bridge image is (512 · 512). These images are
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Fig. 1. Artificia
gathered in Figs. 2 and 3 shows their respective histograms.
We add an artificial histogram in order to objectively show
the accuracy of the proposed approach in the determina-
tion of the appropriate number of thresholds and the com-
putation of threshold values. The artificial histogram is
constructed with k = 5 distributions (cf. Fig. 1(a)). Each
distribution is assumed to be Gaussian. The probability
distribution is described below:

hðiÞ ¼
X5

j¼1

1ffiffiffiffiffiffi
2p
p P j

rj
expð�ði� mjÞ2=2r2

j Þ
� �

:

The probability distribution is plotted in Fig. 2(a),
where:

P 1 ¼ 12; 000; m1 ¼ 40; r1 ¼ 10;

P 2 ¼ 5500; m2 ¼ 90; r2 ¼ 10;

P 3 ¼ 6000; m3 ¼ 150; r3 ¼ 20;

P 4 ¼ 10; 000; m4 ¼ 200; r4 ¼ 10;

P 5 ¼ 20; 000; m5 ¼ 230; r5 ¼ 10:

The proposed multilevel thresholding technique using a
GA is implemented with the following parameters:
Pc = 0.9, Pm = 0.001. The size P of the population depends
on the length of the chromosome and on the resolution
level r used in the wavelet transform. In all our experi-
ments, P is expressed in function of the resolution level r

as 300/2r and the GA is executed for a maximum of
Ng = 100 generations. The wavelet transform is performed
with ‘db1’ wavelet. Additional results are presented in
order to investigate the influence of the resolution level r.
The choice of the constant q in the objective function is
crucial. After several simulations using a large set of test
images, we have found that q must depend on the resolu-
tion level r. It is fixed to 0.5 · 2r for all test images expect
for the Bridge image where it is fixed to 2r.

Table 1 shows the number of thresholds, the threshold
values and the CPU time achieved by the proposed
method, when the level r of the transform wavelet varies
from 0 to 3. r = 0 corresponds to the original space of
the histogram (without reduction). Our experiments are
performed on a Pentium IV-2.8 GHz PC with 256 Mb
RAM. Without the reduction of the length of the histo-
gram, the length of the chromosome can be large and the
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Fig. 2. Test images. (a) Lena. (b) Blood. (c) Peppers. (d) House. (e)
Airplane. (f) Lac. (g) Boats. (h) Bridge.
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population size P must be large, in order to cover the space
of search solutions. Consequently, the computation time of
the GA increases. The reduction in the length of the histo-
gram enables reducing the computation time, while the
number of thresholds and the threshold values are not
really affected by this reduction. It can be pointed out that
the computation time is not affected by the number of
classes.

For the artificial histogram, the proposed multilevel
thresholding technique using a GA with P = 38 and r = 3
converges to k* = 5, with the four thresholds T* = (65–
120–174–215). The corresponding thresholds are displayed
in Fig. 1(b). The results of the proposed method are consis-
tent with the number of classes in the artificial histogram
and the corresponding threshold values are located on
the valleys of the histogram.

Fig. 4 shows the threshold position on the histograms
for the test images of Fig. 2, and the corresponding thres-
holded images are displayed in Fig. 5. For Lena, Peppers,
House, Airplane, Lac, Boats and Bridge images, almost all
important components are preserved in the thresholded
images, since the homogeneous regions are well apparent
and their outlines are very clear. While for Blood image,
the modes of the histogram are not well apparent, however,
the visual inspection of the thresholded image shows that
the pixel classes are quite well separated, since the major
regions (blood cells, blood plasma, cell nuclei and cell
membrane) are well delimited (Fig. 5(b)).

