
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	http://www.researchgate.net/publication/275342207

A	Data	Quality-aware	Cloud	Service	based	on
Metaheuristic	and	Machine	Learning
Provisioning	Algorithms

CONFERENCE	PAPER	·	JANUARY	2015

DOI:	10.1145/2695664.2695753

READS

110

3	AUTHORS:

Dimas	Nascimento

Universidade	Federal	de	Campina	Grande	(U…

4	PUBLICATIONS			0	CITATIONS			

SEE	PROFILE

Carlos	Eduardo	Pires

Universidade	Federal	de	Campina	Grande	(U…

34	PUBLICATIONS			34	CITATIONS			

SEE	PROFILE

Demetrio	Gomes	Mestre

Universidade	Federal	de	Campina	Grande	(U…

4	PUBLICATIONS			1	CITATION			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Carlos	Eduardo	Pires

Retrieved	on:	01	January	2016

http://www.researchgate.net/publication/275342207_A_Data_Quality-aware_Cloud_Service_based_on_Metaheuristic_and_Machine_Learning_Provisioning_Algorithms?enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ%3D%3D&el=1_x_2
http://www.researchgate.net/publication/275342207_A_Data_Quality-aware_Cloud_Service_based_on_Metaheuristic_and_Machine_Learning_Provisioning_Algorithms?enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ%3D%3D&el=1_x_1
http://www.researchgate.net/profile/Dimas_Nascimento?enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Dimas_Nascimento?enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Universidade_Federal_de_Campina_Grande_UFCG?enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Dimas_Nascimento?enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Carlos_Pires4?enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Carlos_Pires4?enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Universidade_Federal_de_Campina_Grande_UFCG?enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Carlos_Pires4?enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Demetrio_Mestre?enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Demetrio_Mestre?enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Universidade_Federal_de_Campina_Grande_UFCG?enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Demetrio_Mestre?enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ%3D%3D&el=1_x_7


A Data Quality-aware Cloud Service based on
Metaheuristic and Machine Learning Provisioning

Algorithms

Dimas C. Nascimento
Federal University of Campina

Grande, Paraíba, Brazil
Federal Rural University of

Pernambuco, Brazil
dimascnf@copin.ufcg.edu.br

Carlos Eduardo Pires
Federal University of Campina

Grande, Paraíba, Brazil
cesp@dsc.ufcg.edu.br

Demetrio Gomes Mestre
Federal University of Campina

Grande, Paraíba, Brazil
demetrio@copin.ufcg.edu.br

ABSTRACT
Cloud Computing as a service has become a topic of increas-
ing interest. The outsourcing of duties and infrastructure to
external parties became a crucial concept for many business
models. In this paper we discuss the design and experimen-
tal evaluation of provisioning algorithms, in a Data Quality-
aware Service (DQaS) context, that enables dynamic Data
Quality Service Level Agreements (DQSLA) management
and optimization of cloud resources. The DQaS has been
designed to respond effectively to the DQSLA requirements
of the service customers, by minimizing SLA penalties and
provisioning the cloud infrastructure for the execution of
data quality algorithms. An experimental evaluation of the
proposed provisioning algorithms, carried out through sim-
ulation, has provided very encouraging results that confirm
the adequacy of these algorithms in the DQaS context.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Data Quality, Cloud Computing

Keywords
Data Quality, Cloud Computing, Provisioning, Machine Learn-
ing, Metaheuristic

1. INTRODUCTION
Data Quality Monitoring (DQM) is the continuous pro-

cess that evaluates a set of data to determine if they meet
the planning objectives of a project. Any DQM life cycle will
include an evaluation (assessment) phase, which intends to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM 978-1-4503-3196-8/15/04$̇15.00.
http://dx.doi.org/10.1145/2695664.2695753.

access and process the data according to data quality objec-
tives. In this step, each data quality objective may generate
many data quality rules which are mapped to data quality al-
gorithms. Depending on the complexity of these algorithms
and the amount of data that need to be processed, the pro-
cess of DQM may require a large amount of computational
resources.

In practice, business managers may prefer to outsource
the overall process of data storage and continuous monitor-
ing of data quality, due to either operational or financial
reasons. Nowadays, hardware- and service-level outsourc-
ing is usually done by using cloud Computing technologies.
Cloud Computing has recently emerged as a computing plat-
form with reliability, ubiquity availability in focus [1] mainly
by utilizing computing as an on demand service [10] and
simplifying the time-consuming processes of hardware pro-
visioning, hardware purchasing and software deployment.
Cloud services are applications or services offered by means
of cloud Computing [1]. Therefore, by adopting cloud ser-
vices, business managers are considering to take advantage
of the economic benefits offered by maintaining parts of its
IT resources and tasks by a cloud service provider [10].

Cloud Computing provides strong storage, computation
and distributed capability in support of Big Data process-
ing. In this scenario, we propose a Data Quality-aware
Service (DQaS) architecture in order to provide continuous
monitoring of cloud databases, which relies on Data Qual-
ity Service Level Agreements (DQSLAs) established between
service consumers and a DQaS provider. In order to tackle
strict DQSLA requirements and/or big data monitoring, we
intend to propose and evaluate different provisioning algo-
rithms, which uses the advantage of a cloud infrastructure to
perform dynamic allocation of computational resources and
the execution of data quality algorithms in a distributed
manner.

