
Hyperheuristics: Recent Developments

Konstantin Chakhlevitch1 and Peter Cowling2

1 CASS Business School, City University, London EC1Y 8TZ, UK
Konstantin.Chakhlevitch.1@city.ac.uk

2 Department of Computing, University of Bradford, Bradford BD7 1DP, UK
P.I.Cowling@Bradford.ac.uk

Keywords: Hyperheuristics, multilevel heuristics, greedy heuristics, learning.

1 Introduction

Given their economic importance, there is continuing research interest in provid-
ing better and better solutions to real-world scheduling problems. The models
for such problems are increasingly complex and exhaustive search for optimal
solutions is usually impractical. Moreover, difficulty in accurately modelling the
problems means that mathematically “optimal” solutions may not actually be
the best possible solutions in practice. Therefore heuristic methods are often
used, which do not guarantee optimal or even near optimal solutions. The main
goal of heuristics is to produce solutions of acceptable quality in reasonable time.
The problem owners often prefer simple, easy to implement heuristic approaches
which do not require significant amount of resources for their development and
implementation [12]. However, such individual heuristics do not always perform
well for the variety of problem instances which may be encountered in practice.
There is a wide range of modern heuristics known from the literature which are
specifically designed and tuned to solve certain classes of optimisation problems.
These methods are based on the partial search of the solution space and often
referred as metaheuristics.

Although tailor-made metaheuristic algorithms have proved to be very effec-
tive for solving various combinatorial optimisation problems, their application
is usually limited to particular problem domains. Metaheuristics incorporate in-
formation specific for the problem and “require extensive knowledge in both
the problem domain and appropriate heuristic techniques” [21]. Therefore such
methods are often quite expensive to implement. Metaheuristic approaches that
perform well on a particular real-world problem, may not work at all or may
produce very poor solutions for other problems or even for other instances of
the same problem. Such limitations can become especially critical in situations
when problem data and business requirements change frequently over time. This
can make a metaheuristic even more expensive because it should be properly
maintained.

C. Cotta et al. (Eds.): Adaptive and Multilevel Metaheuristics, SCI 136, pp. 3–29, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

4 K. Chakhlevitch and P. Cowling

Burke et al. in [12] note that many businesses are interested in “good enough-
soon enough-cheap enough” solutions to their problems provided by easy-to-use
and robust heuristic approaches rather than optimal or near optimal solutions
achieved at the expense of the development of customised problem-specific meth-
ods such as metaheuristics and possibly using greatly simplified models. This is a
primary motivation for development of generalised, domain-independent heuris-
tic search techniques which have recently become known as hyperheuristics and
have received an increased attention in the research community. The purpose
of hyperheuristics is not to compete with state-of-the-art problem-specific ap-
proaches, but to provide a general framework able to deliver solutions of a good
quality for a wide range of optimisation problems.

Another motivation for development of hyperheuristics comes from the fact
that performance of different heuristics may vary significantly depending on the
specific characteristics of the problem and problem instance under consideration.
Moreover, individual heuristics may be particularly effective at certain stages of
the solution process (i.e. when certain areas of the solution space are being
explored) while performing poorly at any other stages. Therefore, it is fair to
expect that several heuristics combined in a proper way may produce better
solutions then if they are applied separately. A hyperheuristic can be defined as
a heuristic which chooses heuristics [61]. In other words, a hyperheuristic oper-
ates in a space of heuristics choosing and applying one low level heuristic from
a given set at each decision point. This is where the fundamental difference be-
tween hyperheuristics and metaheuristics lies since a metaheuristic is a heuristic
which controls the search in a space of solutions performed by a single low level
heuristic..

The term “hyperheuristic” was first introduced by Cowling et al. in [21]. They
defined a hyperheuristic as an “approach that operates at a higher level of ab-
straction than metaheuristics and manages the choice of which low-level heuristic
method should be applied at any given time, depending upon the characteristics
of the region of the solution space currently under exploration”. This means that
the hyperheuristic itself does not search for a better solution to the problem. In-
stead, it selects at each step of the solution process the most promising simple
low-level heuristic (or combination of heuristics) which is potentially able to im-
prove the solution. On the other hand, if there is no improvement, i.e., a locally
optimal solution is found, the hyperheuristic diversifies the search to another
area of the solution space by selecting appropriate heuristics from the given set.
Low-level heuristics usually represent the simple local search neighbourhoods or
the rules used by human experts for constructing solutions. However, it is also
possible that more complex heuristics such as metaheuristics can be considered
at a lower level. All domain-specific information is concentrated in the set of
low-level heuristics and the objective function. Hyperheuristics do not require
knowledge of how each low-level heuristic works or the contents of the objective
function of the problem (other than the value returned). It only needs to know
the direction of the optimisation process (maximising or minimising) and anal-
yses the value of one or more objective functions and, sometimes, the amount of

Hyperheuristics: Recent Developments 5

CPU time required to perturb the solution, which are returned by the low-level
heuristic after its call.

Hyperheuristics have received much attention over the last 5 years or so and
will likely remain a hot research topic for the near future. The first paper on
hyperheuristics was presented by Fisher and Thompson [30] in 1961, but there
was no other work in this area published between then and the 1990’s, when a
few related approaches were developed. The latter methods were mainly based
on genetic algorithms which used indirect chromosome representation so that the
chromosome encoded the method to solve a problem instead of the solution of a
problem. However, the motivation for such methods was rather to overcome the
difficulties related to solution encoding and maintaining the solutions feasibility
than to develop general solution techniques able to tackle different optimisation
problems. Nevertheless, the ideas used in these approaches created the basis
for recent developments in hyperheuristics. We shall discuss them later in this
chapter.

Based on the the original definition introduced by Cowling et al. [21], we shall
use the following criteria to define a hyperheuristic:

1. A hyperheuristic is a higher level heuristic which manages a set of low level
heuristics, of cardinality greater than one.

2. A hyperheuristic searches for a good method to solve the problem rather
than for a good solution.

3. A hyperheuristic uses only limited problem-specific information (ideally this
information includes only the number of low level heuristics for the problem
and objective function(s) to be maximised or minimised).

The third criterion is the most crucial one since it defines the level of generality
of the hyperheuristic approach as well as its potential robustness across different
problem domains. Many techniques considered in this chapter match to the first
two statements and fail to comply to the third one.

From our point of view, hyperheuristic approaches developed so far can be
classified into the following categories: hyperheuristics based on the random
choice of low level heuristics (Section 2), greedy and peckish hyperheuristics
(Section 3), metaheuristic-based hyperheuristics (Section 4) and hyperheuristics
employing learning mechanisms to manage low level heuristics (Section 5). We
will also consider other generic solving methods which are closely related to
hyperheuristics (Section 6).

2 Hyperheuristics Based on Random Selection

Hyperheuristics based on the random choice of low level heuristics from a given
set have been widely represented in the literature. Table 1 provides a list of the
approaches which fall in this class.

The “random” hyperheuristic is the oldest, the simplest, and easiest to imple-
ment of the family of hyperheuristics. It randomly selects one low level heuristic
from a given set at each decision point. The selected low level heuristic is always

6 K. Chakhlevitch and P. Cowling

Table 1. Hyperheuristic methods based on random selection of low level heuristics

Approach Papers Details

Pure random Cowling et al. [21], [23], [24] Uniform selection of LLH∗; either all LLH

Kendall and Mohamad [46] or only improving LLH are accepted

Bai and Kendall [4]

Burke et al. [9]

Cowling and Chakhlevitch [18]

Storer et al. [62]

Random descent Cowling et al. [21], [22] Improving LLH is applied repeatedly until

Soubeiga [61] it does not improve the solution

Unbiased random Fisher and Thompson [30], [31] Multistart process where probabilities of

process LLH selection are adjusted after each run

Monte Carlo Ayob and Kendall [3] Probability of accepting LLH is a function

Bai and Kendall [4] of the difference between old and new

Soubeiga [61] objective values; includes simulated

Chakhlevitch [16] annealing

Random with Kendall and Mohamad [45], [46] Acceptance rules are based on the distance

deterministic between two solutions; includes Great

acceptance Deluge and record-to record-travel methods
∗LLH stands for low level heuristic(s).

applied, even if it does not produce any improvement or worsens the current
solution of the problem.

Pure random hyperheuristics have been tested by many researchers for differ-
ent optimisation problems including the sales summit scheduling problem [21],
the project presentation scheduling problem [23], the nurse rostering prob-
lem [24], the channel assignment problem in mobile communications [46], the
shelf space allocation problem [4], university course timetabling problem [9], the
trainer scheduling problem [18] and job shop scheduling problem [62]. Note that
pure random approach is usually used as a point of comparison for the perfor-
mance of individual low level heuristics (where it is usually better) or other,
more intelligent hyperheuristic methods (where it is usually worse).