3.1. Comparison with other multilevel thresholding methods

In this sub-section, some experimental results from dif-
ferent multilevel thresholding methods will be examined
and compared with the proposed method, over the eight
real images and the artificial histogram. All methods use
the cost function F(k) to decide whether the number of
thresholds has reached the optimal value or not. The smal-
ler the value of F(k), better is the segmentation [4,27,28].
The quality of thresholded images can also be evaluated
through the uniformity measure, which is widely men-
tioned in the literature [3,12,14]:

U ¼ 1� 2ðk � 1Þ
Pk�1

j¼0

P
i2Rji
ðfi � mjÞ2

Nðfmax � fminÞ2
;

where: (k � 1) is the number of thresholds,

Rj is the segmented region j,
fi is the grey level of pixel I,
mj is the mean of the grey levels of those pixels in seg-
mented region j,
N is the number of total pixels in the given image,
fmax is the maximal grey level of the pixels in the given
image,
fmin is the minimal grey level of the pixels in the given
image.

The value of the uniformity measure is between 0 and 1. A
higher value of uniformity means that the quality of the
thresholded image is better.

3.1.1. Multilevel thresholding methods used for comparison

Two multilevel thresholding techniques based on a GA
and an iterative scheme are introduced and compared with
the proposed method. In order to make an objective com-
parison, the results through the exhaustive search method
are also presented.
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3.1.1.1. Multilevel thresholding method using a genetic

algorithm. The optimal thresholding can be performed
through a search of the thresholds optimizing an objective
function G(k), using a genetic algorithm [14–16]. This
genetic algorithm, which is based on a standard GA, starts
with a randomly generated population of solutions. The
initial population is of fixed size P: T1, T2, . . ., TP. Each
solution is coded as a binary string T, such that T = t1,
t2, . . ., tk�1, where ti „ tj for i „ j and ti is a log2 L-bit char-
acter, having a value within [0, L � 1], i.e. ai indicates the
value of the ith threshold. Then the current population
evolves to the next population of the same size, using three
genetic operations: selection, crossover and mutation. The
evolution process is iterated until a near-optimal solution is
obtained or a specified number of generations is reached.

The steps of the method are summarized in Algorithm 3.
Algorithm 3. Steps of the GA
Peppers. (d) House. (e) Airplane. (f) Lac. (g) Boats. (h) Bridge.
1. Generate an initial population.
2. Store the best string T* with the best fitness in a sep-

arate location.
3. Apply a learning strategy to improve the fitness

value of T* (see Section 2.5; process used only in
[5]).

4. Generate the next population by performing selection,
crossover and mutation operations.

5. Compare the best string T of the current population
with T*. If T has a better fitness value than T*, then
replace T* with T.

6. Go to step 3 if the desired number of generations is
not reached.



Table 1
Number of thresholds, threshold values and time computation achieved by the proposed method

Contents Original space, P = 300 Level 1 space, P = 150 Level 2 space, P = 75 Level 3 space, P = 38

k* T* CPU time (ms) k* T* CPU time (ms) k* T* CPU time (ms) k* T* CPU time (ms)

Artificial histogram 5 66 1100 5 66 300 5 66 80 5 65 32
120 120 120 120
174 174 174 174
215 215 215 215

Lena 5 47 1100 5 47 300 5 47 80 5 47 32
84 83 83 83

119 119 119 119
164 164 164 164

Blood 4 80 1100 4 76 300 4 76 80 4 76 32
130 130 130 130
172 177 177 177

Peppers 4 62 1100 4 61 300 4 60 80 4 61 32
116 115 115 115
160 159 159 159

House 3 96 1100 3 96 300 3 96 80 3 96 32
155 155 155 155

Airplane 3 117 1100 3 110 300 3 111 80 3 110 32
175 170 171 170

Lac 4 80 1100 4 79 300 4 79 80 4 79 32
140 139 139 138
193 192 192 192

Boats 4 59 1100 4 58 300 4 57 80 4 58 32
111 109 107 109
151 150 149 150

Bridge 8 49 1100 8 46 300 8 46 80 8 46 32
75 71 71 71
98 94 94 94

122 118 118 118
148 144 144 144
176 173 173 173
210 208 208 208
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3.1.1.2. Iterative scheme for multilevel thresholding. Another
fast multilevel thresholding method was proposed in
[12,13], where the thresholds, optimizing an objective
function G(k), are searched by using an iterative
scheme.