The main contributions of this paper are: i) the back-
ground motivation and formalization of a Data Quality SLA
(Section 2); ii) the proposition of a Data Quality-aware Ser-
vice architecture (Section 3); iii) the application of machine
learning and heuristic algorithms in the context of the DQaS
infrastructure provisioning (Section 4); iv) the DQaS cost
model (Section 5) and the evaluation of the proposed pro-
visioning algorithms according to the adopted cost model
(Section 6).

1696

https://www.researchgate.net/publication/258052818_A_Cloud_Service_Broker_for_SLA-based_SaaS_provisioning?el=1_x_8&enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ==
https://www.researchgate.net/publication/258052818_A_Cloud_Service_Broker_for_SLA-based_SaaS_provisioning?el=1_x_8&enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ==
https://www.researchgate.net/publication/221613317_Contract-based_cloud_architecture?el=1_x_8&enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ==
https://www.researchgate.net/publication/221613317_Contract-based_cloud_architecture?el=1_x_8&enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ==


2. DATA QUALITY SLA
Quality-of-Service (QoS) refers to a set of qualities or

characteristics of a service, such as availability, security,
response-time, throughput, latency, reliability, and repu-
tation. Such qualities are of interest for service providers
and service consumers alike [1]. The agreement between
the customer and the service provider, known as the Service
Level Agreement (SLA), describes agreed service function-
ality, cost, and qualities [4].

A SLA is an agreement regarding the guarantees of a ser-
vice. It defines mutual understandings and expectations of a
service between the service provider and service consumers.
It consists of sections describing the commitments to ser-
vice quality and service levels that the service provider must
guarantee [1].

The difference between hardware service level manage-
ment and Data Quality service level management is in the
perceived variability in specifying what is meant by accept-
able levels of service [8] and how to represent these levels of
data quality acceptability. In other words, in practice it is a
challenge to express a Data Quality Service Level Agreement
(DQSLA). Therefore, we state the necessity of specifying a
formal structure that is dynamic and flexible enough to ex-
press service customer’s data quality requirements as well
as service providers obligations. To this end, we formalize
the notion of a DQSLA, by enabling the involved parties
to express their expectations regarding informations such as
data quality dimensions, parameters of the data quality al-
gorithms, datasets to be analyzed, overall efficiency of the
process, and so on.

We define a Data Quality SLA as a 9-tuple:
DQSLA = 〈Rid, DQdim, Mrules, ∆tsvalid, |∆D|thr, Tres,

Rmethod, SLApenalties, Initexec〉, where:
Rid is a unique resource identifier of the dataset (or datasets

involved) to be monitored;
DQdim is the data quality dimension [11];
Mrules represents the details (parameters of the data al-

gorithms) used to evaluate Rid;
∆tsvalid is the timestamp interval in which the DQSLA is

valid;
|∆D|thr is the amount of changes in the dataset (Rid) that

will trigger a new execution of a data quality algorithm by
the service to evaluate the quality of Rid as specified by the
Mrules parameter;
Tres is the expected efficiency of a single evaluation (exe-

cution of a data quality algorithm) of the dataset Rid;
Rmethod is the method (Online or Historical) of reporting

the subsequent results of the evaluations of the dataset Rid;
SLApenalties defines the penalties for the cases that the

defined restriction time (Tres) is not met by the service;
Initexec is a boolean flag that indicates if the dataset (Rid)

must be initially evaluated.

3. PROPOSED DQAS ARCHITECTURE
As mentioned earlier, the adoption of cloud Computing

for databases and data services introduces a variety of chal-
lenges, such as strict SLA requirements and Big Data pro-
cessing. To leverage elastic cloud resources, scalability is a
fundamental architectural design trait for cloud databases.
In the DQaS context, the service should have the means to
process the DQSLA’s inputs and estimate the right amount
of resources that should be allocated to honor the service

Figure 1: Data Quality-aware Service Architecture.

commitments specified at the DQSLA. In practice, the size
of the datasets that need to be monitored and the complex-
ity of the data quality algorithms that need to be executed
by the DQaS may vary over time. Hence, the amount of re-
sources needed to honor the DQSLAs may also vary notably
over time. In order to tackle the infrastructure provision-
ing problem, we propose provisioning algorithms that are
further discussed in Section 4.

Another crucial aspect of the DQaS architecture is to max-
imize the efficacy on the usage of the available resources
while minimizing the provider bill. In other words, the fol-
lowing requirements have to be met: i) guarantee that the
customers’ DQSLAs requirements are met; and ii) optimize
the resource utilization in meeting the above requirements.

The proposed DQaS architecture is shown in Figure 1. In
the step 1, a customer, that initially owns one or more cloud
databases, submits the input parameters of a DQSLA via a
web form or a XML document to the DQaS web interface.
In step 2, the received DQSLA is then validated by the SLA
Validator module using a XML Schema selected (step 3) ac-
cording to the value of the parameters DQdim and Mrules

of the DQSLA. In step 4, if the DQSLA structure and con-
tent are properly validated by the selected XML Schema,
the DQSLA is stored as a set of inputs for a data quality
algorithm (step 6).

