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Other population-based 

metaheuristics

▪ IS - Immune Systems

▪ DE – Differential Evolution

▪ PMB - Probabilistic Model Building Algorithms

▪ MA – Memetic Algorithms
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Immune Systems

Short history:

• mid 1980 - first models

• 1990 – Ishida proposes a first application of immune models in 
problem solving

• mid 1990:

– Forrest et al: applications in computer security

– Hunt et al: applications in data analysis

• Current tendency: back to the biological model
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Applications

▪ Anomaly detection and information systems security

▪ Data analysis (classification, pattern recognition, clustering

etc)

▪ Optimization;

▪ Self-organization and autonomous control;
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Natural Immune Systems
The natural immune system contains two main components:

- innate (inherited from the parents) – based on granulocytes 
(neutrophils, eosinophils si basophils) and macrophages

- Adaptive  – based on lymphocytes (B cells and T cells)
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Natural immune system
Particularity:  active at different levels
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Natural immune systems

The adaptive component of the immune system is able to:

- Memorize (ability to recall previous contacts with pathogens and to react 
quickly)

- Learn (ability to identify/recognize unknown pathogens)

a) Active elements:  lymphocytes

- They contain specific receptors able to recognize the antigens (the 
organisms usually contain a library of millions of receptors)

- There are two types of lymphocytes: 

- B cells

- Synthesized in the bone marrow

- Contain receptors called antibodies – the recognition process is 
based on the complementarity between the binding region of 
the B cell and the epitope of the antigen

- T cells: Synthesized by thymus



Metaheuristics - Lecture 8 7

Natural immune system

Main mechanisms

Negative selection: censoring the T cells which recognize the self 

components (they define the normal behaviour)

Clonal selection:  proliferation and  differentiation of cells  which 

recognized an antigen (learning and generalization)

Affinity maturation: the affinity of B cells which recognized an antigen is 

reinforced by

• Mutation on the receptors (the mutation probability inversely correlated 

with the affinity)

• The storage of cells with high affinity in a memory (cells pool)

• Removal of the cells with incorrect behavior
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Natural immune system

Main mechanisms: 
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Natural immune system
Main steps:
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Natural immune system
Primary and secondary reaction
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AIS = Artificial Immune System

Idea of AIS based problem solving:

Problem to be solved = environment

Solution (unknown) = antigen

Approximation of the solution (population element)  = antibody

Measure of the quality of an element = affinity
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AIS = Artificial Immune System

Main idea of  AIS [DeCastro, Timmis, 2002]

Algorithms
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Solution

Binary values

Discrete values

Real values

Symbolic values
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AIS = Artificial Immune System

Main idea of AIS[DeCastro, Timmis, 2002]

Algorithms
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AIS = Artificial Immune System

Main idea of AIS [DeCastro, Timmis, 2002]

Algorithms

Affinity

Representation

Application
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Clonal Selection
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Immune Network Models

Positive Selection

Bone Marrow Algorithms
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AIS = Artificial Immune System

Initialization

REPEAT

Antigenic presentation 

a. Affinity evaluation 

b. Clonal selection and expansion 

c. Affinity maturation 

d. Metadynamics

UNTIL “stopping condition”

CLONALG (Clonal Selection) 
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AIS = Artificial Immune System

Initialization

REPEAT

Antigenic presentation

a. Affinity evaluation

b. Clonal selection and expansion

c. Affinity maturation

d. Metadynamics

UNTIL “stopping condition”

• Creates a population of 

antibodies

• CLONALG (Clonal Selection) 
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AIS = Artificial Immune System

Initialization

REPEAT

Antigenic presentation

a. Affinity evaluation 

b. Clonal selection and expansion 

c. Affinity maturation 

d. Metadynamics

UNTIL “stopping condition”

For each data (antigen) the steps 1-d are 

executed

CLONALG (Clonal Selection) 
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AIS = Artificial Immune System

Initialization

REPEAT

Antigenic presentation 

a. Affinity evaluation

b. Clonal selection and expansion

c. Affinity maturation

d. Metadynamics

UNTIL “stopping condition”
Compute the affinity

a) Data mining pb:  affinity is higher if the 

similarity is higher

b) Optimization pb: affinity is higher if the fitness 

is higher (the fitness is correlated with the 

objective function value)

CLONALG (Clonal Selection) 
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AIS = Artificial Immune System

Initialization

REPEAT

Antigenic presentation 

a. Affinity evaluation 

b. Clonal selection and expansion 

c. Affinity maturation

d. Metadynamics

UNTIL “stopping condition”

• Select n elements from P in decreasing 

order of affinity

• Generate for each selected element a 

number (proportional to the affinity) of 

clones 

CLONALG (Clonal Selection) 
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AIS = Artificial Immune System