First, the technique starts with (k � 1) initial thresh-
olds. Then, these thresholds are iteratively adjusted to
improve the value of the objective function G(k). This
improvement process stops when the value of the objec-
tive function G(k) is not increased between two consecu-
tive iterations. The details of this iterative scheme are
presented in Algorithm 4.
Algorithm 4. Iterative scheme for multilevel thresholding

1. Start with a set of (k � 1) thresholds T = {t1, t2, . . .,
tk�1} (for example, ti = i*L/(k � 1)). For convenience,
two other thresholds t0 = 0 and tk = L � 1 are
assumed.

2. Compute the value of the objective function G(k) by
using the current T = {t0, t2, . . ., tk}.

3. Set i = 1.
4. Consider the part of grey level histogram on the sub-
range [ti ti+1]; one can find the optimal threshold t*

between ti and ti+1 by using the objective function
G(2) (i.e. in the case of bi-level thresholding). Replace
ti with t*.

5. Set i = i + 1. Go to step 4 until i > k � 1.
6. Compute the value of the objective function G(k) by

using the current T = {t0, t2, . . ., tk}.
7. If G(k) is increased, go to step 3; otherwise, stop.

3.1.1.3. Automatic determination of the threshold number.
The above GA technique and iterative scheme still leave
a problem, which is the determination of the number of
thresholds for a given image. In order to compare the per-
formances of two above techniques with the proposed
method, the threshold number must be determined auto-
matically. In practice, the multilevel thresholding methods
are generally applied by varying the number of thresholds;
then the optimal threshold number, which optimizes a cost
function, is determined. Here, the algorithm described in
Algorithm 5 is used.



a

20015010050

550
500
450
400
350
300
250
200
150
100
50
0

b

250200150100500

11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

0

c

250200150100500

700

600

500

400

300

200

100

0

d

20015010050

4500

4000

3500

3000

2500

2000

1500

1000

500

0

e

200150100500

2000

1800

1600
1400

1200

1000

800

600

400

200

0

f

200150100500

900

800

700

600

500

400

300

200

100

0

g

200150100500

1300
1200
1100
1000
900
800
700
600
500
400
300
200
100

0

h

250200150100500

2500

2000

1500

1000

500

0

Fig. 4. Grey level histograms with threshold values. (a) Lena. (b) Blood. (c) Peppers. (d) House. (e) Airplane. (f) Lac. (g) Boats. (h) Bridge.
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Algorithm 5. Calculation of the threshold number and the

threshold values

1. k = 2.
2. Apply the search method or the GA or the iterative

scheme.
3. Compute the value of the cost function F(k) by using

the output thresholds {t1, t2, . . ., tk�1}.
4. If F(k) is decreased, set k = k + 1 and go to step 2;

otherwise, stop.
5. Output the threshold number (k* � 1) and the thresh-

old values {t*
1, t*

2, . . ., t*
k�1}.
The cost function F(k) used in this algorithm is ATC.
3.2. Comparison of performances

We will evaluate the performances of the GA and itera-
tive multilevel thresholding methods by using Otsu’s and
Kapur’s objective functions G, defined below:

GOtsuðkÞ ¼
Xk

i¼1

P iðmi � mÞ2;

GKapurðkÞ ¼ �
Xk

i¼1

Xti�1

j¼ti�1

pj

P i
Log

pj

P i

� �
:



Fig. 5. Thresholded images. (a) Lena. (b) Blood. (c) Peppers. (d) House.
(e) Airplane. (f) Lac. (g) Boats. (h) Bridge.