Then, if the DQSLA parameter Initexec is set to true, in
the step 7 the Provisioning Planner module gathers data
from the data quality algorithm (derived from the DQSLA)
inputs, the cloud databases metadata and (optionally) from
a training data repository in order to estimate the ideal in-
frastructure to execute a data quality algorithm and meet
the DQSLA restriction time, i.e., by providing an execu-
tion time equal or lower than the Tres value of the recieved
DQSLA. As an output of the step 7, an execution plan
(which consists of a grid configuration) is created. The exe-
cution plan specification is used by both the Business Model
module (in order to further aggregate customers bills) and

1697

https://www.researchgate.net/publication/258052818_A_Cloud_Service_Broker_for_SLA-based_SaaS_provisioning?el=1_x_8&enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ==
https://www.researchgate.net/publication/258052818_A_Cloud_Service_Broker_for_SLA-based_SaaS_provisioning?el=1_x_8&enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ==
https://www.researchgate.net/publication/224101731_Web_services_on_demand_WSLA-driven_automated_management_IBM_syst_J?el=1_x_8&enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ==
https://www.researchgate.net/publication/241631252_Data_quality_A_survey_of_data_quality_dimensions?el=1_x_8&enrichId=rgreq-55eb495c-8123-4b0a-a8e0-344ce5cb8570&enrichSource=Y292ZXJQYWdlOzI3NTM0MjIwNztBUzoyMjE0MDEyNTc2NDgxMjhAMTQyOTc5NzU4MTQ0NQ==


Table 1: The infrastructure provisioning estimation
problem.

Find Cli
Over (N × γ) = {Cl1, Cl2, . . . , Cln×k}

for Minimizing (T e
res − ExecT ime(e))

Subject to (T e
res − ExecT ime(e) ≥ 0)

the Resource Configurator module, in order to allocate a grid
of virtual machines to execute the data quality algorithm in
a distributed manner.

In step 13, after the execution of the data quality al-
gorithm is completed, the Execution Summarizer module
aggregates and summarizes the execution data in order to
populate an historical execution data repository and forward
the summarized execution data to the Provisioning Planner
module in order to: i) update the training data repository
and ii) (optionally) provide an online update of a report that
is shown by the web interface of the DQaS.

Another possible flow of tasks (displayed by dashed lines
in the architecture) performed by the DQaS is triggered
when the amount of changes (inserts, updates or deletes)
in a dataset being currently monitored exceeds the |∆D|thr
parameter value specified by the client in the DQSLA. When
this scenario is detected by the Online Metadata Monitoring
module, the Provisioning Planner is notified and uses a set
of input data to create an execution plan and evaluate the
changed dataset, as explained earlier in this section.

3.1 Configuration Class
The service’s resource requirements are fulfilled by the

physical or virtual computational nodes upon which the data
quality algorithms are executed.

In practice, the configuration class estimated by the Pro-
visioning Planner module is a virtual machine cluster com-
posed by a pair 〈Number of VM’s , VM Configuration〉.
Let N = {N1, N2, . . . , Nn} be the amount of VM’s that can
be allocated for an execution, γ = {γ1, γ2, . . . , γk} the avail-
able VM configurations and a Configuration Class (Cll) be a
pair <Ni, γj>. Then, Cl = (N×γ) = {Cl1, Cl2, . . . , Cln×k}
represents the set of all possible configuration classes that
can be chosen by the Provisioning Planner module. In order
to facilitate the proposition of the provision algorithms, we
use Cl as a partially ordered set that is paired by a relation
defined as follows:
I.∀Cli, Clj ∈ Cl : (i ≥ j)⇒ Pr(Cli) ≥ Pr(Clj)
II. ∀Cli, Clj ∈ Cl :
((i < j) ∧ (Pr(Cli) = Pr(Clj)))⇒ Cli.N < Clj .N
, where Pr(Cll) denotes that the processing capacity of Cll
and Cll.N denotes the number of nodes (VM’s) of Cll.

4. PROVISIONING ALGORITHMS
We are now able to formalize the problem that is tackled

by the Provisioning Module in the proposed DQaS architec-
ture. For a single execution e of a data quality algorithm,
we want to estimate a proper class Cli that is able to min-
imize the difference between the restriction time defined in
the DQSLA that triggered the execution e (T e

res) and the
execution time of e (ExecT ime(e)), as stated in Table 1.

4.1 Data Quality Scope
Although the core ideas of the provisioning algorithms

proposed in this paper may also be used for other data qual-

ity tasks, we limit the scope of this paper to propose pro-
visioning algorithms that are adjusted according to the ex-
ecution results of data quality algorithms for deduplication
tasks. The process of deduplication consists in identifying
duplicated entities among a single dataset [3]. The inputs of
a deduplication algorithm triggered by a DQSLA SId may
be summarized using the following vector notation:
ˆsId = 〈sId1, sId2, sId3, sId4〉 = 〈Comparisons(sId),
ComparisonCost(sId), T

sId
res , CurrExecClass(sId)〉

, where: Comparisons(sId) is the amount of comparisons
that will be executed among the entities, which depends on
the size of the dataset and on the deduplication algorithm
that is being executed (note that these informations can be
both derived from the DQSLA parameters); in practice, the
number of comparisons may be theoretically [3] estimated
based on the dataset size and on the distribution of its data;
ComparisonCost(sId) is the cost of a single comparison be-
tween two entities, which depends on the complexity of the
similarity function(s) used by the deduplication algorithm
and on the amount and the size of entity attributes that
need to be compared;
T

sId
res is the input parameter of the SId DQSLA; and
CurrExecClass(sId) is the configuration class used for the
most recent execution triggered by SId (or Nil if SId has
not triggered an execution yet).