The main disadvantage of a purely random approach is that the quality of
the solution obtained depends on the chance of selecting a “good” sequence of
low level heuristics. In order to avoid the search becoming trapped into poor
regions of the solution space, modifications to the pure random approach are
needed. These modifications may concern the rule of accepting non-improving
low level heuristics during the hyperheuristic run or the way of applying low
level heuristic at each decision point. In [21] and [22], Cowling et al. compare
different versions of random hyperheuristics applied to a practical problem of
scheduling meetings for a sales summit. One version of hyperheuristic applies
a randomly selected low level heuristic only once at each iteration (simple ran-
dom hyperheuristic), another one conducts simple local search by applying a

Hyperheuristics: Recent Developments 7

randomly selected low level heuristic in a descent fashion, i.e. the low level heuris-
tic is reapplied as long as it continues to produce an improvement to the current
solution (descent hyperheuristic). The results of experiments show that descent
hyperheuristics perform better than simple versions. In addition, two acceptance
rules are considered: accept all low level heuristics or only improving ones. Note
that the “only improving” strategy may cause the hyperheuristic to get stuck in
a local optimum at the early stages of the search when there is no a single low
level heuristic in the set which is able to improve the current solution. This sit-
uation is likely to happen when the number of low level heuristics used is small.
The natural way to overcome the problems related to both extreme acceptance
strategies is to allow non-improving low level heuristics to be applied with some
probability.

In their seminal work, Fisher and Thompson [30], [31] use the term “unbiased
random process” for their random hyperheuristic. They consider a classical job
shop scheduling problem [7] and just two simple priority rules to select the next
job to be scheduled at each machine. In [31], the sequences of rules constructed
by the unbiased random process, produced better schedules than both rules in
the set applied separately. Fisher and Thompson [31] use reinforcement learning
techniques [63] in order to determine the probabilities of selecting specific deci-
sion rules at any point of the scheduling process. Each time a new sequence of
rules is generated, the resulting schedule produced by this sequence is compared
to the standard schedule (which is usually the best schedule found so far). If
the current schedule is better than the standard, it becomes a new standard,
otherwise the standard schedule remains the same. Then the points of difference
in the sequences of rules for both schedules are determined and the probabilities
of selecting rules at these points are adjusted and used for the next schedule
generation. The results reported in [31] show an improved average performance
of the method with learning if compared to a purely random approach. Fisher
and Thompson conclude that probabilistic learning approach might be more ef-
fective if a larger number of decision rules is combined rather than just two rules
considered in [31].

A number of hyperheuristics recently presented in the literature are based on
Monte Carlo methods. A general Monte Carlo method [33] uses probability for
accepting a new non-improving solution which decreases when the difference δ
in objective values between the new and the current (best) solutions increases
(for minimisation problem). In the context of a hyperheuristic, the probability of
accepting non-improving low level heuristic is considered. This probability can
be computed in different ways. Ayob and Kendall in [3] apply a Monte Carlo
hyperheuristic to optimise electrical component placement on a printed circuit
board. The set of 6 low level heuristics represents different versions of simple
swap moves. The authors consider linear and exponential functions of δ to de-
fine acceptance probabilities for non-improving low level heuristics. The best
results are achieved for an exponential function where time factors are taken
into account for calculating probabilities, i.e. an acceptance probability at any
decision point depends not only on δ, but on the time elapsed since a start of

8 K. Chakhlevitch and P. Cowling

a hyperheuristic and on the number of consecutive non-improving iterations.
Such a method for calculating probabilities is similar to that used in another
approach from the Monte Carlo family, simulated annealing [1], where the accep-
tance probability is a function of δ and control parameter (temperature) which
gradually decreases as the number of iterations grows. Bai and Kendall in [4]
develop a simulated annealing based hyperheuristic to solve a shelf space alloca-
tion problem. Combining 12 low level heuristics, their hyperheuristic approach
outperforms two versions of simulated annealing metaheuristic and produce high
quality results for different problem instances. Strong performance of simulated
annealing based hyperheuristics for a sales summit scheduling problem and for
a trainer scheduling problem are reported by Soubeiga in [61] and Chakhlevitch
in [16], respectively.

Another example of random hyperheuristics are hyperheuristics based on the
variants of Great Deluge algorithm [27], considered by Kendall and Mohamad
in [45] and [46]. A Great Deluge hyperheuristic randomly selects a low level
heuristic at each iteration and applies it if the objective value returned by the
low level heuristic is better than some specified threshold level. The level is ini-
tially set to the objective value of the starting solution and then adjusted after
each iteration, i.e. it decreases (for minimisation problems) at a fixed rate [45].
This strategy allows non-improving moves to be accepted frequently at the early
stages of a hyperheuristic run and very occasionally towards the end. In [46],
another method to control accepting non-improving low level heuristics is used:
a low level heuristic is accepted only if its returned objective value is reasonably
close to the objective value of the current solution. This is implemented by intro-
ducing a parameter which represents the maximum possible distance between
two solutions. Both hyperheuristics produce results of a good quality for the
channel assignment problem (see [45] and [46]).

Random hyperheuristics are simple and fast, and can be easily implemented
and applied to any optimisation problem. The results achieved by basic random
hyperheuristics can be used as benchmarks for evaluating other hyperheuris-
tic approaches. Hybridisation with more advanced techniques for accepting low
level heuristics make random hyperheuristics competitive with other approaches.
This is probably the case since the outcome of applying each low level heuristic
depends on effectively random factors and their behaviour at different decision
points is difficult to predict.

3 Greedy and Peckish Hyperheuristics

A basic greedy hyperheuristic simply selects and applies at each decision point
the low level heuristic which produces the largest improvement to the current
objective value (or the smallest deterioration if no improving low level heuristic
exists at some iteration). Two versions of the greedy strategy can be used: one
accepts only improving low level heuristics and another allows non-improving
low level heuristics to be applied. The second version is advantageous since
it prevents a hyperheuristic from stopping too early when no improving low

Hyperheuristics: Recent Developments 9

level heuristic is available in the set. Note that a greedy hyperheuristic requires
preliminary evaluation of each low level heuristic in the set in order to select
the best one which makes it much slower than a hyperheuristic based on the
random choice. Greedy hyperheuristics are considered by Cowling et al. [21] –
[24] and by Cowling and Chakhlevitch [18], [19] and their results are mainly used
as benchmarks for other methods.

The main disadvantage of a greedy hyperheuristic is its limited ability to ef-
fectively explore the search space leaving many regions with potentially strong
solutions unvisited. To overcome problems associated with local optima, Cowling
and Chakhlevitch [18], [19] develop a group of “peckish” hyperheuristics which
combine greedy and random mechanisms for managing the choice of low level
heuristics. A peckish hyperheuristic randomly selects a low level heuristic from
the candidate list of the “best” (not necessarily improving) ones. The length
of the candidate list may be adjusted in order to achieve a good ratio between
intensification and diversification in the search. The authors consider four ver-
sions of peckish hyperheuristics using both static and dynamic candidate lists
and apply them to the trainer scheduling problem

Note that peckish hyperheuristics may be particularly useful when a large
set of low level heuristics is used since they present a scalable method capable
of handling any number of low level heuristics. In [18] and [19], the authors
present a generic idea for constructing a large set of low level heuristics for com-
plex little-studied optimisation problems. For such problems, there is no obvious
choice of low level heuristics and traditional neighbourhoods (swap, insert or
replace moves) are not easily applicable. Tackling the real-world trainer schedul-
ing problem, Cowling and Chakhlevitch show how a set of low level heuristics
can be formed by combining simple selection rules for events and resources. See
also [16] for more details.

Greedy and peckish hyperheuristics can be readily applied for different opti-
misation problems due to their simplicity and high level of generality. However,
their slow speed makes them unfavourable for the problems where the time to
construct solutions is a crucial factor.

4 Metaheuristic-Based Hyperheuristics

A conventional metaheuristic is a local search based method which operates
in a solution space of the problem and employs some strategy to escape local
optima. Taking into account a proven record of successful applications of meta-
heuristics to solving complex real-world optimisation problems, the question of
how effectively metaheuristics can perform the search over a heuristic space is
of a great research interest. Various metaheuristic approaches and their hybrids
have been tested as a high level heuristic selectors in the last few years and we
refer to them as metaheuristic-based hyperheuristics in this section. We start
with hyperheuristics based on genetic algorithms (GAs) which have created the
foundation for current research in hyperheuristics.

