
Metaheuristic Algorithms.  

 

Lab 2:  Combinatorial optimization problems.  

Trajectory based local and global search:    

       Simulated Annealing 

 Tabu Search  

      

______________________________________________________________________________ 

 

1. Combinatorial optimization problems. 

 

The search space of combinatorial optimization problems is usually finite but of large size. Thus 

an exhaustive search space exploration is inapplicable.  

 

Two well-known combinatorial optimization problems, which have several practical applications 

are:  

 Travelling salesman problem (TSP) 

 Knapsack problem 

 

1. 1. Travelling Salesman Problem     

 

TSP is a well known combinatorial optimization problem asking to find the optimal route for a 

salesman who has to visit a set of n towns. It is a constrained optimization problem characterized 

by: 

 Constraints: the salesman visits each town exactly once 

 Objective function: the cost of the tour should be minimized 

 

The classical TSP is equivalent with the problem of finding an optimal Hamiltonian tour (a tour 

which visits exactly once each node and has the smallest cost) in a complete graph (there is an 

edge between any two nodes). TSP can be solved exactly for small values of n but, since the 

number of possible tours is (n-1)!/2, for large values of n there are no efficient exact methods. 

TSP belongs to the class of NP-complete problems. 

 

There are several variants of the problem:  

 Asymmetric TSP: the cost of the connection between two nodes depends on the tour 

orientation.  

 Sequential Ordering Problem – SOP:  there are additional constraints specifying that a 

given node should be visited before another one.  

 Capacitated vehicle routing problem – CVRP: find optimal tours for a set of trucks which 

have to transport products from a warehouse to different customers. The trucks have all 

the same capacity. 

 Generalized TSP: the nodes correspond to clusters of locations and there are several arcs 

between nodes. 

TSP is important not only from a theoretical point of view but also from a practical point of view 

since there are several real-world problems which can be formulated as a TSP: 

 Vehicle Routing Problem (VRP): find the optimal route for vehicles  

 Control of drilling machines which are used to construct boards for integrated circuits 

 Find shortest routes through selections of airports in the world 

 Reconstruct DNA sequences starting from subsequences (genome assembling) 

 



Other applications are listed at [http://www.tsp.gatech.edu/apps/index.html] 

 

Besides exact methods, there exist a lot of heuristic methods based on incremental improvements 

of the current tour. One of the most used heuristics for TSP is the Lin-Kernighan heuristic which 

is based on replacing some arcs of the current tour with other ones such that the total cost 

becomes smaller. The simplest case is when just two arcs are replaced (2-opt transformation) 

which is equivalent with reversing the order of visiting the nodes belonging to a subtour. 

 

Example:  Let us consider 6 nodes: A,B,C,D,E,F. If the current tour is (A,C,B,E,F,D), by 

replacing the arc (A,C) with the arc  (A,F), and the arc  (F,D) with (C,D) and by reversing the 

order of visiting the nodes B and E one obtains the tour (A,F,E,B,C,D). It is easy to see that this 

transformation can be obtained directly by reversing the subtour (C,B,E,F). 

 

Another perturbation heuristic for TSP is that based on 4 interchanges (double bridge transform) 

which transforms a route [i1..i2][i3..i4][i5..i6][i7..i8] into  [i2..i1][i4..i3][i6..i5][i8..i7]. 

 

 

 
 

 

1.2. Knapsack Problem 

 

The classical variant of the knapsack problem is:  “Let us consider a set of n objects, each one 

being characterized by a given weight and a given value. Select a subset of objects such that the 

total size of the selected objects is smaller than a knapsack capacity and the total value of the 

selected objects is as large as possible.”  

 

The search space is represented by all possible subsets of the set of n objects, thus the search 

space size is 2
n
. 

 

Real world problems which can be formulated as the knapsack problem are: 

 

 Financial portfolios construction (the aim being the maximization of the profit such that the 

amount of investment is lower than a given threshold). 

 Resource allocation (the selection of some tasks which can use a given resource such that 

the resource is not overloaded and some gain is maximized). 

 The selection of some products to be placed in a container or warehouse.  