Regarding the training data, its content is composed by a
set of 4-tuples using the following vector notation:
b̂j = 〈bj1, bj2, bj3, bj4〉 = 〈Comparisons(bj),
ComparisonCost(bj), ExecT ime(bj), Class(bj)〉
, where ExecTime(bj) is the execution time of the dedupli-
cation algorithm (that generates Comparisons(bj) and Com-
parison Cost(bi)) using Class(bj) as an infrastructure class.

4.2 Hill Climbing Estimation
The Provisioning Planner module uses a metaheuristic

algorithm (Hill Climbing) to adjust the configuration class
(Cli) used to execute the data quality algorithms over sub-
sequent executions triggered by a DQSLA (sId). We used a
Hill Climbing approach, instead of A* or Best-first Search,
because the Provisioning Module can not evaluate all avail-
able configuration classes, due to the high computational
costs, to decide which option is able to minimize the objec-
tive function (T e

res − ExecT ime(e)).
The pseudo code of the Hill Climbing is represented by the

Algorithm 1. Initially (lines 2 and 3), the algorithm checks
if the DQaS has not performed an execution triggered by
sId yet. If so (lines 4 to 6), the algorithm creates an initial
configuration class (ClI), schedules an execution plan based
on ClI and updates the training data (TB) using the results
of the execution plan. Otherwise (lines 8 to 18), the algo-
rithm checks if the previous execution class used for the sId
DQSLA is not considered a good solution (line 8). If so, the
algorithm performs a tweak on the previous configuration
class used for the sId DQSLA (line 10), updates the train-
ing base using the results of the execution using ClT and
checks (lines 13, 14 and 17) if the adjusted configuration
class (ClT ) should replace (line 16 or 18) the previous con-
figuration class (ClP ). Finally, if both cases (line 3 or line
8) are not evaluated as true, i.e., the previous configuration
class (ClP ) used for sid is considered a good solution, then
the algorithm creates an execution plan using ClP (line 20).

Note that there are two specific lines (5 and 10) in which
the Hill Climbing algorithm executes an interchangeable call.

1698



In practice, it means that each of these lines may be replaced
by different algorithm calls (for the generation of an initial
configuration class or the adjustment of a new configura-
tion class for a DQSLA) in order to generate different hill
climbing algorithms.

Algorithm 1: HillClimbingEstimation

input : sId: a DQSLA id
thr: a (positive) minimum threshold for tweak
the current solution
Lindex: the index of the last available
configuration class
TB: a training base

1 begin
2 ClP ←− CurrExecClass(sId)
3 if (ClP = Nil) then
4 // interchangeable call

5 ClI ←− InitialSolutionClass(SId, Lindex)
CurrExecT ime(sId)←− ExecP lan(sId, ClI)
CurrExecClass(sId)←− ClI

6 TB ←− TB ∪
〈Comparisons(sId), ComparisonCost(sId),

7 CurrExecT ime(sId), ClI〉
8 else if ((T

sId
res − PrevExecT ime(sId)) > thr or

PrevExecT ime(sId) > T
sId
res ) then

9 // interchangeable call

10 ClT ←− TweakSolution(ClP , sId, Lindex)
CurrExecT ime(sId)←− ExecP lan(sId, ClT )

11 TB ←− TB ∪
〈Comparisons(sId), ComparisonCost(sId),

12 CurrExecT ime(sId), ClT 〉
13 if (|CurrExecT ime(sId)− T sId

res | <
|PrevExecT ime(sId)− T sId

res |) then
14 if ((PrevExecT ime(sId) < T

sId
res ) and

15 (CurrExecT ime(sId) < T
sId
res )) then

16 CurrExecClass(sId)←− ClT
17 else if (PrevExecT ime(sId) > T

sId
res ) then

18 CurrExecClass(sId)←− ClT

19 else
20 ExecP lan(sId, ClP )

4.3 Metaheuristic and Heuristic Algorithms
In this section, we present 3 heuristic algorithms that

are used to adjust (tweak) a current solution (a configura-
tion class) in the Hill Climbing algorithm (line 10). The
SlicedTweakSolution algorithm (Algorithm 2) performs a
random adjust (scaling up or scaling down) on the input con-
figuration class (Cli), depending on the difference between
CurrExecTime(sId) and T

sId
res . Moreover, the Sliced Tweak-

Solution uses two persistent variables (InferiorIndexLimit(sId)
and SuperiorIndexLimit(sId)) to avoid performing adjust-
ments on the input class (Cli) beyond necessity.

The BinaryTweakSolution (Algorithm 3) algorithm per-
forms a binary search-based adjustment (scaling up or scal-
ing down) on the input configuration class (Cli), depending
on the difference between CurrExecT ime(sId) and T

sId
res .