10 K. Chakhlevitch and P. Cowling

Table 2. Hyperheuristics based on genetic algorithms

Papers Details

Fang et al. [28] Indirect GA with a block structure of the chromosome;

Hart et al. [42], [43] each block contains combination of LLH and domain-

specific information

Norenkov and Goodman [55] The length (or dimensions, in case of matrix representation)

Dorndorf and Pesch [25] of a chromosome is determined by the value(s) of problem-

Hart and Ross [41] specific parameter(s)

Terashima-Maŕın et al. [64] LLHs performing different actions are combined

Hart and Ross [41] in the chromosome

Cowling et al. [20] A chromosome determines a sequence of LLHs and the order of

Han et al. [39] their application; the length of the chromosome is either fixed

Han and Kendall [37], [38] or adaptively adjusted

Ross et al. [59] A chromosome encodes characteristics of the problem instances

together with associated LLHs

4.1 GA-Based Hyperheuristics

Early efforts to search for an effective solution method for a problem rather
than for a good solution are related to the development of GAs with indirect
chromosome encoding. A chromosome in a traditional GA encodes a solution to
the problem directly (by means of binary strings, permutations, etc.). However,
the solutions to many real-world problems have a very complex structure which
makes the direct encoding extremely difficult. The other disadvantages of direct
encoding are a large length of the chromosomes for large problems and the need
of specific repair operators to maintain the feasibility of solutions. A number of
indirect GAs developed in 1990s were aimed to overcome these limitations.

In indirect GAs each chromosome represents the way a solution is constructed
rather than the solution itself. In [64], the chromosome represents a sequence of
heuristics to be applied to the initial solution. The ith gene of the chromosome
encodes the heuristic number in the set of possible heuristics and indicates that
this heuristic will be applied at the ith step of generating a new solution. Note
that a chromosome in an indirect GA may also encode the order in which the
(single) heuristic is applied, but we do not consider such an approach in this
review. Table 2 provides a summary of the methods which can be classified as
GA-based hyperheuristics.

The idea of indirect encoding was first implemented by Norenkov [54] for a
scheduling problem connected with the CAD system hardware design and by
Fang et al. [28] for an open shop scheduling problem. Fang et al. [28] use a
set of eight simple dispatching rules as low level heuristics. The chromosome is
organized as a sequence of pairs of genes. The first gene in each pair represents
the heuristic and the second one represents the uncompleted job whose operation
will be scheduled by applying this heuristic. The results produced by the GA

Hyperheuristics: Recent Developments 11

are very close to the best previously found for the most of the benchmark open
shop problems and even better for some instances.

Another successful application of indirect GA is reported by Hart et al. [42],
[43]. They present a GA-based approach to tackle the real-world scheduling
problem of a chicken processing company. The problem is heavily constrained and
required several days of work of a human expert to produce a practical schedule.
The goal is to schedule chicken catching squads and lorries to deliver a set of
orders to the factories to ensure that the factories will be supplied with the birds
continuously throughout the day. The problem is decomposed into two stages and
two separate GAs are implemented in each stage respectively. We mention here
only the first one, an assignment GA, which performs the assignment of tasks
to squads. An assignment GA uses an indirect chromosome representation thus
evolving an assignment strategy and then applying that strategy to construct a
schedule. The strategy incorporates the combinations of two heuristics for each
order: one heuristic for splitting the order into tasks and the second heuristic
for assigning the tasks to squads. The chromosome consists of four sections.
The first section contains problem specific information, expressing certain fixed
criteria which must be satisfied by every solution. Including such information
into the chromosome allows the reduction of the search space. The second section
contains the permutation of the factory orders, i.e. the sequence in which the
orders will be processed by the strategy. The third and the fourth sections of the
chromosome specify for each order the splitting and the assignment heuristics
respectively. The GA uses specially designed crossover and mutation operators
for each section of the chromosome. An assignment GA in [42], [43] produces
practical schedules with almost all constraints satisfied.

Norenkov and Goodman in [55] further develop the approach introduced in
[54] and refer to it as a Heuristic Combination Method (HCM). In [55], HCM is
applied to solve multistage job-shop scheduling problems. The authors consider
two parts of a process of schedule synthesis, specifically job ordering and the
assignment of the jobs to servers, and define a set of simple heuristic rules for
each part. The composition of the rules for both parts forms the set of heuristics,
and the objective is to find the optimal sequence of application of these heuristics.
The chromosome is represented as a matrix of size q ∗ N,where N is the number
of jobs and q is the number of successive service stages each job passes during
its processing. The schedule is constructed consecutively for each service stage
by adding one job in each step. The element (i, j) of the matrix refers to the
heuristic which is applied on the jth step of schedule synthesis at the ith stage
of service. The jth step here means that j − 1 jobs have been already scheduled
and job j is due to be placed into the schedule. Given such a representation,
the authors define specific horizontal and vertical crossover operators (crossover
applied to rows and columns of the matrices respectively). They present several
evolutionary algorithms based on the above chromosome representation which
have been successfully applied to some benchmark job-shop scheduling problems.

A GA developed by Dorndorf and Pesch [25] evolves the sequence of low level
heuristics for minimising makespan in job shop scheduling problems. The set

12 K. Chakhlevitch and P. Cowling

of low level heuristics consists of 12 well-known priority rules. A chromosome
consists of n−1 genes, where n is the number of operations to be scheduled, and
each gene encodes the priority rule to be applied to schedule one operation. The
crossover operator exchanges substrings of priority rules in two chromosomes
and the mutation operator replaces the rule in the randomly selected position of
the chromosome with another, randomly selected rule. Although the indirect GA
loses to other heuristic methods (such as the Shifting Bottleneck heuristic [2], a
conventional GA and simulated annealing) both in solution quality and in speed,
it is easy to implement and it shows robustness to problem changes. Hart and
Ross [41] extend the approach presented in [25] and develop the method they
call HGA (heuristically-guided GA) to solve a dynamic job shop problem. Each
gene of a chromosome in HGA now encodes a pair (Method, Heuristic) where
Method represents one of the two algorithms used to calculate the conflicting
set of operations at each iteration (Dorndorf and Pesch in [25] consider only one
such algorithm) and Heuristic is one of the 12 priority rules used to select an op-
eration from the conflicting set. Hart and Ross show that switching between two
scheduling methods during schedule construction is beneficial and their method
outperforms other heuristics for many instances.

Terashima-Maŕın et al. [64] investigate the effectiveness of an indirect GA ap-
plied to a real-world examination timetabling problem. The authors consider the
performance of Brelaz’s well-known graph-colouring algorithm [6] combined with
heuristics for handling different types of problem constraints. The performance
varies for the different problems from the test set and depends on the heuristics
chosen. Since there is no evidence which combination of heuristics will be the
most suitable for solving any particular problem, Terashima-Maŕın et al. develop
an indirect GA to evolve combinations of heuristics and find the best one for
any instance. They specify three different algorithms for solving graph colouring
problems and two sets of heuristics for decision making. At the first decision
point the nodes of the graph are ordered for the colouring algorithm (variable
ordering) and at the second decision point, the order algorithm will select the
colours for a node (value ordering). The chromosome encoding is the 10-position
array of characters which represent two combinations of graph colouring method
with variable ordering and value ordering heuristics, the condition for switching
from the first combination to the second, the parameter for the specific condition,
and the indicator of the method of handling the constraints. The graph colouring
methods include Brelaz’s algorithm [6] and two procedures which involve back-
tracking and forward checking mechanisms respectively. The purpose of the two
combinations of the methods and the heuristics in the chromosome is to han-
dle the situations when the first combination becomes inefficient (performs too
many backtracking steps, exceeds time limit) or just to mix two combinations
in the hope of obtaining a better solution. The solutions obtained for all tested
problems by applying GA with such chromosome representation are superior to
those produced by Brelaz’s graph colouring algorithm (see [64]).

The GA-based approaches considered so far are rather domain-specific. Indi-
rect GAs are designed to solve different instances of the particular problems and

Hyperheuristics: Recent Developments 13

are shown to be highly efficient. Since some portion of problem-specific infor-
mation is usually injected into a chromosome (which, in turn, leads to problem-
specific genetic operators), such methods can not be used for different problems.
However, the indirect GA approaches described above are generalised in some
recent work.

In [20], Cowling et al. develop a GA-based hyperheuristic approach, called
hyper-GA, and test it on a simple model for a real-world trainer scheduling
problem. An indirect GA operates at a higher level and evolves a sequence of
low-level heuristics from a given set. The low-level heuristics are then applied in
the order they appear in the sequence to find a good solution of the problem in-
stance. The set of low-level heuristics contains twelve problem-specific heuristics
based on combinations of adding, swapping, and deleting events in the schedule.
The chromosome for a hyper-GA represents a sequence of integers corresponding
to low-level heuristics. The length of the chromosome is equal to the number of
low-level heuristics in the set so that each heuristic could be possibly present
exactly once in the chromosome. Thus, each individual in a hyper-GA popula-
tion encodes a sequence of low-level heuristics and indicates which heuristics to
apply and in what order. A hyper-GA uses a one-point crossover operator and a
mutation operator which replaces the low level heuristics in randomly selected
positions of the chromosome by other low level heuristics from the set. The
hyper-GA presented in [20] produces significantly better solutions than individ-
ual low-level heuristics and outperforms the direct GA and memetic algorithm
for all 5 instances of the problem both in the quality of the solutions and CPU
time used. The analysis of the behaviour of hyper-GA reveals that the hyper-
heuristic tends to change the range of low-level heuristics in chromosomes as
the search progresses selecting more often the heuristics which lead to improved
solutions.