Table 2
Comparison of performances for the artificial histogram

Method Class number K* Threshold values T*

ES-Otsu 5 66–120–174–215
ES-Kapur 4 59–127–187
GA-Otsu 5 66–120–174–215
GA-Kapur 4 59–131–187
Iterative-Otsu 5 65–119–173–214
Iterative-Kapur 4 58–125–186

Proposed method 5 65–120–174–215
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We shall refer to them as GA-Otsu, GA-Kapur, Itera-
tive-Otsu and Iterative-Kapur. The exhaustive search
method is also conducted for deriving the optimization
solutions for comparison. The corresponding methods are
named ES-Otsu and ES-Kapur, respectively. GA-Otsu
and GA-Kapur are implemented with the same selection,
crossover and mutation operators and with the same
parameters of the proposed method: Pc = 0.9, Pm = 0.001,
the size P = 100 of the population and a number of gener-
ations equal to Ng = 100, to ensure the convergence.

For the artificial histogram, Table 2 shows the number
of thresholds, the optimal thresholds, the time computa-
tion, the value of the cost function F and the corresponding
uniformity U value achieved by the exhaustive search
methods, GA-Otsu, GA-Kapur, Iterative-Otsu, Iterative-
Kapur and the proposed method. The results from the
seven mentioned methods obtained over the test images
are summarized in Tables 3–10. From these tables, we
can make the following observations. The proposed
method, GA-Otsu and Iterative-Otsu methods provide
the same threshold number that ES-Otsu, for all test
images, while GA-Kapur and Iterative-Kapur methods
do not give always the same threshold number that ES-
Kapur, as it is the case for Airplane and Boats images. In
most cases, the performances of the proposed method,
evaluated through the cost function F and the uniformity
measure U, are close to those of ES-Otsu, GA-Otsu and
Iterative-Otsu methods.

For all images, the performances of the proposed
method and the methods based on the Otsu’s function
are better than those using the Kapur’s function, since their
cost functions F are smaller and their uniformity measures
U are higher. This result occurs because the cost function F

and the uniformity measure U are similar to the Otsu’s
function. It can be also pointed out that the quality func-
tion values provided by ES-Kapur can be worse than the
values found with GA-Kapur and Iterative-Kapur (see
on Tables 3–5, 8), because the maximization of the Kapur’s
function do not lead to the minimization of the cost func-
tion F(k). Therefore, using the entropy (Kapur’s function)
with the cost function F(k) is not appropriate.

In the view point of the computation time, the proposed
method is faster than other methods, even though the
wavelet transform and refinement procedures are added.
It can be explained through time complexity analysis
shown in Table 11. The computational time of the thres-
Objective function F Uniformity U CPU time (ms)

10.4231 0.98442 900,000
11.4289 0.97284 70,578
10.4231 0.98442 609
11.4688 0.97254 1297
10.4316 0.98437 453
11.4603 0.97260 1860

10.4239 0.98442 32



Table 3
Comparison of performances for Lena image

Method Class number K* Threshold values T* Objective function F Uniformity U CPU time (ms)

ES-Otsu 5 47–84–119–164 10.8040 0.97877 601,766
ES-Kapur 4 60–109–160 11.0013 0.97159 50,281
GA-Otsu 5 46–80–113–162 10.8952 0.97805 578
GA-Kapur 4 59–107–159 10.9798 0.97177 1118
Iterative-Otsu 5 47–83–118–163 10.8090 0.97874 360
Iterative-Kapur 4 60–108–159 10.9952 0.97160 1516

Proposed method 5 46–83–119–164 10.8040 0.97875 32

Table 4
Comparison of performances for Blood image

Method Class number K* Threshold values T* Objective function F Uniformity U CPU time (ms)

ES-Otsu 4 74–132–177 9.0609 0.98123 6468
ES-Kapur 4 91–139–189 9.8446 0.97497 7939
GA-Otsu 4 75–138–181 9.0609 0.98123 406
GA-Kapur 4 94–145–198 10.4550 0.96947 453
Iterative-Otsu 4 73–126–171 9.2997 0.97942 203
Iterative-Kapur 4 90–138–188 9.2963 0.97944 344