Lastly, the TunableTweakSolution (Algorithm 4) algorithm
adjusts (scaling up or scaling down) the input configuration
class according to a tunable input parameter (ScaleFactor).
The main purpose of this algorithm is to be used in conjunc-
tion with machine learning-based initial solutions (Section

Algorithm 2: SlicedTweakSolution

input : Cli: an input configuration class
sId: a DQSLA id
LastClassIndex: the index of the last
available configuration class

output: Clo: an output configuration class
1 persistent InferiorIndexLimit(sId)
2 persistent SuperiorIndexLimit(sId)
3 begin
4 if (InferiorIndexLimit(sId) = Nil) then
5 InferiorIndexLimit(sId)←− 1

6 if (SuperiorIndexLimit(sId) = Nil) then
7 SuperiorIndexLimit(sId)←− LastClassIndex
8 if (CurrExecT ime(sId) > T

sId
res ) then

9 // scaling up

10 ClR ←− randomClass(i+ 1,
11 SuperiorIndexLimit(sId))
12 InferiorIndexLimit(sId)←− i+ 1
13 return ClR

14 else if (CurrExecT ime(sId) < T
sId
res ) then

15 // scaling down

16 ClR ←−
randomClass(InferiorIndexLimit(sId),

17 i− 1)
18 SuperiorIndexLimit(sId)←− i− 1
19 return ClR

20 return Cli

4.4), since it is expected that the machine learning algo-
rithms are able to provide ideal (i.e., that approximates T e

res

' ExecTime(e)) or near ideal initial configuration classes,
upon which will be only necessary to perform small adjust-
ments over time.

4.4 Machine Learning Algorithms
In this section, we present two Machine Learning (ML)

algorithms that can be used to estimate the initial solution
(configuration class) of the Hill Climbing algorithm (line 5).
The ML algorithms perform an initial estimation of the con-
figuration classes based on a training base that is structured
as defined in Section 4.1. The kNearestNeighbors algo-
rithm (Algorithm 5) behaves in the following way: given an

input DQSLA vector ŜId (Section 4.1), the algorithm se-
lects from the training base the top K nearest vectors and
their respective configuration classes, according to a similar-
ity measure (using Eq. (2.a) or Eq. (3.a), depending on the
value of the SimFunction parameter), and selects the most
frequent configuration class amongst them.

In turn, the SelectPrototype algorithm (Algorithm 6) aims
to generate a representative class index amongst the config-
uration classes of the top K nearest vectors in the training
base (using Eq. (2.a) or Eq. (3.a), depending on the value
of the SimFunction parameter) with respect to an input

DQSLA vector ŜId. In this paper, we use the following
aggregation modes: median and weighted geometric mean
(Eq. 1.a). The aggregations are used as follows: i) Me-
dian: the median of the K nearest neighbors class indexes;
and ii) wGeomMean: the weighted geometric mean of the
K nearest neighbors class indexes. We used a fixed value for
the weighting parameter (wi) that is defined in Eq. (1.b).
Thus, from Eq. (1.a) and Eq. (1.b), we can derive Eq. (1.c).

1699



Algorithm 3: BinaryTweakSolution

input : Cli: an input configuration class
sId: a DQSLA id
LastClassIndex: the index of the last
available configuration class

output: Clo: an output configuration class
1 begin
2 if (CurrExecT ime(sId) > T

sId
res ) then

3 // scaling up

4 o←−
⌈
i+ LastClassIndex

2

⌉
5 return Clo

6 else if (CurrExecT ime(sId) < T
sId
res ) then

7 // scaling down

8 o←−
⌊

1 + i
2

⌋
9 return Clo

10 return Cli

Algorithm 4: TunableTweakSolution

input : Cli: an input configuration class
sId: a DQSLA id
LastClassIndex: the index of the last
available configuration class
ScaleFactor: a factor used to adjust the
input configuration class

output: Clo: an output configuration class
1 begin
2 if (CurrExecT ime(sId) > T

sId
res ) then

3 // scaling up

4 o←− i+
⌈
LastClassIndex
ScaleFactor

⌉
5 return ClM

6 else if (CurrExecT ime(sId) < T
sId
res ) then

7 // scaling down

8 o←− i−
⌊
LastClassIndex
ScaleFactor

⌋
9 return Clo

10 return Cli

wGeomMean(v̂) =

� n∏
i=1

vwi
i



1

n∑
i=i

wi

=

= exp

� n∑
i=1

wi ln vi

n∑
i=1

wi

�
(1a)

wi = i2 (1b)

wGeomMean(v̂) = exp

� n∑
i=1

i2 ln vi

n∑
i=1

i2

�
(1c)

Algorithm 5: kNearestNeighbors

input : sId: a DQSLA id
TB: a training base
k: quantity of Neighbors
SimFunction: a similarity function
{EuclidianDistance, CosineSimilarity}

output: Clo: an output configuration class
1 begin
2 kNearestNeighbors[]←−

kNearestNeighborsClasses(TB, ˆsId, k, SimFunction)
3 return MostFrequentClass(kNearestNeighbors)

Algorithm 6: SelectPrototype

input : sId: a DQSLA id
TB: a training base
k: quantity of Neighbors
AggregationMode: the chosen aggregation
mode {Median, wGeomMean}
SimFunction: a similarity function
{EuclidianDistance, CosineSimilarity}

output: Clo: an output configuration class
1 begin
2 kNearestNeighbors[]←−

kNearestNeighborsClasses(TB, ˆsId, k, SimFunction)
3 if (AggregationMode = Median) then
4 // ascendant sorting based on the indexes

of the classes

5 Sort(kNearestNeighbors)

6 MedianIndex←−
⌊
k
2

⌋
7 return kNearestNeighbors[MedianIndex]

8 else if (AggregationMode = wGeomMean) then
9 // ascendant sorting based on the

proximity of the neighbors to s_Id

10 Sort(kNearestNeighbors)
11 NeighborsIndexes←−

ExtractIndexes(kNearestNeighbors)
12 // using Eq. 1c

13 o←− wGeomMean(NeighborsIndexes)
14 return Clo

kNearestNeighborClasses(TB, ŝi, k, Euclidian) =

= Top k

�
Class

�
arg min
b̂j∈TB

z(||ŝi − b̂j ||)