Han et al. further improve hyper-GA in [39]. Since the optimal length of
the chromosome for hyper-GA is unknown, they developed a mechanism that
adaptively changes the chromosome length during the search. This mechanism
allows hyper-GA to evolve the best combinations of low-level heuristics which
may contain different number of heuristics. Indeed, in some cases it is reason-
able to remove from the sequence the heuristic (or heuristics) which worsen the
current solution hence making the chromosome shorter. In other situations, in-
sertion of “good” heuristics into the chromosome may be necessary so that the
chromosome becomes longer. The idea of the adaptive length chromosome in
hyper-GA is embodied in [39] by introducing specific crossover and mutation
operators which operate with groups of genes. A similar approach with vari-
able length of the chromosomes is implemented by Han and Kendall in [37],
where they develop a strategy which decides whether to make the chromosome
longer or shorter (by means of applying different mutation operators) in order to
maintain its length consistent with the average length of the chromosomes over
previous generations. Another version of hyper-GA is considered in [38], where
the length of the chromosome is regulated by making poorly performing genes
tabu for a number of generations. Note that all versions of hyper-GA maintain

14 K. Chakhlevitch and P. Cowling

a high level of generality and have the potential to be applicable to a range of
problems with only minor modifications. However, hyper-GA has been applied
only to a simplified version of the trainer scheduling problem and no results have
been reported for other problems.

Ross et al. [59] propose an interesting GA-based hyperheuristic approach
where the fitness of a chromosome is determined by its ability to successfully
solve different instances of the same problem. The approach is implemented
for a one-dimensional bin-packing problem where many benchmark instances
are available from the literature. A chromosome consists of a number of blocks
(genes). Each block contains information about the instance of the problem state
and low level heuristic associated with this instance. For a bin-packing problem,
the information related to the problem state represents the proportions of the
items of different sizes remaining to be packed. The genetic operators perform
crossovers and mutations either at block level or inside blocks. Each chromo-
some from the population is tested on different problems from a training set in
order to calculate its fitness. At every stage of a bin-packing process, the current
state of the problem is compared against the instances encoded in the blocks of
the chromosome, thus determining the block representing the closest instance.
The low level heuristic associated with the latter instance is then applied to the
actual problem state. The fittest chromosome after a specified number of gen-
erations is used to solve problems from a test set. Ross et al. [59] report that
their GA-based approach achieves optimal solutions for most of the problem in-
stances considered and outperforms each low level heuristic applied separately.
Although the idea used in [59] can be applied when considering other problems,
the approach has some significant limitations. First, it requires many problem
instances to be included into training and test sets which are often unavailable
for real-world problems. Second, it can be much more difficult to encode the
problem state instance for problems with complex structures than for a rela-
tively simple bin-packing problem, as well as to define a measure of distance
between different problem states. Finally, the approach might be expected to be
very slow for a range of complex real-world optimisation problems.

4.2 Other Metaheuristic-Based Hyperheuristics

A proven record of successful applications of GA-based hyperheuristics to various
problems has founded an interest in using other metaheuristics as higher level
heuristic selectors. Most of the relevant approaches have been developed over
very recent years. The exception is an early publication of Storer et al. [62]
where the authors study the effects of performing the search in two different
search spaces which are alternatives to the commonly used solution space. The
list of papers discussing hyperheuristics based on popular metaheuristic methods
is given in Table 3.

In [62], Storer et al. consider minimising makespan in a job shop scheduling
environment. They define two search spaces namely problem space and heuristic
space as a basis for local search algorithms. The idea of the search in a problem
space is to apply a base heuristic (for example, simple SPT dispatching rule

Hyperheuristics: Recent Developments 15

Table 3. Hyperheuristic based on non-GA metaheuristics

Approach Papers Details

Simulated Bai and Kendall in [4] Random selection of LLH;

annealing Storer et al. [62] probabilistic acceptance criteria

Soubeiga [61]

Chakhlevitch [16]

Tabu search Storer et al. [62] Basic version

Kendall and Mohd Hussin [47] Basic version

Kendall and Mohd Hussin [48] Hybrids with hill-climbing and great

deluge methods; random tabu durations

Burke et al. [8], [10] Constructive version

Burke and Soubeiga [15] Combines tabu search and reinforcement

Burke et al. [13], [9] learning; variable tabu list size

Dowsland et al. [26]

Cowling and Chakhlevitch [18], [19] Methods with different tabu list

contents; tabu list size is either fixed

or automatically adjusted

VNS Qu and Burke [57] Neighbourhoods of LLH sequences of

different lengths are explored

for job shop problem) to a perturbed versions of the original problem (where
processing times for operations are slightly modified) in order to generate alter-
native sequences of scheduled jobs. These solution sequences are evaluated using
original data and the best solution is recorded. The main point of our interest in
this work, however, is the concept of heuristic space, which is the basis for any
hyperheuristic. In [62], the heuristic space contains strings of dispatching rules
of a specified length, selected from the set of 6 rules commonly used in machine
scheduling. The string of rules defines which rules and in which order should be
called by a base heuristic (schedule generator) in the process of schedule con-
struction when a decision about the operation to be scheduled next is required.
Apart from random, hill-climbing and steepest descent methods, Storer et al. [62]
study the performance of basic versions of popular metaheuristics in heuristic
space. Simulated annealing, tabu search and genetic algorithm are applied for
searching heuristic space and tested on a range of hard job shop scheduling prob-
lems. The authors report the consistency and high quality of results produced
by these metaheuristic-based hyperheuristics and conclude that heuristic space
search can be very “useful in providing fast solutions to very large problems”.

Simulated annealing [1] and tabu search [32] approaches can be used to control
the search in heuristic space in a similar manner as they manage the neighbour-
hoods of problem solutions in conventional Metaheuristics. In the context of a
hyperheuristic, both algorithms decide at each iteration whether to accept or to
reject the application of a particular low level heuristic to the current solution of

16 K. Chakhlevitch and P. Cowling

the problem, depending on the objective value which would result after applying
the low level heuristic.

Chakhlevitch in [16] demonstrates that a simulated annealing hyperheuristic
produces more consistent results across a range of instances of a relatively de-
tailed model of a real-world trainer scheduling problem than a problem-specific
version of a simulated annealing metaheuristic. Additionally, the hyperheuristic
approach is less sensitive to the choice of initial solution for the problem than
its metaheuristic counterpart. Other examples of simulated annealing based hy-
perheuristics can be found in [4] and [61]. We also refer to discussion of these
methods in Section 2.

Hyperheuristics based on the tabu search metaheuristic have received increas-
ing attention in recent publications. Kendall and Mohd Hussin [48] consider a
simple tabu search based hyperheuristic for solving examination timetabling
problem. Their hyperheuristic manages a set of 13 low level heuristics based
on adding, moving, swapping and removing exams in the timetable. A low level
heuristic becomes tabu as soon as it is applied to the current solution irrespective
of whether it improves the solution or not. The tabu duration for each low level
heuristic is short and fixed and there is no aspiration criterion. This means that
a low level heuristic can not be applied while it remains tabu, even if it leads
to the largest improvement among all low level heuristics. The best non-tabu
low level heuristic is applied instead. Although such a simplified approach is
never able to beat the best known results for a range of benchmark timetabling
problems, it consistently produces good quality outcomes provided a sufficient
amount of CPU time is available. In [47], Kendall and Mohd Hussin consider two
more advanced versions of tabu search based hyperheuristic developed in [48]. In
the first version, a low level heuristic which improves the previous best solution
is applied repeatedly and becomes tabu only when it does not produce further
improvements (tabu search hyperheuristic with hill climbing). The second ver-
sion accepts the best non-improving and non-tabu low level heuristic only if it
updates the solution within a certain boundary (the idea used in the great deluge
algorithm, see [27]). In addition, random tabu durations from a given range are
considered for both versions. The authors report further improvements to results
obtained in [48]. Another tabu search based hyperheuristic approach for tack-
ling examination timetabling problems is proposed by Burke et al. [8]. Instead of
starting the search from the previously constructed initial solution, their method
starts from a blank timetable and generates the sequences of low level heuristics
which are used for step-by-step timetable construction. They use only two low
level heuristics which represent two different ordering strategies widely used in
examination timetabling. Tabu search is performed over a space of permutations
of these two heuristics. The hyperheuristic outperforms both low level heuristics
applied separately, losing, however, to problem-specific approaches on bench-
mark timetabling problems. A similar approach with six low level heuristics is
considered in [10].