Initialization

REPEAT

Antigenic presentation

a. Affinity evaluation

b. Clonal selection and expansion

c. Affinity maturation 

d. Metadynamics

UNTIL “stopping condition”

• Apply mutation to each clone

• The mutation rate is inverse proportional to the affinity

• Add the new element to the population

• Evaluate the affinity for new elements and store the best 

element

CLONALG (Clonal Selection) 
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AIS = Artificial Immune System
• CLONALG (Clonal Selection) 

Initialization

REPEAT

Antigenic presentation 

a. Affinity evaluation 

b. Clonal selection and expansion 

c. Affinity maturation

d. Metadynamics

UNTIL “stopping condition”

• Some of the elements  of the population having small 

affinity are replaced with random elements
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AIS = Artificial Immune System
Applications of CLONALG

- Pattern recognition = generate “detectors” for the recognition of 

characters specified by bitmaps 

Rmk: affinity is measured using the Hamming distance
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AIS = Artificial Immune System
Applications of CLONALG

- Multi-modal optimization = identify all optima (local and global) of a 

function
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AIS = Artificial Immune System
Properties of CLONALG

- The general structure is similar to the structure of an evolutionary 

algorithm (instead of fitness is used  the affinity)

- The specific elements refer to :

- The cloning process is controlled by the value of the affinity

- The mutation probability is inverse proportional to the affinity

- The low affinity elements are replaced with random elements
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AIS = Artificial Immune System
Negative selection algorithm

- It is based on the pronciple of the discrimination between self and non-self

- The self elements are considered to be representations of the normal 

behavior of a system

- The aim of the algorithm is to generate a set of detectors which are 

different from the set S of self elements (they would be detectors of non-

self elements – would correspond to anomalous behavior)

- The algorithm will monitor the system functioning and will detect elements 

similar to non-self. 
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AIS = Artificial Immune System
Negative selection algorithm

Generating the set of detectors

System monitoring

Applications:  computer security 

(intruders detection) – limited 

applicability
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AIS = Artificial Immune System
Negative selection algorithm

J.Timmis, P. Andrews, N. Owens, E. Clark – An Interdisciplinary Perspective of 

Artificial Immune Systems, Evolutionary Intelligence, Volume 1, Number 1, 5-26, 

2008



Metaheuristics - Lecture 8 28

AIS = Artificial Immune System
aiNET Algorithm

Initialization

REPEAT

• Antigenic presentation 

a. Affinity evaluation 

b. Clonal selection and expansion 

c. Affinity maturation

d. Metadynamics

e. Clonal suppression 

• Network interactions (analysis of interactions between network 

antibodies = computation of affinity between pairs of antibodies)

• Network suppression (eliminate the antibodies which are similar to 

other antibodies)

• Diversity (insertion of random antibodies)

UNTIL “stopping condition”
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AIS = Artificial Immune System
Properties of aiNET:

• aiNET is similar to CLONALG  but it uses a suppression 

mechanism based on the affinity between the population elements

• aiNET was initially used for data clustering (but it has difficulty in 

the case of arbitrary distributed data)

• aiNET was successfully applied in solving multimodal optimization 

problems
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AIS = Artificial Immune System
aiNET - clustering
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AIS = Artificial Immune System
aiNET - multimodal optimization

Initial population

Final population
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Differential Evolution (DE)
Creators: Rainer Storn & Kenneth Price (1995)

Aim: continuous optimization

Idea: for each element of the current population:

• Randomly select 3 elements 

• The mutation is based on the computation of the difference 
between two of the three selected elements; the difference
(multiplied by a scale factor) is added to the third element. The 
obtained element is called mutant 

• The mutant element is recombined with the current element 
leading to the so-called trial element

• If the trial element is better than the current element then it 
replaces it
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Differential Evolution (DE)

Problem:  maximization of f:DRn→R
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Differential Evolution (DE)

Variants

population  theofelement best 

1y  probabilitwith ,

y probabilitwith ),()1(

*

* 321














x

px

pxxFxx
y

j

i

j

r

j

r

j

r

j

j

i














px

pNxxFx
y

j

i

j

r

j

r

j

rj

i
1y  probabilitwith ,

y probabilitwith ),1,0()(
321












px

pxxFxxFx
y

j

i

j

r

j

r

j

r

j

r

j

rj

i
1y  probabilitwith ,

y probabilitwith ),()(
54321 21

Taxonomy:  DE/base element/number of differences/crossover type

(e.g. DE/rand/1/bin, DE/rand/2/bin, DE/best/1/bin  etc.)