(2a)

arg min
b̂j∈TB

z(||ŝi − b̂j ||) =

= arg min
b̂j∈TB

sqrt

��
||z(ŝi)||


2

+

�
||z(b̂j)||


2

−

2× (z(ŝi) · z(b̂j))



(2b)

ŝi · b̂j =

3∑
k=1

sik × bjk (2c)

||v̂i||=
?
v̂i · v̂i =

gffe 3∑
k=1

(vik)2 (2d)

z(v̂k) =

〈
vk1

arg max
b̂j∈TB

bj1
,

vk2
arg max
b̂j∈TB

bj2
,

vk3
arg max
b̂j∈TB

bj3
, vk4

〉
(2e)

1700



NearestNeighborClass(TB, ŝi, k, Cosine) =

= Top k

�
Class

�
arg min
b̂j∈TB

z

�
ŝi · b̂j

||ŝi||×||b̂j ||





(3a)

arg min
b̂j∈TB

z

�
ŝi · b̂j

||ŝi||×||b̂j ||



=

arg min
b̂j∈TB

�
z(ŝi) · z(b̂j)

||z(ŝi)||)× || ˆz(bj)||)




(3b)

5. COST MODEL
In this section, we describe the cost model of the proposed

DQaS. The model is used to evaluate the effectiveness of the
proposed provisioning algorithms (Section 4) according to
their capacity to minimize the costs of the service provider.

Let C〈tsi, tsf 〉 be the set of customers of the DQaS dur-
ing a timestamp interval (tsi, tsf ). During (tsi, tsf ), each
customer c ∈ C〈tsi, tsf 〉 may create a set of DQSLAs that
is represented by Sc〈tsi, tsf 〉. Each DQSLA s ∈ Sc〈tsi, tsf 〉
may trigger a set of executions represented by Es〈tsi, tsf 〉,
during the timestamp interval (tsi, tsf ).

Each execution e ∈ Es〈tsi, tsf 〉 has an infrastructure cost
that is influenced by the execution time (ExecTime), initial-
ization time (InitTime) and the infrastructure price (Price)
of the allocated VM’s. Let Init(e) represent all the initial-
izated and used VM’s by a particular execution e. Each
VMe

i ∈ Init(e) has a unique and sequential identifier i.
Let γ indicates the set of possible configurations for a VM,

then each VMe
il ∈ Init(e) presents the same configuration

confi
e = l and Price(VMe

il) price. Let the infrastructure
cost of the execution e using a cluster of VM configuration
l be denoted by VMCoste, then we can estimate this cost
according to Eq. (4).

VMCoste =

|Init(e)|∑
v=1

(ExecT ime(VMe
vconfe

v
+

InitT ime(VMe
vconfe

v
))× Price(VMe

vconfe
v
)

=

|Init(e)|∑
v=1

(ExecT ime(VMe
vl)+

InitT ime(VMe
vl))× Price(VMe

vl) (4)

The total cost (Coste) of a single execution e is composed
by its infrastructure costs (VMCoste) plus its penalty costs,
defined as follows: Coste = VMCoste + PenaltyCoste.

Each execution e ∈ Es〈tsi, tsf 〉 performed by a DQaS
is subjected to a time restriction T e

res that is specified at
the DQSLA s ∈ Sc〈tsi, tsf 〉 that triggered the execution e.
In this work, we use a SLA penalty violation model that is
similar to other related works [12] and is modeled as a linear
function as follows: SLAPenalty = α + β × DT . In the
SLA penalty model, α represents the fixed penalty, β is the
penalty rate and DT is the delay time between the execution
time (InitTime(e) + ExecTime(e)) and the restriction time
(T e

res) of an execution e.
In the DQ-aware service context, the fixed penalty (α(e))

and the penalty rate (β(e)) associated to an execution e are

both specified at the DQSLA s ∈ Sc〈tsi, tsf 〉 that triggered
the execution e using the SLApenalties parameter. Thus, we
can define the PenaltyCoste of an execution e as shown in
Eq. (5).

PenaltyCoste = (α(e) + β(e)×DT (e)) (5)

5.1 Algorithm Effectiveness
Let TBk

0 be the set of the k executions required to build
the initial training base used by a machine learning provi-

sioning algorithm (ml est). Then, the cost (ServCost
C〈tsi,tsf 〉
ml est )

of serving the DQaS for |C〈tsi, tsf 〉| clients using a ML-
based algorithm, during a timestamp interval (tsi, tsf ), is
the sum of the total cost related to the execution of data
quality algorithms plus the costs for fulfilling the training
base, as defined in Eq. (6).

ServCost
C〈tsi,tsf 〉
ml est =

�
�|C〈tsi,tsf 〉|∑

c=1

|Sc〈tsi,tsf 〉|∑
s=1

|Es〈tsi,tsf 〉|∑
e=1

Coste

�


+

|TBk
0 |∑

b=1

VMCostb

(6)

Regarding a heuristic algorithm (heur est), since it does

not require a training base, we can calculate ServCost
C〈tsi,tsf 〉
heur est

as shown in Eq. (7).