Burke and Soubeiga [15] employ tabu lists of poorly performing low level
heuristics in a hyperheuristic approach to solving the nurse rostering problem.

Hyperheuristics: Recent Developments 17

In their method, low level heuristics compete against each other using rules based
on the principles of reinforcement learning. There are 9 low level heuristics in the
set which are ranked according to their performance during the hyperheuristic
run. At the beginning of the search each low level heuristic receives zero score
and the scores are dynamically changed as search progresses. Note that similar
idea is used in the hyperheuristic developed by Nareyek [53] and in choice func-
tion hyperheuristics ([21] – [24]) which will be discussed in the next section.
If the applied low level heuristic yields improvement to the current solution,
its score is incremented (positive reinforcement), otherwise it is decreased on
a specified number of points (negative reinforcement). However, such a scheme
has a disadvantage of repetitive calls of the poorly performing low level heuris-
tics with the highest scores (until the scores become low enough). The highest
scores for such low level heuristics have been achieved due to improvements pro-
duced in the earlier stages of the search. In order to overcome this problem,
each applied non-improving low level heuristic immediately becomes tabu and
is released from the tabu list as soon as the current solution is changed by some
other low level heuristic. Therefore, the size of the tabu list is variable and de-
pends on the number of low level heuristics applied before the current solution is
changed. The authors present results of a high quality for different instances of
the nurse scheduling problem. They also claim the robustness of their approach
across a range of instances of different problems. This claim is supported in [13]
where the hyperheuristic is applied to the university course timetabling prob-
lem, outperforming two problem-tailored metaheuristics in terms of feasibility of
solutions and showing competitiveness in terms of solution quality. In [9], tabu
search based hyperheuristic approaches developed in [15] are adapted to solving
multiobjective optimisation problems of space allocation and course timetabling.
Finally, similar approach is used within simulated annealing framework to solve
a complex shipper rationalisation problem (see [26]).

Cowling and Chakhlevitch [18], [19] present different versions of tabu search
based hyperheuristics for the trainer scheduling problem. These hyperheuristics
are designed to manage a large collection of (nearly 100) low level heuristics. The
basic hyperheuristic employs a tabu list of recently called low level heuristics
which have not improved the objective function. The algorithm greedily selects
the best low level heuristic at each iteration of the search. If such a heuristic
leads to an improved objective function value, it is always accepted and released
from the tabu list if present; a non-improving heuristic is chosen only if it is not
in the tabu list and immediately becomes tabu after its application. The authors
test several versions of hyperheuristics with fixed and dynamically changed tabu
list sizes as well as with different contents of tabu list such as recently applied
non-improving low level heuristics and recently modified events. The results
reported for tabu search hyperheuristics are advantageous to those obtained for
other hyperheuristic methods considered in [18] and [19].

Qu and Burke in [57] develop a variable neighbourhood search (VNS) [40]
hyperheuristic for the examination timetabling problem. As in [10], a timetable
is generated by consecutively applying constructive low level heuristics in an

18 K. Chakhlevitch and P. Cowling

order specified by their sequence to schedule exams. The search is performed
over a space of all possible sequences of low level heuristics of a given length.
In [57], the neighbourhoods are defined by random replacement of two, three,
four and five low level heuristics in a sequence. The hyperheuristic explores each
neighbourhood for a specified number of iterations before switching to another
neighbourhood. However, the results of [57] do not demonstrate this approach
to be advantageous when compared to other hyperheuristics which use a single
neighbourhood.

To conclude this section, we note that metaheuristic-based hyperheuristics
have been tested on different real-world problems and shown to be very effec-
tive, even beating state-of-the-art problem-tailored methods on occasion. How-
ever, like traditional metaheuristic approaches, such hyperheuristics require fine
tuning of parameters (temperature for simulated annealing, tabu list length or
tabu tenure for tabu search, crossover and mutation rates for GA, etc.). Although
hyperheuristics are often less sensitive to changes of these parameters, there is
no guarantee that a hyperheuristic will work equally well for different problems
using the same parameter settings. Recall that one of the main goals of a hy-
perheuristic is to provide a general framework for quickly producing solutions
of a good quality for problems from different domains. The ideal hyperheuris-
tic should be parameter-free (or nearly parameter-free) and easily applicable to
a new problem without significant modifications and tuning. A few efforts have
been undertaken to develop such methods by means of embedding learning tech-
niques into hyperheuristics. We review hyperheuristics with learning in the next
section.

5 Hyperheuristics with Learning

Hyperheuristics from this group employ various techniques for learning the his-
torical performance of low level heuristics. A hyperheuristic selects a promising
low level heuristic at each decision point based on the information about the
effectiveness of each low level heuristic accumulated in earlier stages of its run
(or in previous runs). Table 4 provides a list of publications together with a brief
details of of the techniques used in this area.

One popular learning mechanism which has been employed in a hyperheuristic
framework is based on the principles of reinforcement learning [44]. The general
idea of such a technique is to “reward” improving low level heuristics at each
iteration of the search and “punish” poorly performing ones by means of respec-
tively increasing and decreasing their weights (scores) or probabilities of being
selected. The weights of low level heuristics are adaptively changed as the search
progresses and reflect the effectiveness of low level heuristics at any stage of the
search.

Nareyek in [53] presents a weight adaptation method based on reinforcement
learning. He investigates different schemes of selecting the promising heuristics
from the set of alternatives during the search. Each heuristic has a weight as-
signed to it. The weight of a heuristic is changed as soon as a heuristic has

Hyperheuristics: Recent Developments 19

Table 4. Hyperheuristics with learning

Approach Papers Details

Reinforcement Nareyek [53] Weight adaptation methods

learning Burke and Soubeiga [15] LLH score adjustment within a tabu

search framework

Fisher and Thompson [31] Adjustment of LLH selection probabilities

Choice Cowling et al. [21]- [24] Three-component choice functions are used to

function Kendall et al. [49] keep track of the historical performance

Soubeiga [61] of LLHs

Learning Chakhlevitch and Cowling [17] Different learning criteria and strategies are

subsets of LLH Chakhlevitch [16] used to choose effective LLH from a large set

Learning Ross et al. [60] Learning effective combinations of problem

classifier system states and LLHs for their solving

Case based Burke et al. [11] LLHs suitable for modifying partial solutions

reasoning of the problem are retrieved from the case base

been called and its performance has been evaluated. If the choice of the par-
ticular heuristic leads to improvement of the objective function, the weight of
this heuristic increases, otherwise the weight decreases. The weights are bounded
from above and from below. Nareyek considers different schemes for weight adap-
tation during the search and separates these schemes for the cases of improve-
ment and deterioration. The current values of the weights express the informa-
tion about the past experience of using the corresponding heuristics and depend
on the region of the search space under exploration. The author presents two
methods of selection of the heuristics based on their weights. The first one is
the roulette-wheel approach where the heuristic is randomly selected with the
probability proportional to its weight. The second method simply selects the
heuristic with the maximum weight. A learning strategy (i.e. a hyperheuristic)
combines three components: the weight adaptation scheme for the case of im-
provement, the scheme for the case of non-improvement, and heuristic selection
method. The results of applying different strategies to two real-world optimisa-
tion problems (Orc Quest problem and the Logistics Domain) are reported. The
hyperheuristic with the weight adaptation mechanism outperforms the station-
ary expert strategy even when the latter has a carefully selected combination of
weights.

Other examples of hyperheuristics using principles of reinforcement learning
include methods of Fisher and Thompson [31] and Burke and Soubeiga [15] (see
also [13] and [9]) discussed in previous sections. Note that the former approach
employs learning to adjust probabilities of selecting low level heuristics, while
the latter uses the learning schemes similar to those in [53].

Cowling et al. in [21] introduce a hyperheuristic approach based on statistical
ranking of low level heuristics. In this method, historical information about the

20 K. Chakhlevitch and P. Cowling

recent performance of low level heuristics is accumulated in a choice function.
The selection of low level heuristic at each decision point depends on the current
value of the corresponding choice function. They define the choice function as a
“key to capturing the nature of the region of the solution space currently under
exploration and deciding which neighbourhood (low-level heuristic) to call next,
based on the historical performance of each neighbourhood”. In [21], the choice
function represents the weighted sum of the three components which reflect
recent performance of each low-level heuristic, recent effectiveness of consecutive
pairs of low-level heuristics, and the amount of time since the heuristic was
last called, respectively. The first two components provide the intensification of
the search while the third one is included for diversification. A good balance
between intensification and diversification factors allows the hyperheuristic to
explore the search space effectively. The weights of the components (denoted by
α, β, δ respectively) express their relative importance in the choice function. The
choice functions for low-level heuristics are recalculated at each iteration of the
hyperheuristic. The general idea of the choice function is that the choice of an
effective low-level heuristic at any given time may be stipulated by the recent
successful application of the heuristic or by the effectiveness of this heuristic
in combination with another heuristic, or, if the local optimum is reached, by
the opportunity to redirect the search to a new region of the solution space.
Choice function based hyperheuristics produce significantly better results for a
simplified model of a real-world sales summit scheduling problem than those
provided by the currently used scheduling system.

