
Metaheuristic algorithms.  

 

Lab 6:  Multiobjective optimization. Multimodal optimization 

______________________________________________________________________________ 

 

 

1. Multiobjective optimization 

 

Multiobjective optimization means to simultaneously optimize several objective functions 

(criteria). The function to be optimized is vectorial, F:Rn->Rr, and its components can be denoted 

as follows F=(f1,f2,…,fr). 

The optimization criteria are usually conflicting, therefore the problem does not have a unique 

solution. In such a case we are looking for some trade-off solutions (called Pareto optimal) 

characterized by the fact that they cannot be improved with respect to all their components (any 

improvement with respect to one criterion leads to a decrease of quality with respect to other 

criteria).  

There are different approaches to solve such a problem. The main approaches are: 

• Aggregation methods: the multiobjective problem is transformed in a one-objective 

optimization problem by combining all optimization criteria in a single one. Thus the new 

objective function becomes: f(x)=w1f1(x)+w2f2(x)+…+wrfr(x) where w1,w2, …,wr are 

weights associated to objective functions. For each set of weights one can obtain a 

different solution. 

• Direct approximation of the Pareto optimal set: it uses a population of elements which 

will approximate the Pareto optimal set. The approximation process can be an 

evolutionary one. The main difference between multiobjective EAs and single objective 

EAs is mainly related to the selection process. In the MOEAs the selection process is 

based on the dominance relationship between the elements (see Lecture 10). 

  

 

Examples of test functions used to evaluate the performance of multiobjective algorithms are 

available at: http://en.wikipedia.org/wiki/Test_functions_for_optimization or at 

http://people.ee.ethz.ch/~sop/download/supplementary/testproblems/  

 

 

Application 1.  Let us consider the function F:[0,4]->RxR, F(x)=((x-1)2,(x-2)2). Estimate the 

optimal Pareto set and the corresponding Pareto front. 

 

Variant 1. By using the aggregation technique 

 

a) Construct the aggregated objective function: 
function y=fw(x) 
    w=0.1; 
    y1=(x-1)*(x-1); 
    y2=(x-2)*(x-2); 
    y=w*y1+(1-w)*y2; 
endfunction 

 

b) Apply an evolution strategy (for instance as implemented in SE.sci) or Particle Swarm 

Optimization, or Differential Evolution (see lab 5) to optimize the aggregated objective 

for the following values of w:  (0.1,0.2,0.3,…,0.9).  The corresponding results should be 

collected in a list. 

http://en.wikipedia.org/wiki/Test_functions_for_optimization
http://people.ee.ethz.ch/~sop/download/supplementary/testproblems/


c) Plot the points having as coordinates  the values of the objective functions computed at 

the previous step  (the plotted set of points will be illustrate an approximation of the 

Pareto front): 

 
function pareto(x) 
    f1=(x-1).^2; 
    f2=(x-2).^2; 
    plot(f1,f2,'*'); 
endfunction     

 

The function pareto should be called for the list of solutions cosntructed at step (b). 

 

Variant 2. Use the NSGA-II and MOGA algorithms implemented in SciLab (functions 

optim_nsga2 and optim_moga) to solve the same problem and plot the true and the approximated 

Pareto fronts. 

 

Exercise.  Compare the behavior of NSGA-II and MOGA for the test functions ZDT1 and ZDT3 

described at 

https://www.researchgate.net/profile/Kalyan_Deb/publication/3949503_Scalable_multi-

objective_optimization_test_problems/links/02e7e51938c309279e000000/Scalable-multi-

objective-optimization-test-problems.pdf?origin=publication_detail  

 

Hint:   exMOEA.sci 

 

2. Multimodal optimization 

 

Depending on their goal, the optimization problems can belong to one of the following 

categories: 

• Global optimization:  the aim is to find a configuration which minimizes or maximizes 

the value of the objective function (among all possible configurations in the search 

space).  

• Local optimization: the aim is to find the best configuration in the neighborhood of a 

given (initial) element. A local optimum is better than the elements in its neighborhood 

but it could be worse than the global optimum.   

• Multimodal optimization:  the aim is to find all optima (both local and global); it is useful 

when there are  several global optima and/or the local optima correspond to interesting 

configurations. The interest in identifying all optima might appear in engineering design  

(e.g. find all resonance points of a mechanical or electrical system). 

 

The identification of all optima can be done in at least two ways: 

• By iterating a local optimization algorithm (starting from different initial configurations)  

• By using a single run of a population-based algorithm which enforce the population to 

discover several niches in the search space, each niche being related to an optimum. 

 

The global optimization metaheuristics favor the populations which converge in a neighborhood 

of the optimum, such that at the end of the iterative process the population is characterized by a 

small diversity. In the case of multimodal optimization the strategy should be different, as the 

population should re-organize itself in species associated to the regions of all optima. Such a 

speciation could be achieved through explicit division of the population in sub-populations (such 

a strategy is not effective if the number of optima is unknown) or through implicit speciation (the 

https://www.researchgate.net/profile/Kalyan_Deb/publication/3949503_Scalable_multi-objective_optimization_test_problems/links/02e7e51938c309279e000000/Scalable-multi-objective-optimization-test-problems.pdf?origin=publication_detail
https://www.researchgate.net/profile/Kalyan_Deb/publication/3949503_Scalable_multi-objective_optimization_test_problems/links/02e7e51938c309279e000000/Scalable-multi-objective-optimization-test-problems.pdf?origin=publication_detail
https://www.researchgate.net/profile/Kalyan_Deb/publication/3949503_Scalable_multi-objective_optimization_test_problems/links/02e7e51938c309279e000000/Scalable-multi-objective-optimization-test-problems.pdf?origin=publication_detail


elements group themselves in species as an effect of some specific mechanisms). The most 

popular speciation mechanisms are: 

 

• Sharing:  the fitness of each element is penalized (by using a sharing function) if it 

belongs to a crowded region. 

• Crowding: the main idea is that during the selection process an element competes only 

with elements which are in its neighborhood (e.g. with the closest element) 

Example:  Crowding DE (proposed by R. Thomsen „Multimodal optimization using crowding-

based differential evolution”, CEC 2004) is different from a standard DE (see lab 5) only with 
respect to the selection step. In the standard DE, each trial element (zi) is compared only 
with the  corresponding current element (xi). In crowding DE the trial element replaces the 
element from the current population which is the closest and it replaces it if it is better. 

 Fig 1 illustrates the effect of this change in the DE selection. 

 

 
Fig. 1.  Distribution of a population with 30 elements after 500 generations. Standard DE (left) 

and crowding DE (right) 

 

Application 2.  Modify the implementation of the DE algorithm (lab 5) in order to incorporate 

the crowding-based selection and test for one-dimensional and 2-dimensional multimodal test 

functions.  Hint:  see crowdingDE.sci 

 