Proposed method 4 76–130–175 9.0683 0.98118 32

Table 5
Comparison of performances for Peppers image

Method Class number K* Threshold values T* Objective function F Uniformity U CPU time (ms)

ES-Otsu 4 62–116–160 10.9679 0.97590 13,907
ES-Kapur 4 71–130–185 12.0782 0.96763 64,859
GA-Otsu 4 62–116–160 10.9679 0.97590 453
GA-Kapur 5 58–105–145–186 11.7396 0.97501 1938
Iterative-Otsu 4 61–115–159 10.9706 0.97589 343
Iterative-Kapur 5 57–104–144–185 11.7397 0.97501 2000

Proposed method 4 62–116–160 10.9679 0.97590 32

Table 6
Comparison of performances for House image

Method Class number K* Threshold values T* Objective function F Uniformity U CPU time (ms)

ES-Otsu 3 96–155 8.6977 0.98152 110
ES-Kapur 2 104 16.9239 0.91841 1
GA-Otsu 3 96–155 8.6977 0.98152 282
GA-Kapur 2 104 16.9239 0.91841 546
Iterative-Otsu 3 97–154 8.7022 0.98150 204
Iterative-Kapur 2 103 17.0098 0.91753 891

Proposed method 3 96–155 8.6977 0.98152 32

Table 7
Comparison of performances for Airplane image

Method Class number K* Threshold values T* Objective function F Uniformity U CPU time (ms)

ES-Otsu 3 117–175 9.5471 0.97227 94
ES-Kapur 4 72–128–183 9.8474 0.97440 31,047
GA-Otsu 3 117–175 9.5471 0.97227 281
GA-Kapur 2 162 10.3896 0.96707 516
Iterative-Otsu 3 114–172 9.5541 0.97222 203
Iterative-Kapur 2 161 10.3618 0.96727 812

Proposed method 3 110–170 9.5803 0.97201 32
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Table 8
Comparison of performances for Lac image

Method Class number K* Threshold values T* Objective function F Uniformity U CPU time (ms)

ES-Otsu 4 80–140–193 10.7422 0.97343 10,031
ES-Kapur 5 72–112–155–194 10.7947 0.97867 2,941,000
GA-Otsu 4 80–140–193 10.7422 0.97343 421
GA-Kapur 5 72–113–158–194 10.7856 0.97874 1594
Iterative-Otsu 4 79–138–191 10.7506 0.97336 312
Iterative-Kapur 5 69–109–152–191 10.8289 0.97840 1813

Proposed method 4 79–138–192 10.7466 0.97339 32

Table 9
Comparison of performances for Boats image

Method Class number K* Threshold values T* Objective function F Uniformity U CPU time (ms)

ES-Otsu 4 59–111–151 10.2018 0.9747 8031
ES-Kapur 5 56–103–144–190 10.8262 0.97580 2,214,016
GA-Otsu 4 59–111–151 10.2018 0.97479 406
GA-Kapur 2 116 13.1157 0.95191 563
Iterative-Otsu 4 59–110–150 10.2041 0.97478 265
Iterative-Kapur 2 115 13.0477 0.95245 828

Proposed method 4 58–109–150 10.2054 0.97476 32

Table 10
Comparison of performances for Bridge image

Method Class number K* Threshold values T* Objective function F Uniformity U CPU time (ms)

ES-Otsu — — — — —
ES-Kapur — — — — —
GA-Otsu 8 47–73–96–119–143–171–207 17.1226 0.98376 1141
GA-Kapur 8 25–60–91–122–150–183–214 17.6771 0.98147 3000
Iterative-Otsu 8 47–73–97–121–147–175–208 17.0829 0.98392 563
Iterative-Kapur 8 34–63–93–123–154–186–219 17.6919 0.98141 3000
Proposed method 8 46–71–94–118–144–173–208 17.1005 0.98385 32