The limitations of the approach mentioned above are that it requires a warm-
up period during which the heuristics should be selected randomly in order to
initialise the values of the choice functions and that the weights α, β,and δ of in-
dividual components in the choice function should be manually tuned to achieve
the best results. To overcome these limitations, Cowling et al. have developed an
adaptive procedure that automatically adjusts the choice function’s parameters
during the search [22]. The method of parameter adjustment is to “reward” the
improving heuristics and to “penalise” the non-improving heuristics ensuring
that the best heuristics will be selected frequently and the worst ones will not be
chosen very often. Such an adaptive procedure of parameter adjustment makes
the hyperheuristic essentially parameter-free. The parameter-free hyperheuristic
approach provides further improvements in the quality of the solutions of the
sales summit scheduling problem (see [22]). The effectiveness and robustness of
the approach are further investigated in [23] and [49] for the project presentation
problem and in [24] for the nurse rostering problem. A detailed discussion and
analysis of the choice function based hyperheuristics can be also found in [61].

Chakhlevitch and Cowling in [17] and Chakhlevitch in [16] consider the trainer
scheduling problem and employ learning strategies embedded into peckish and
tabu search based hyperheuristics in order to identify the subsets of the most
effective low level heuristics in a large set. One of the reasons for introducing
learning techniques is that, given a particular instance of the problem and a large
collection of low level heuristics, it is difficult to predict in advance the behaviour

Hyperheuristics: Recent Developments 21

of different heuristics. Some low level heuristics may be particularly useful while
other ones may bring no or little contribution to the solution process. Moreover,
reducing the number of low level heuristics in the set may significantly speed
up the search for a better solution. The authors consider two learning strate-
gies. According to the first strategy, a hyperheuristic removes a certain number
of the weakest low level heuristics after a fixed number of iterations and then
continues its run with a reduced set. In the second strategy, low level heuristics
with a poor performance are eliminated continuously during the hyperheuris-
tic run until a required number of the best ones remains in the set. In [17]
and [16], several selection criteria for low level heuristic ranking based on their
ability to make changes to the current solution, frequency of calls by a hyper-
heuristic, frequency and magnitude of improvements are tested. The results of
the experiments suggest that hyperheuristics with embedded learning strategies
outperform hyperheuristics without learning given similar CPU time.

In [60], Ross et al. use a learning classifier system [65] to learn a set of rules
for solving one-dimensional bin-packing problems. As in [59], the rule is a combi-
nation of a problem state and an associated low level heuristic (see discussion in
subsection 4.1 of the GA-based method used in [59]). The learning classifier sys-
tem works on binary representation of rules. The set of benchmark bin-packing
problems is divided on two subsets used for training the learning classifier sys-
tem and for testing the learned rules respectively. The method achieves similar
results and has similar disadvantages to the GA-based approach in [59].

Burke et al. in [11] develop a hyperheuristic approach employing case based
reasoning for low level heuristic selection and apply it to the examination
timetabling problem. The approach has similarities to that presented in [60]
which uses the learning classifier system. The timetable is constructed step-by-
step by applying a low level heuristic to the partial solution at each step. The
appropriate low level heuristic is retrieved from a case base. The case base is a
collection of cases where each case describes possible partial solution and sug-
gests a low level heuristic which has been previously found to be effective in
dealing with such a partial solution. The cases in a base are picked up in a pro-
cess of solving the problems from a training set. The partial solution in each
case is represented by a list of features (properties) which is determined earlier
at a knowledge discovery stage by a specific tabu search procedure. After the
case base has been formed, it is tested on another set of problems (test set). At
each step of timetable construction, the hyperheuristic identifies the case which
is the closest to the current partial solution and applies the low level heuristic
recorded in this case. The authors demonstrate in [11] that a hyperheuristic with
case based low level heuristic selection consistently outperforms individual low
level heuristics for a range of timetabling problems.

6 Other Generic Problem Solving Techniques

In this section we consider a range of AI approaches which are closely related to
hyperheuristics. These approaches are aimed to providing a general methodology

22 K. Chakhlevitch and P. Cowling

Table 5. Generic methods related to hyperheuristics

Papers Details

Gratch and Chien [34] A statistical approach used to identify the best strategy

Gratch et al. [35] (combination of LLHs) for solving problems

from a given distribution

Minton [51], [52] Expert system which generates efficient computer programs

to solve constraint satisfaction problems

Fink [29] Various techniques to select a single heuristic from a set

Gupta et al. [36] of possible alternatives

Petrovic and Qu [56]

Burke et al. [14]

Lagoudakis and Littman [50]

Randall and Abramson [58] A generic problem solver based on the linked-list formulation

of the problems

for solving various instances from a selected problem domain. The main goal is
usually either to automatically select a good (ideally, the best) problem solving
method (heuristic) from a list of possible alternatives or to learn a good strategy
(combination of heuristics) which performs well over a distribution of problem
instances. The final choice of the solution method or strategy is based on the
historical performance of the alternatives on a training set of problems. Table 5
summarises recent developments in this area.

Gratch et al. [35] and Gratch and Chien [34] consider a statistical approach to
adaptively solve the real-world problem of scheduling satellite communications.
They develop a machine learning system that performs a hill-climbing search
over a space of possible combinations of heuristic methods (called control strate-
gies) and returns the most effective combination for the given problem domain.
The performance of each control strategy is evaluated by means of statistical
techniques. The heuristic scheduling algorithm makes its control decisions ap-
plying the corresponding heuristic from the control strategy at each decision
point. The authors specify 5 decision points during the process of solving each
problem instance with a set of possible low level heuristics to try at each de-
cision point. The sample of the problems for each run of the system is formed
by random selection of the specified number of problems from the distribution.
The best strategy is determined from several runs of the system since the ran-
dom selection of training problems may result in different learned strategies on
different runs. The selected strategy is then used to solve all the problems from
a given distribution. Gratch and Chien [34] report a significant improvement
in the performance of their adaptive learning approach in comparison to the
system which employs a human expert strategy. The learned control strategies
outperform the expert strategy both in terms of CPU time required to produce
a feasible schedule and the number of problems from the problem distribution
solved within a specified resource bound.

Hyperheuristics: Recent Developments 23

Note that although the idea of the adaptive problem solving used in [35]
and [34] is applicable to other problem domains, the approach may require signif-
icant modifications. Indeed, the adaptive problem solver employs domain-specific
knowledge which is expressed not only in the structure of the control strategy,
but in the method of exploration of the control strategy space as well. Another
limitation of the solver is the problem of the local maxima due to the nature
of the hill-climbing search. Finally, the statistical approach to adaptive prob-
lem solving implemented in [34] is computationally expensive since it requires a
large number of training examples in order to evaluate the performance of the
strategy.

Minton in [52] and [51] describes the expert system, Multi-Tac, for solving
constraint satisfaction problems [5]. The objective of the system is to produce
an efficient Lisp program tailored to particular problem and instance distri-
bution. Since many combinatorial optimisation problems can be formulated as
constraint satisfaction problems, the system can be used for solving problems of
various natures. Multi-Tac specialises a set of generic heuristics for constraint
satisfaction problems for a particular application and performs the search for
the best combination of the domain-specific versions of these heuristics. This
combination is then used to generate the problem-specific program. As for [34],
Minton uses hill-climbing search over the space of heuristic combinations is per-
formed and each combination is evaluated on a set of training instances. The
system is tested on two well-known NP-hard problems and the resulting syn-
thesised programs are shown to be competitive with the programs developed by
human experts.

Fink [29] develops a statistical technique for automatic selection among avail-
able problem solving methods (heuristics) for a given problem instance. This
technique is implemented in the framework of a sophisticated AI planning system
and combines knowledge acquired from the past performance of the methods, for
solving other problem instances from the same distribution, with exploration of
new alternatives. Incremental learning is used for selection of the solving method.
If the past performance data for all methods are available, a weighted random
selection among the methods is performed, where a weight for each method rep-
resents the probability that the method is the best for a given problem instance
(exploitation). If there is no previous data for some method, it is immediately
selected and applied (exploration). The technique is tested on a large set of
transportation problems and proved to be effective.

Several other approaches have been developed to learn a single best heuristic
(strategy) from the set of possible alternatives for solving a range of problems.
For example, Gupta et al. in [36] study the application of neural networks to
selecting the best heuristic algorithm for a flowshop scheduling problem. Petro-
vic and Qu [56] and Burke et al. [14] employ case based reasoning to select a
heuristic solving method for course timetabling problems. An approach based on
reinforcement learning is proposed by Lagoudakis and Littman [50] to select the
most efficient algorithm for solving large instances of simple problems of order
statistic selection and sorting.