ServCost
C〈tsi,tsf 〉
heur est =

�
�|C〈tsi,tsf 〉|∑

c=1

|Sc〈tsi,tsf 〉|∑
s=1

|Es〈tsi,tsf 〉|∑
e=1

Coste

�


(7)

6. EXPERIMENTS
In this section we discuss an assessment of the proposed

provisioning algorithms we have carried out through simu-
lation. The objective of this assessment is to verify whether
the algorithms are able to estimate ideal configuration classes
indexes over time that meet their DQSLAs time restrictions
and optimize the allocated resources in the cloud. The eval-
uated provisioning algorithms, which are generated by mod-
ifying the interchangeable calls of the HillClimbingEstima-
tion algorithm, are shown in Table 3.

We developed an execution model to be used in the simu-
lation environment. The model uses the notation described
in Table 3 and is presented in Eq. (8). In short, the purpose
of the model is to estimate the influence of the distribution
environment (number of nodes N) and the virtual machines
configuration (γ) over the execution time of a deduplication
task, given a speed up factor (s) that simulates the delays
generated from factors such as cloud network communica-
tions and the load balancing problem [3] that usually occur
in a distributed execution. Moreover, the η parameter of the
model is empirically estimated by performing a single serial
comparison between two entities of the dataset (according to
the Mrules DQSLA parameter) using a single vCPU virtual
machine.

1701



Table 2: Interchangeable calls of the provisioning
algorithms.

alg InitialSolutionClass Tweak
heur#1 b(1 + Lindex)/2c Binary
heur#2 randomClass(1, Lindex) Sliced
heur#3 b(1 + Lindex)/2c Sliced
heur#4 b(1 + Lindex)/2c Tunable
knn#1 kNearestNeighbors(sId, TB, 1, Euc) Tunable
knn#2 kNearestNeighbors(sId, TB, 7, Euc) Tunable
knn#3 kNearestNeighbors(sId, TB, 1, Cos) Tunable
knn#4 kNearestNeighbors(sId, TB, 7, Cos) Tunable

proto#1 Prototype(sId, TB, 1, wGeoMean, Euc) Tunable
proto#2 Prototype(sId, TB, 7, wGeoMean, Euc) Tunable
proto#3 Prototype(sId, TB, 1, Median, Cos) Tunable
proto#4 Prototype(sId, TB, 7, Median, Cos) Tunable

Table 3: Execution model notation.

D Dataset to be monitored
bk Blocking key of the dataset D
b Number of blocks generated by applying bk to D

λ(D, b) Number of comparisons to be performed
η A single comparison cost (ms) between 2 entities
γ Number of vCPUs
N Number of nodes (VM’s).
s Speed up factor

ExecT ime =


η × λ(D, b)
N × γ if N = 1

η × λ(D, b)

s−1 ×N × γ
if N > 1

(8)

The workload used in the experiments is described in Ta-
ble 4 and the global parameters of the algorithms and equa-
tions used in the simulated environment are shown in Table
5. Lastly, we used the amazon ec2 VM pricing reference1 in
order to calculate the infrastructure costs (Eq. (4)).

Table 4: Workload Characterization.
Parameter Value

period 1 year
#clients 100

#DQSLAS per client random(1, 20)

|D| (number of rows) random(100, 3× 107)
b (number of entities per block) 100

Deduplication algorithm Standard blocking [3]
average #executions per month 121

#executions 1452 executions

The results of the experiments are shown in Figure 2 and
Figure 3. We report, respectively: the accumulated service
cost (VMCost + SLAPenalties) over time and the accumu-
lated number of SLA violations, generated by the algorithm
of each type (heuristic, knn, and prototype) that provided
the smallest value for the accumulated service cost.

6.1 Discussion
1http://aws.amazon.com/ec2

Table 5: Global parameters.

Parameter Location Value
thr Algorithm 1 0.2 × T

sId
res

α Eq. (5) $100
β Eq. (5) $0.2 per minute

ScaleFactor Algorithm 4 10
γ (#vCPUs) Section 3.1 {1, 2, 3, 4}

s (speedupfactor) Eq. (8) random(1, 3)
N Section 3.1 {1, 2, . . . , 100}

LastClassIndex Algorithm{1, 2, 3, 4} 400 (|N | × |γ|)
|TBk

0 | Eq. (6) 252 executions

Figure 2: Accumulated service cost over time.

As expected, the ML-based provisioning algorithms gener-
ated smaller service costs over time, since they usually start
the first execution of an input DQSLA using an approxi-
mately ideal configuration class. The best ML-based algo-
rithms (knn#3 and proto#4) generated $73,589 and $69,958
as the accumulated service cost of the evaluated workload,
respectively. Both algorithms used the cosine distance-based
measure for selecting the top K most similar vectors from
the training base. Surprisingly, the cosine-based 1-NN algo-
rithm (heur#3) was able to provide better initial configura-
tion estimations than its 7-NN (heur#4) version. Moreover,
the Median (used by the proto#4 algorithm) proved to be a
good aggregation mode in order to generate prototype con-
figuration classes.

It is important to highlight that the ML-based provision-
ing algorithms require an initial training base cost. The
training base (254 executions) used in the experiments re-
quires a $926 initial cost in order to be filled. In the reported
results, the training base cost was compensated due to the
costs saved (compared with the costs generated by the most
effective heuristic) by the usage of the most effective ML
algorithms. We believe that the usage of a training base for
estimating cluster configurations is a promising strategy to
high workloads (a high number of estimated executions) or
in cases in which the DQaS is used for a long period. Addi-
tionally, considering ML-based provisioning algorithms, the
more the DQaS runs over time, the more its provisioning
module becomes specialized and is able to generate lower
costs for the operation of the service. This phenomenon can
be noticed in Figure 3. In turn, the heuristic algorithms may
also be useful in the context of light workloads (a small num-
ber of DQ algorithm executions), since they do not require
initial training base costs.