 

 

Variants of the problem: 

 Multi-criterial case:  the aim is not only to maximize a value but optimize several 

criteria  

i1 

i2 i3 

i4 

i5 

i6 i7 

i8 



 Multi-dimensional case:  the “size”/”weight” of an object is not specified by a single 

value but by multiple values  

 Multiple knapsacks:  several knapsacks are used (this is related to the bin packing 

problem)   

 

2. Simulated Annealing (SA) 

 

2.1 Method description 

 

Simulated Annealing is a metaheuristic characterized by the fact that lower quality configurations 

may be accepted. The decision on the acceptance of such configurations is taken probabilistically, 

and the acceptance probability depends on a parameter called “temperature” (by analogy with the 

temperature of physical systems which are involved in a thermal process, e.g. annealing of 

alloys).  The probability of accepting a lower quality configuration is higher if the temperature is 

higher. 

 

 

General structure of Simulated Annealing: 

 

S=initial configuration 
T=initial value of the temperature 
Repeat 
    S’=perturb(S) 
    If accept(S,S’,T) then S=S’ 
    T=update(T) 
Until <stopping condition> 
 

The perturbation depends on the problem to be solved and the probability to accept the transition 

form a configuration S to a configuration S’ depends on the loss of quality (if the loss is small the 

acceptance probability is higher).  An example of the implementation of an acceptance rule is (in 

the case of a minimization problem):  

 

Accept(S,S’,T) 
If rand(0,1)<exp(-(f(s’)-f(s))/T) then  
   Return True 
Else  
   Return False 
 

2.2. Solving TSP using Simulated Annealing 

 

In order to solve a problem by using Simulated Annealing there are several elements to be 

established:  

 

 Solution encoding.  The natural encoding variant for TSP is the permutation: a tour 

through n nodes can be described as a permutation of order n. This encoding ensures the 

satisfaction of the constraint of visiting only once each node.  

 

Example: If the towns are numbered as follows: 1-A, 2-B, 3-C, 4-D, 5-E, 6-F then the 

route (A,C,B,E,F,D) corresponds to the permutation (1,3,2,5,6,4) 

 



 Local search mechanism (construction of a new configuration starting from the existing 

one by perturbation) The simplest mechanism is based on a  2-opt transformation: 

o Choose two random indices i and j such that 1<=i<j<=n 

o Reverse the order of elements in the permutation having indices between i and j.  

 

Example:  If the current tour is described by the permutation (1,3,2,5,6,4) and i=2, j=5 

then the new permutation will be: (1,6,5,2,3,4) 

 

 Acceptance probability. The probability to accept a configuration S’ obtained from the 

configuration S can be computed by using the Boltzmann distribution: 

 

P(S’|S)=min{1,exp(-(cost(S’)-cost(S))/T(k)} 

 

where cost(S) is the cost of configuration S and T(k) is a control parameter (temperature).  

 

 

 Cooling schedule.  If T(k) denotes the temperature corresponding to the iteration k then 

the value corresponding to the next iteration can be computed as follows: 

 

o T(k+1)=T(0)/log(k+c), c being a constant 

o T(k+1)=T(0)/k 

o T(k+1)=a T(k),  with a denoting a value smaller but close to 1 (e.g. a=0.99) 

 

Remark.  The initial value of the temperature (T(0)) should be large enough to allow the  

transition between any two configurations.  

 

 Stopping condition. The stopping criterion can be related to the value of the temperature 

(stop when the temperature is low enough), to the number of iterations (stop after a given 

number of iterations) or to the value of the objective function (cost of the tour).  

 

Application 1. Implement the Simulated Annealing for TSP. Use test instances from 

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ 

 

Hint. A variant is implemented in  SA_TSP.sci  

 

Calling example: SA_TSP(10000,0.001) 

 

 

Exercises: 

 

1. Write a Scilab function to read data from *.tsp files (downloaded from TSPLib) and 

analyze the behavior of the algorithm for the problems: eil51.tsp, eil76.tsp, eil101.tsp 

2. Test the algorithm for each of the cooling schedules mentioned above.  

3. Modify the function which compute the cost of a tour such that the distance between two 

nodes is computed only once (hint: store the distances in a matrix) 

 

 

 

 

 

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/


2.3 Solving the knapsack problem using Simulated Annealing 

 

a) Solution encoding:  binary vector 

 si=1 if object  i is selected 

 si=1 if object  i is not selected 

b) Local perturbation:  change the value of a randomly selected component: si= si -1 

c) Evaluation of a configuration:   a common variant is to include in the objection function 

the degree of constraints satisfaction (penalty function technique) – the value of a 

configuration which does not satisfy the constraint is penalized by a term which is 

proportional with the amount by which the constraint is violated (e.g. the weight which 

overpasses the knapsack capacity). 