24 K. Chakhlevitch and P. Cowling

Randall and Abramson in [58] develop a general problem solver for combina-
torial optimisation problems. Their solver is based on simulated annealing and
tabu search metaheuristics. The crucial point of their system is a modelling rep-
resentation for combinatorial optimisation problems. The authors introduce an
alternative representation based on dynamic data structures, specifically multi-
level linked lists. The linked list representation is well suited for many combi-
natorial optimisation problems. List modelling also allows for the elimination
of many constraints which would typically appear in a traditional integer linear
programming formulation of the problem since the range of possible values can
be defined for the elements of the list. Finally, traditional local search moves like
swapping, adding and repositioning components of the solution can be easily im-
plemented within the list structure in terms of inserting and deleting elements
in the list.

The problem solver has been tested by the authors on many instances of the
benchmark combinatorial optimisation problems. The system has been able to
produce optimal or close to optimal solutions in most occasions in a reasonable
time. However, the approach has been applied only to relatively easy problems,
which require only one level of sublists for their list-based formulation. Note
that the majority of real-world problems are much more complicated and multi-
level list structures may be needed for their representation. There is no evidence
in [58] that the solver would perform well on such problems. Another significant
drawback of the solver is a substantial amount of computer time required for
parameter tuning.

7 Conclusions

Hyperheuristics represent an interesting direction in the development of generic
solving techniques for combinatorial optimisation problems. Although general
problem solving methods have received increased attention among researchers
over the last two decades, most of the approaches presented in the literature
have been designed to solve various instances of a particular problem rather
than to be applied to a range of different problems. One of the main advan-
tages of hyperheuristics over traditional problem-tailored approaches is their
reapplicability and robustness across different problem domains. Development
of problem-independent hyperheuristic approaches is an important and chal-
lenging task and research to date provides only a few promising initial steps in
this direction.

In this chapter we have reviewed a wide spectrum of techniques which can
be classified as hyperheuristics as well as a range of approaches closely related
to them. In our review we have opted for a detailed analysis of the ideas lying
behind different hyperheuristic approaches in order to identify their advantages
and drawbacks. We can mention the following common limitations.

• Some hyperheuristic techniques make use of additional problem specific
knowledge. For example, such knowledge can be used to describe the cur-
rent state of the problem in order to select a suitable low level heuristic in

Hyperheuristics: Recent Developments 25

hyperheuristics employing learning classifier systems. In indirect GAs, a por-
tion of problem-specific information is often injected into the chromosome.

• For many hyperheuristics, a significant amount of parameter tuning is re-
quired in order to find good parameter settings for a given problem.

• A large number of problem instances may be required for training and testing
of the method in order to accumulate enough knowledge to make the right
choice of low level heuristics. However, for many real-world problems the
problem data are not easily available and randomly generated instances may
not adequately represent the real distribution.

• Many hyperheuristic methods are only tested on a relatively simple bench-
mark problems for which the best solutions (often optimal) as well as effective
low level heuristics are known in advance. There is no evidence that such hy-
perheuristics would be effective in more complex real-world situations.

Future research efforts in the area of hyperheuristics should be undertaken in
order to overcome these limitations. Development of effective parameter-free
hyperheuristics, methods for automatic parameter tuning in hyperheuristics,
and creating new techniques with a clear boundaries between the hyperheuristic
(higher level) and problem-specific (lower level) components are important re-
search directions. Hyperheuristics should be tested on a wider range of real-world
optimisation problems of different nature which would be the key to proving their
suitability as a fundamental component of future generic optimisation software.

References

1. Aarts, E.H.L., Korst, J.H.M., van Laarhoven, P.J.M.: Simulated annealing. In:
Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimisation,
pp. 91–120. John Wiley & Sons, Chichester (1997)

2. Adams, J., Balas, E., Zawack, D.: The shifting bottleneck procedure for job shop
scheduling. Management Science 34, 391–401 (1988)

3. Ayob, M., Kendall, G.: A Monte Carlo hyper-heuristic to optimise component
placement sequencing for multi head placement machine. In: Proceedings of the
2003 International Conference on Intelligent Technologies (InTech2003), Thailand,
pp. 132–141 (2003)

4. Bai, R., Kendall, G.: An investigation of automated planograms using a simu-
lated annealing based hyper-heuristic. In: Proceedings of the 5th Metaheuristics
International Conference (MIC2003), Kyoto, Japan, August 23-25 (2003)

5. Brailsford, S., Potts, C., Smith, B.: Constraint satisfaction problems: Algorithms
and applications. European Journal of Operational Research 119, 557–581 (1999)

6. Brelaz, D.: New methods to colour the vertices of the graph. Communications of
the ACM 22, 251–256 (1979)

7. Brucker, P.: Scheduling Algorithms. Springer, Heidelberg (1995)
8. Burke, E., Dror, M., Petrovic, S., Qu, R.: Hybrid graph heuristics within a hyper-

heuristic approach to exam timetabling problems. In: Golden, B.L., Raghavan,
S., Wasil, E.A. (eds.) The Next Wave in Computing, Optimisation and Decision
Technologies. Conference 9th INFORMS Computing Society Conference, vol. 9,
pp. 79–91. Springer, Heidelberg (2005)

26 K. Chakhlevitch and P. Cowling

9. Burke, E.K., Landa Silva, J.D., Soubeiga, E.: Multi-objective hyper-heuristic ap-
proaches for space allocation and timetabling. In: Ibaraki, T., Nonobe, K., Yag-
iura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers. Selected Papers
from the 5th Metaheuristics International Conference (MIC 2003). Operations Re-
search/Computer Science Interfaces Series, vol. 32, pp. 129–158. Springer, Heidel-
berg (2005)

10. Burke, E., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper heuristic for
timetabling problems. Technical Report NOTTCS-TR-2004-9, School of Computer
Science and Information Technology, University of Nottingham (2004)

11. Burke, E., Petrovic, S., Qu, R.: Case based heuristic selection for examination
timetabling. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evo-
lution and Learning (SEAL 2002), pp. 277–281. Orchid Country Club, Singapore
(2002)

12. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyperheuris-
tics: an emerging direction in modern search technology. In: Glover, F., Kochen-
berger, G.A. (eds.) Handbook of Metaheuristics, pp. 457–474. Kluwer Academic
Publishers, Dordrecht (2003)

13. Burke, E., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling
and rostering. Journal of Heuristics 9, 451–470 (2003)

14. Burke, E.K., MacCarthy, B.L., Petrovic, S., Qu, R.: Knowledge discovery in a
hyper-heuristic for course timetabling using case-based reasoning. In: Burke, E.K.,
De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 90–103. Springer,
Heidelberg (2003)

15. Burke, E., Soubeiga, E.: Scheduling nurses using a tabu-search hyperheuristic. In:
Kendall, G., Burke, E., Petrovic, S. (eds.) Proceedings of the 1st Multidisciplinary
International Conference on Scheduling: Theory and Applications (MISTA 2003),
Nottingham, UK, pp. 197–218 (2003)

16. Chakhlevitch, K.: A hyperheuristic methodology for real-world scheduling. PhD
Thesis, Department of Computing, University of Bradford, UK (2006)

17. Cowling, P.I., Chakhlevitch, K.: Choosing the Fittest Subset of Low Level Heuris-
tics in a Hyperheuristic Framework. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP
2005. LNCS, vol. 3448, pp. 23–33. Springer, Heidelberg (2005)

18. Cowling, P., Chakhlevitch, K.: Hyperheuristics for managing a large collection
of low level heuristics to schedule personnel. In: Proceedings of the 2003 IEEE
Congress on Evolutionary Computation (CEC 2003), pp. 1214–1221. IEEE Press,
Los Alamitos (2003)

19. Cowling, P., Chakhlevitch, K.: Using a large set of low level heuristics in a hyper-
heuristic approach to personnel scheduling. In: Dahal, K., Tan, K.C., Cowling, P.I.
(eds.) Evolutionary Scheduling. Springer, Heidelberg (to appear, 2007)

20. Cowling, P., Kendall, G., Han, L.: An investigation of a hyperheuristic genetic algo-
rithm applied to a trainer scheduling problem. In: Proceedings of 2002 Congress on
Evolutionary Computation (CEC 2002), pp. 1185–1190. IEEE Computer Society
Press, Honolulu, USA (2002)

21. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a
sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp.
176–190. Springer, Heidelberg (2001)

22. Cowling, P., Kendall, G., Soubeiga, E.: A parameter-free hyperheuristic for schedul-
ing a sales summit. In: Proceedings of the Third Metaheuristic International Con-
ference (MIC 2001), Porto, Portugal, pp. 127–131 (2001)