Table 11
Computational complexity

Complexity Parameter values

Exhaustive search O(L(k�1))
GA technique O((k � 1)*Ng*P*[8*(k � 1) + L]) Ng = P = 100
Iterative scheme O((k � 1)Ni3L) Ni = 100

Proposed method O Ng � P � L
2r�1

� �
Ng ¼ 100; P ¼ 300

2r

174 K. Hammouche et al. / Computer Vision and Image Understanding 109 (2008) 163–175
holding methods based on Otsu’s and Kapur’s functions is
very expensive when the exhaustive search is applied. For
(k � 1) thresholds, the complexity is O(L(k�1)), which
grows exponentially with the number of thresholds. How-
ever, in practice, it is proved that the computation time
of Otsu’s function is faster than that of Kapur’s function.

In each iteration of the iterative scheme, the histogram is
looped three times. The computation complexity of the glo-
bal iterative scheme then becomes (k � 1)Ni3L, where Ni is
the number of iterations, which is generally less than 100.

We generally agree that the computational time of GAs
is reduced only to the computational time of the fitness,
because the computation of the selection, crossover and
mutation operations is much faster than that of fitness.
For the same reason, the computation of the learning strat-
egy can be ignored.

In GA-Otsu and GA-Kapur, each chromosome of
length 8(k � 1) is scanned once to determine the threshold
values. The histogram with length L is the looped one in
order to compute their fitness. So the complexity of GA-
Otsu and GA-Kapur is O((k � 1)*Ng*P [8*(k � 1) + L]),
where Ng = P = 100.

For the proposed method, the wavelet and the refine-
ment procedures are of lower complexity than the GA.
Hence only the complexity of the GA is taken into account.
As each chromosome of length L

2r is scanned once to extract
the threshold values and as the reduced histogram with
length L

2r is the looped one in order to compute their fitness,
the proposed method complexity becomes equal to

O N g � P � L
2r�1

� �
, where Ng = 100 and P = 300/2r.

A simple calculation shows that the proposed method
has a complexity lower than those of other methods.
Higher speed is due to the reduction of the histogram.
On the other hand, the iterative GA-Otsu and GA-Kapur
methods can be applied several times to determine the
number of thresholds. Furthermore, the iterative methods
need some iterations to converge, while for the GA-Otsu
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and GA-Kapur methods, the number of generations is
higher than that of the proposed method. Let us note also
that the computation time of the proposed method is inde-
pendent from the number of classes, while other methods
are linked to the number of classes: indeed, in the GA-Otsu
and GA-Kapur methods, the size of the chromosome
increases with the threshold number and, in the iterative
methods, at each iteration, the number of the updates of
the thresholds increases with the number of thresholds.
The speed of the proposed method is clearly shown in
Table 10, where the Bridge image is thresholded by a great
number of thresholds. Hence, the proposed method is use-
ful to find multiple thresholds for complex image analysis.
4. Conclusion

In this paper, we have proposed a new multilevel thres-
holding method based on a genetic algorithm, which
enables determining the appropriate number of thresholds,
as well as the adequate threshold values. The length of the
original histogram is reduced by using a wavelet transform.
Based on this lower resolution version of the histogram, the
optimal threshold values are determined by using a stan-
dard GA. In this GA is used a new string representation
of the chromosome, which is different from current repre-
sentations. A binary encoding is used and the threshold
values are directly determined without requiring the use
of encoding and decoding operations. In order to improve
the performance of the GA, a learning strategy was used
and a new mutation operator, that handles problem depen-
dent characteristics, was also proposed. Experiments with a
synthetic histogram and real images have proved the
robustness of the proposed method, in view of the accuracy
of image segmentation, evaluated through the uniformity
measure and the cost function. Comparisons with other
thresholding methods showed that the proposed method
runs faster when the determination of the optimal number
of thresholds is required.
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