1702



Figure 3: Accumulated number of SLA violations
over time.

7. RELATED WORK
Cloud Computing has recently became a very active re-

search area. Some works have focused on developing grid
computing [9] and closed queueing network [6] models to
maximize resource utilization. In [9], the authors describe
node’s resources and service requirements using a matrix of
attributes. These works are different from our since their
objective is to estimate resource allocation for static and
predefined workloads, which are significantly different from
the dynamic nature of a workload for which a DQaS is sub-
mitted. Machine learning has been investigated [7, 5, 2] in
the context of cloud computing. Nevertheless, our work is
different from [7, 5, 2] because we evaluated other machine
learning algorithms and used specific workloads in the DQaS
context. Lastly, provisioning algorithms for cloud Comput-
ing have also been addressed in the database context [13].
However, the main objective of the authors in [13] is to op-
timize resource allocation in the context of workloads rep-
resented as a set of database queries. To the best of our
knowledge, we are the first to evaluate the effectiveness of
provisioning algorithms in a DQaS context, i.e., by process-
ing a workload as a set of parameters for the execution of
DQ algorithms.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we formalized the notion of a data quality

SLA that can be used to describe expectations and obli-
gations of the both parts (Clients and ServiceProvider)
involved in a data quality monitoring outsourcing contract.
We have also presented a DQaS architecture that we have
designed to minimize SLA penalties and infrastructure costs.
Moreover, we have proposed heuristic and machine learning
provisioning algorithms to tackle these challenges. An ini-
tial evaluation of these algorithms, carried out through sim-
ulation, has provided very encouraging results that confirm
the adequacy of our architecture. The ML-based algorithms
knn#3 and prototype#4 generated the lowest server costs
using the evaluated workload and they both use the cosine
distance measure to compute vector similarities.

For future work, we are planning to carry out further ex-
periments using a real cloud computing environment in order
to test the most effective provisioning proposed algorithms.
In addition, we are planning to extend the experiments in
order to measure the influence of the global parameters, such
as the training base size and the SLA penalties, in the re-
sults. Lastly, we plan to develop novel algorithms for the
modules in the DQaS architecture that have not been ad-
dressed in this paper.

9. REFERENCES
[1] E. Badidi. A cloud service broker for sla-based saas

provisioning. In Information Society (i-Society), 2013
International Conference on, pages 61–66. IEEE, 2013.

[2] T. Chen and R. Bahsoon. Symbiotic and
sensitivity-aware architecture for globally-optimal
benefit in self-adaptive cloud. In 9th International
Symposium on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS 2014, Proceedings,
Hyderabad, India, June 2-3, 2014, pages 85–94, 2014.

[3] P. Christen. A survey of indexing techniques for
scalable record linkage and deduplication. IEEE
Transactions on Knowledge and Data Engineering,
2011.

[4] A. Dan, D. Davis, R. Kearney, A. Keller, R. King,
D. Kuebler, H. Ludwig, M. Polan, M. Spreitzer, and
A. Youssef. Web services on demand: Wsla-driven
automated management. IBM systems journal,
43(1):136–158, 2004.

[5] P. Jamshidi, A. Ahmad, and C. Pahl. Autonomic
resource provisioning for cloud-based software. In 9th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2014,
Proceedings, Hyderabad, India, June 2-3, 2014, pages
95–104, 2014.

[6] Y. Kouki and T. Ledoux. Scaling: Sla-driven cloud
auto-scaling. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, pages 411–414.
ACM, 2013.

[7] J. Ll. Berral, R. Gavaldà, and J. Torres. Empowering
automatic data-center management with machine
learning. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, SAC ’13, pages
170–172, New York, NY, USA, 2013. ACM.

[8] D. Loshin. The practitioner’s guide to data quality
improvement. Elsevier, 2010.

[9] M. B. Reynolds, K. M. Hopkinson, M. E. Oxley, and
B. E. Mullins. Provisioning norm: An asymmetric
quality measure for saas resource allocation. In
Services Computing (SCC), 2011 IEEE International
Conference on, pages 112–119. IEEE, 2011.

[10] M. Schnjakin, R. Alnemr, and C. Meinel.
Contract-based cloud architecture. In Proceedings of
the second international workshop on Cloud data
management, pages 33–40. ACM, 2010.

[11] F. Sidi, P. Shariat Panahy, L. S. Affendey, M. A.
Jabar, H. Ibrahim, and A. Mustapha. Data quality: A
survey of data quality dimensions. In Information
Retrieval & Knowledge Management (CAMP), 2012
International Conference on, pages 300–304. IEEE,
2012.

[12] L. Wu, S. K. Garg, and R. Buyya. Sla-based resource
allocation for software as a service provider (saas) in
cloud computing environments. In Cluster, Cloud and
Grid Computing (CCGrid), 2011 11th IEEE/ACM
International Symposium on, pages 195–204. IEEE,
2011.

[13] P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and
H. Hacigumus. Intelligent management of virtualized
resources for database systems in cloud environment.
In Data Engineering (ICDE), 2011 IEEE 27th
International Conference on, pages 87–98. IEEE, 2011.

1703