Hyperheuristics: Recent Developments 27

23. Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: a tool for rapid prototyp-
ing in scheduling and optimisation. In: Cagnoni, S., Gottlieb, J., Hart, E., Midden-
dorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002,
EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 1–10. Springer, Berlin
(2002)

24. Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: a robust optimisation
method applied to nurse scheduling. In: Guervós, J.J.M., Adamidis, P.A., Beyer,
H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS,
vol. 2439, pp. 851–860. Springer, Heidelberg (2002)

25. Dorndorf, U., Pesch, E.: Evolution based learning in a job shop scheduling envi-
ronment. Computers and Operations Research 22, 25–40 (1995)

26. Dowsland, K., Soubeiga, E., Burke, E.: Solving a shipper rationalisation problem
with a simulated annealing based hyperheuristic. Technical Report NOTTCSTR-
2004-1, School of Computer Science and Information Technology, University of
Nottingham (2004)

27. Dueck, G.: New optimisation heuristics: the great deluge algorithm and the record-
to-record travel. Journal of Computational Physics 104, 86–92 (1993)

28. Fang, H.-L., Ross, P., Corne, D.: A promising hybrid GA/heuristic approach for
open-shop scheduling problems. In: Cohn, A. (ed.) Proceedings of ECAI 1994: 11th
European Conference on Artificial Intelligence, pp. 590–594. John Wiley, Chich-
ester (1994)

29. Fink, E.: How to solve it automatically: selection among problem-solving methods.
In: Proceedings of the 4th International Conference of AI Planning Systems, pp.
128–136. AAAI Press, Menlo Park (1998)

30. Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local jobshop
scheduling rules. In: Factory Scheduling Conference, May 10-12, 1961, Carnegie
Institute of Technology (1961)

31. Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local jobshop
scheduling rules. In: Muth, J.F., Thompson, G.L. (eds.) Industrial Scheduling, pp.
225–251. Prentice Hall, Englewood Cliffs (1963)

32. Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers, Norwell (1997)
33. Glover, F., Laguna, M.: Tabu search. In: Reeves, C.R. (ed.) Modern Heuristic Tech-

niques for Combinatorial Problems, pp. 70–150. Blackwell Scientific Publications,
Malden (1993)

34. Gratch, J., Chien, S.: Adaptive problem-solving for large-scale scheduling problems:
a case study. Journal of Artificial Intelligence Research 4, 365–396 (1996)

35. Gratch, J., Chien, S., DeJong, G.: Learning search control knowledge for deep
space network scheduling. In: Proceedings of the 10th International Conference on
Machine Learning, Amherst, USA, pp. 135–142 (1993)

36. Gupta, J.N.D., Sexton, R.S., Tunc, E.A.: Selecting scheduling heuristics using neu-
ral networks. INFORMS Journal on Computing 12, 150–162 (2000)

37. Han, L., Kendall, G.: Guided operators for a hyper-heuristic genetic algorithm. In:
Gedeon, T.D., Fung, L.C.C. (eds.) AI 2003. LNCS (LNAI), vol. 2903, pp. 807–820.
Springer, Heidelberg (2003)

38. Han, L., Kendall, G.: An investigation of a tabu assisted hyper-heuristic genetic al-
gorithm. In: Proceedings of the 2003 IEEE Congress on Evolutionary Computation
(CEC 2003), pp. 2230–2237. IEEE Computer Society Press, Canberra, Australia
(2003)

28 K. Chakhlevitch and P. Cowling

39. Han, L., Kendall, G., Cowling, P.: An adaptive length chromosome hyperheuristic
genetic algorithm for a trainer scheduling problem. In: Proceedings of the 4th
Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), pp.
267–271. Orchid Country Club, Singapore (2002)

40. Hansen, P., Mladenović, N.: Variable neighbourhood search: Principles and appli-
cations. European Journal of Operational Research 130, 449–467 (2001)

41. Hart, E., Ross, P.: A heuristic combination method for solving job-shop scheduling
problems. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN
1998. LNCS, vol. 1498, pp. 845–854. Springer, Heidelberg (1998)

42. Hart, E., Ross, P., Nelson, J.: Solving a real-world problem using an evolving
heuristically driven schedule builder. Evolutionary Computation 6, 61–80 (1998)

43. Hart, E., Ross, P., Nelson, J.: Scheduling chicken catching – An investigation into
the success of a genetic algorithm on a real-world scheduling problem. Annals of
Operations Research 92, 363–380 (1999)

44. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey.
Journal of Artificial Intelligence Research 4, 237–285 (1996)

45. Kendall, G., Mohamad, M.: Channel assignment in cellular communication using
a Great Deluge hyper-heuristic. In: Proceedings of the 2004 IEEE International
Conference on Networks (ICON 2004), Singapore, November 16-19 (2004)

46. Kendall, G., Mohamad, M.: Channel assignment optimisation using a hyperheuris-
tic. In: Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent
Systems (CIS 2004), Singapore, December 1-3 (2004)

47. Kendall, G., Mohd Hussin, N.: Tabu search hyper-heuristic approach to the ex-
amination timetabling problem at University of Technology MARA. In: Burke, E.,
Trick, M. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 199–217. Springer, Heidelberg
(2005)

48. Kendall, G., Mohd Hussin, N.: An investigation of a tabu search based hyperheuris-
tic for examination timetabling. In: Kendall, G., Burke, E., Petrovic, S., Gendreau,
M. (eds.) Multidisciplinary Scheduling: Theory and Applications, Selected papers
from the 1st Multidisciplinary International Conference on Scheduling: Theory and
Applications (MISTA 2003), pp. 309–328. Springer, Heidelberg (2005)

49. Kendall, G., Soubeiga, E., Cowling, P.: Choice function and random hyperheuris-
tics. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution
and Learning (SEAL 2002), pp. 667–671. Orchid Country Club, Singapore (2002)

50. Lagoudakis, M.G., Littman, M.L.: Algorithm selection using reinforcement learn-
ing. In: Proceedings of the 17th International Conference on Machine Learning,
pp. 511–518 (2000)

51. Minton, S.: Integrating heuristics for constraint satisfaction problems: a case study.
In: AAAI Proceedings (1993)

52. Minton, S.: An analytic learning system for specializing heuristics. In: Proceedings
of the 13th International Joint Conference on Artificial Intelligence (1993)

53. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning.
In: Resende, M., de Sousa, J. (eds.) Metaheuristics: Computer decision-making,
pp. 523–544. Kluwer Academic Publishers, Dordrecht (2003)

54. Norenkov, I.: Scheduling and allocation for simulation and synthesis of CAD system
hardware. In: Proceedings of EWITD 1994, East-West International Conference,
Moscow, ICSTI, pp. 20–24 (1994)

55. Norenkov, I., Goodman, E.: Solving scheduling problems via evolutionary methods
for rule sequence optimisation. In: Second World Conference on Soft Computing
(WSC2) (June 1997)

Hyperheuristics: Recent Developments 29

56. Petrovic, S., Qu, R.: Case-based reasoning as a heuristic selector in a hyperheuristic
for course timetabling problems. In: Proceedings of the 6th International Confer-
ence on Knowledge-Based Intelligent Information Engineering Systems and Allied
Technologies (KES 2002), Crema, Italy, pp. 336–340 (2002)

57. Qu, R., Burke, E.: Hybrid variable neighbourhood hyperheuristics for exam
timetabling problems. In: Proceedings of the 6th Metaheuristics International Con-
ference (MIC 2005), Vienna, Austria (2005)

58. Randall, M., Abramson, D.: A general meta-heuristic based solver for combinatorial
optimisation problems. Computational Optimisation and Applications 20, 185–210
(2001)

59. Ross, P., Maŕın-Blázquez, J.G., Schulenburg, S., Hart, E.: Learning a procedure
that can solve hard bin-packing problems: a new GA-based approach to hyper-
heuristics. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-
M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta,
D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish,
R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1295–1306. Springer, Heidelberg
(2003)

60. Ross, P., Schulenburg, S., Maŕın-Bl ázquez, J.G., Hart, E.: Hyper-heuristics: learn-
ing to combine simple heuristics in bin-packing problems. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 942–948.
Morgan Kaufmann, San Francisco (2002)

61. Soubeiga, E.: Development and application of hyperheuristics to personnel schedul-
ing. PhD Thesis, Department of Computer Science, University of Nottingham, UK
(2003)

62. Storer, R.H., Wu, S.D., Vaccari, R.: Problem and heuristic search space strategies
for job shop scheduling. ORSA Journal on Computing 7, 453–467 (1995)

63. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

64. Terashima-Maŕın, H., Ross, P., Valenzuela-Rendón, M.: Evolution of constraint
satisfaction strategies in examination timetabling. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 1999), pp. 635–642. Morgan
Kaufmann, San Francisco (1999)

65. Wilson, S.W.: Classifier systems based on accuracy. Evolutionary Computation 3,
149–175 (1995)