 























n

i

ii

n

i

ii

n

i

ii

n

i

ii

n

i

ii

CswswCsv

Cswsv

sV

111

11

 if))(1(

 if

)(



 

 

 The parameter λ belongs to (0,1) and allows the control of the relative importance of the 

constraints with respect to the optimization criterion.  

 

Application 2.  Implement a Simulated Annealing algorithm for a knapsack problem. Test data 

can be found at http://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/knapsack_01.html 

 

 

Hint. An implementation variant is described in SA_knapsack.sci.   

 

 

3.  Tabu Search 

 

3.1. Method description 

 

Tabu Search is a metaheuristic based on an iterated local search which relies on the usage of a list 

of already visited configurations which become “forbidden” (tabu) at least for a given number of 

iterations. 

 

General structure of  Tabu Search: 

 

S=initial configuration 
Sbest=S 
TabuList=[]    // the tabu list is initially empty 
Iter=1 
Repeat 
    S=perturb(S,TabuList) 
    If better(S,Sbest) then Sbest=S endif 
    iter=iter+1 
Until iter<=iterMax 
 

The perturbation of the current configuration is based on the identification (in its neighborhood) 

of a better configuration which is not in the tabu list. Once a configuration is chosen it is inserted 

http://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/knapsack_01.html


in the tabu list. The tabu list is implemented as a circular queue (when the maximal size of the list 

is reached the first element in the list is removed).  

  

 

Perturb(S,TabuList) 
Sbest=S 
For <for each element  S’ from the neighborhood N(S)> 
   If  better(S’,Sbest) and <S’ is not in TabuList> then 
       Sbest=S’ 
   Endif 
Endfor 
S=Sbest 
<update the TabuList by adding S> 
Return S, TabuList 
 

The function better(S’,Sbest)  checks if configuration S’ is better than configuration Sbest. Unlike 

Simulated Annealing which uses directly the value of the objective function to compute the 

acceptance probability, in Tabu Search it is enough to decide which of the configurations is 

better. This means that the constraints can be analyzed directly, without using the penalty method. 

 

 

3.2.  Solving the knapsack problem using Tabu Search 

 

a) Solution encoding:  binary vector 

b) Local perturbation:  change the value (0->1,1->0) of a randomly selected component 

c) Tabu list structure: it contains candidate solutions (binary vectors) 

d) Comparison between two candidate solutions:  

 If both S and S’ are feasible then the configuration having a higher value is better.  

 If only one of the solutions is feasible then it is better than the other one (a feasible 

solution is always better than an unfeasible one).  

 If none of the solutions is feasible then that which violates less the constraint is 

better  

 

Application 3.  Implement a Tabu Search algorithm to solve the knapsack problem. 

 

Hint:  an implementation variant is in  TS_Knapsack.sci 

 

Exercise: Analyze the influence of the maximal size of the tabu list on the algorithm behavior.  

 

 

Homework.   

a) Adapt the implementation of the Tabu Search algorithm to solve the travelling salesman 

problem  

b) (optional) Modify the implementation such that the tabu list contains features of 

candidate solutions or applied transformations instead of full candidate solutions (see 

Feature-Based TS, [S. Luke, Essential of Metaheuristics, pg 27]) 



Appendix:   

 

1. Random values in  SciLab 

 

Values corresponding to random variables with various distributions can be generated using the 

grand function 

 

This function returns a mxn matrix of random values.  The typical call is: 

 

grand(m,n,”<distribution type>”, <distribution parameters>) 

 

Examples: 

 

1. Uniformly distributed integer random values belonging to {inf,inf+1,inf+2,…,sup} 

 

grand(m, n, "uin", inf, sup) 

 

2. Uniformly distributed real values belonging to [inf,sup) 

 

grand(m, n, "unf", inf, sup) 

 

3. Random values corresponding to a normal distribution with mean m and standard 

deviation s 

 

grand(m, n, "nor", m, s) 

 

Another useful function is that which generates n random permutations of a vector (vect): 

 

grand(n, "prm", vect) 

 

2. Reading text files   

 

The text files containing comma separated  values (csv type)  can be read using    

csvRead.  The simplest calling variant is csvRead(‘file name’) . When a different 

separator (not comma) is used the one can specify csvRead(‘file name’,’separator’). 

 

Other functions for file reading:  read,  fscanfMat 

 