Metaheuristics - Lecture 8 35

Differential Evolution (DE)

Control parameters:

Scale factor (F):

- range: (0,2) 

- small values: exploitation of the search space (local search)

can lead to premature convergence 

- large values: exploration of the search space

Typical value: F=0.5                       

Crossover probability:

- small values (<0.5): appropriate for separable problems

- large values (>0.5): appropriate for nonseparable problems

Typical value:  p=0.9  (rmk:  the crossover probability is frequently 

denoted by CR)
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Differential Evolution (DE)

Adaptive DE = the parameters F and p are modified during the 

generations based on:

▪ Historical records of successful trial elements  - in this case each 

element in the population has its own values for F and p

▪ Random perturbation

▪ Selection out of a pool of possible values

Examples: 

▪ jDE (J. Brest, 2006) 

▪ JADE (Zhang & Sanderson, 2009)

▪ SHADE  (Tanabe & Fukunaga, 2013)
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Differential Evolution (DE)

jDE overview:  

▪ each element (xi) in the population has its own values for F and p 

(Fi and pi )

▪ If a trial element is successful (better than the parent) its 

parameters are preserved, otherwise they are randomly changed: 
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Differential Evolution (DE)
JADE overview:  

▪ Mutation variant:  DE/p-best = the base vector is randomly selected out 

of the best p% elements of the population

▪ The elements from a population which are replaced by better children 

are stored in an archive and the element which is subtracted (xr3) is 

selected from this archive 

▪ At each generation the parameters corresponding to each element are 

resampled using some probability distributions:

▪ Fi is generated using Cauchy(mFi,0.1)

▪ pi is generated using Normal(mpi,0.1)

▪ mF and mp are initialized with 0.5 (for all elements) and are 

computed based on averages of parameters corresponding to 

successful trial elements
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Differential Evolution (DE)
SHADE  overview:  

▪ Similar with JADE

▪ Main difference:  the adaptation rule of parameters mF and mp: instead of 

using the average of values in the archive with successful parameters a 

random value is selected from an archive which contain the averages of 

the distributions used to generate successful parameters
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Probabilistic Model Building 

Algorithms
Particularity: class of algorithms which search the solution space by estimating 

and simulating some probability distributions 

Variants: 

- Estimation of Distribution Algorithms (EDA) [Mühlenbein & Paass, 1996]

- Iterated Density Estimation Algorithms (IDEA) [Bosman & Thierens, 2000]

- Bayesian Optimization Algorithms (BOA) [Pelikan, Goldberg, & Cantu-Paz, 
1998] 

Idea: the mutation and crossover operators are replaced with 

▪ a process for the estimation of the probability distribution of selected 
elements 

▪ and a process of sampling new elements using this distribution

Remark: the sampled values should be promising elements
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Probabilistic Model Building 

Algorithms
Illustration  [M.Pelikan – Probabilistic Model Building GA Tutorial]
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Probabilistic Model Building 

Algorithms
General structure.

Step 1: Population initialization (m elements)

Step 2: REPEAT

– select m’<m elements from the current population (based on their 

fitness)

– estimate a probability distribution using the selected elements 

– sample m elements from the estimated probability distribution 

UNTIL <stopping condition>
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Probabilistic Model Building 

Algorithms
Remarks

• The main difficulty is to estimate the probability distribution 

(especially when the components of individuals are correlated)

• A simplified variant is based on the assumption that the 

components are independent; therefore the corresponding 

probabilities can be estimated separately. 

Variants based on the independence assumption:

- UMDA (Univariate Marginal Distribution Algorithm)

- PBIL (Probabilistic Based Incremental Learning)
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Probabilistic Model Building 

Algorithms
UMDA  (Mühlenbein, Paass, 1996)
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Memetic Algorithms
Creator: Pablo Moscato (1989)

Particularity: hybridization of EAs with local search techniques 

Name: “memetic” comes “meme”, a term coined by Richard Dawkins 

to specify the transfer unit of different entities (biological, cultural 

etc) between generations

Variants: Hybrid Evolutionary Algorithms, Baldwinian Evolutionary 

Algorithms, Lamarckian Evolutionary Algorithms, Cultural 

Algorithms or Genetic Local Search 
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Memetic Algorithms
General structure:

Step 1: Population Initialization

Step 2: WHILE <stopping condition>

– Evaluate the elements of the population 

– Generate new elements using the variation operators (mutation 

and crossover)

– Select a subpopulation on which are applied some local search 

operators (e.g. SA, TS etc)

Remarks:

1. The local search can be based on a set of operators – the 

operators to be applied are probabilistically selected 

2. The elements which define the local search operators can be 

evolved. 


