
Metaheuristic algorithms.  

 

Lab 4:  Evolution strategies.  Genetic programming.   

  

 

______________________________________________________________________________ 

 

1. Evolution Strategies 

 

Evolution strategies are mainly used to solve continuous optimization problems. In the case of 

evolution strategies, the elements of the population are real vectors and the main components are:  

 

• Selection:   it is used only to select the survivors (all elements can be parents) and it is 

usually a deterministic selection based on taking the best M offsprings from the set of L 

offsprings (in the case of (M,L) strategies) or the best M elements from the joined 

population of parents and offsprings (in the case of (M+L) variants). M denotes the 

number of elements in the current population and L denotes the number of elements 

generated using recombination and mutation. 

• Recombination:  from R parents is constructed one offspring by linear (convex) 

combination. For a population of M elements are constructed through recombination M 

new elements which are further modified by applying mutation.  

• Mutation:  it is applied to all elements in the population and consists of adding a random 

value (generated according to a given distribution). 

 

Application 1. Implement a simple evolution strategy having the following characteristics: 

• Convex recombination (an offspring is computed as the average of R parents – the 

number of parents is an input parameter) 

• Mutation based on additive random perturbation relying on random values generated 

according to a normal distribution (N(0,sigma) = 0 mean, standard deviation equal to 

sigma;  sigma is an input parameter) 

• Selection of survivors: M+L variant based on truncation or tournament strategy. 

 

Test functions:  

See for instance:   

http://www-optima.amp.i.kyoto-

u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm 

 

Hint:  an example is implemented in  SE.sci 

 

Exercises: 

 

1. Test SE.sci for sphere, Griewank, Ackley, Rastrigin and Rosenbrock functions described 

in the web page http://www-optima.amp.i.kyoto-

u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm 

2. Analyze the impact of the parameter sigma on the ES performance by using values 

smaller and larger than 1. 

3. Analyze the impact of the selection type ((M+L) vs. (M,L), truncation vs tournamet) on 

the ES performance. 

 

 

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm


 

 

Application 2.  

 

Analyse the behaviour of the Covariance Matrix Adaptation algorithm (CMA-ES) in the case of 

nonseparable objective functions (the variables are correlated). 

  

Hint.  Use the CMA-ES package for Scilab (it works only for version 5.5 of Scilab) available at  

https://www.lri.fr/~hansen/cmaes_inmatlab.html#scilab  

 

Steps: 

(a) download the archive (from https://atoms.scilab.org/toolboxes/CMA-ES ) and extract the 

source files in a local folder 

(b) set the local folder as current in Scilab (using Change current directory) 

(c ) execute builder.sce and loader.sce 

(d) instantiate a cmaes object using cma_new and describe the iterative process which consists of:  

 

           (i)construct a new candidate solution (using cma_ask);  

(ii) update the parameters (mainly components of the covariance matrix) to be used during 

the nest step (using cma_tell). 

 

Exercise: 

1. Compare the results obtained using CMA-ES with those obtained using the simple evolution 

strategy in the case of Rosenbrock function (for n=2, 10, 100) 

 

2. Genetic programming 

 

The aim of genetic programming is to design in an evolutionary manner computational structures 

(arithmetical/logical expressions, classification/decision rules or even programs).  In traditional 

Genetic Programming applications (as symbolic regression) the elements of the population are 

hierarchical structures (e.g. syntactic trees). The genetic operators are adjusted to work with such 

structures. One of the main difficulties in GP is to avoid the proliferation of large structures (the 

so called bloat problem). A possible solution to this problem is to limit the depth of the trees 

generated during the evolutionary process. 

 

The most popular application of GP is symbolic regression aiming to evolve an expression which 

fits well to some data (unlike the numerical regression which aims to estimate the coefficients of 

a given model, symbolic regression estimates the model itself).  

 

 

Application 3.  Use the “rgp” R package (removed from CRAN 2018)  to find an expression 

which fits a dataset. 

 

Main steps: 

• Launch R 

• Load package “rgp”:  Packages ->Load package …  or library(“rgp”)  (if the package is 

not installed then it should be installed by  Packages-> Install package(s)…  

• Define the set of nonterminals (operators and functions) using functionSet.   

Example: setNonterminals <- functionSet("+", "*", "-","/") 

• Define the set of variables using inputVariableSet.  

https://www.lri.fr/~hansen/cmaes_inmatlab.html#scilab
https://atoms.scilab.org/toolboxes/CMA-ES


Example: setVariables <- inputVariableSet("x")  

• Define the set of constants using constantFactorySet.  

Example:  setConstants <- constantFactorySet(function() rnorm(1))  (random values 

generated using the standard normal distribution) 

• Define the test data: values which will be used to evaluate the approximation accuracy. 

Example: dateX <- seq(from = -pi, to = pi, by = 0.1) 

• Define the fitness function:  mean square error (measure of the difference between the 

values of the test function and the values corresponding to the evolved expressions). 

Example:  fitness <- function(f) rmse(f(dateX), sin(dateX))    (if the reference function is 

sinus) 

• Call the function corresponding to the evolutionary process (geneticProgramming). 

Example: 

 geneticProgramming(functionSet = setNonterminals,  

                                     inputVariables = setVariables, 

                                     constantSet = setConstants,  

                                     fitnessFunction = fitness, 

                                    stopCondition = makeStepsStopCondition(10000)) 

 

Particularities of the genetic programming implemented in “rgp”: 

• The population elements are R expressions (implemented as tree-like structures) 

• The population initialization is based on several construction strategies:  

o  “grow” (each branch in the tree will be extended until it reaches the maximal 

length or until a random event occurs)  

o „full” (all branches in the tree have the maximal length)  

o Combined variant (some elements are generated using the  “grow” strategy, 

others are constructed using the  „full” strategy) 

• The package implements the traditional crossover and mutation strategies adapted for 

trees (see slides of lecture 6) 

• There are implemented various selection variants using one or several criteria (as in 

multiobjective optimization). In the multi-criteria variant the aim is to optimize the 

quality of the result, the simplicity of the elements and the population diversity.  

 

Exercise 2:  Follow the above steps and test the influence of nonterminals on the quality of the 

results (by changing the elements of the nonterminals set).   

Hint: see for instance  SymbolicRegression_GP.r  

 

Other resources:  

http://nbviewer.jupyter.org/github/trevorstephens/gplearn/blob/master/doc/gp_examples.ipynb 

 

Homework: 

 

1. Extend SE.sci by introducing self-adaptation of the parameter s (standard deviation of the 

normal distribution used in the mutation step – see Lecture 5).  

2. Apply genetic programming (rgp package for R or start from existing Python 

implementations) to evolve a boolean expression which corresponds to the parity 

function (the parity function returns 0 if it receives an even number of variables equal to 

1 and it returns 1 if it receives an odd number of variables equal to 1). Hint:  see 

rgp_introduction.pdf 


