Hyper-heuristics for the Dynamic Variable Ordering in
Constraint Satisfaction Problems

H. Terashima-Marin,
J. C. Ortiz-Bayliss
Tecnologico de Monterrey-CIS
Monterrey, NL, 64849 Mexico

{terashima,
a00796625)@itesm.mx

ABSTRACT

The idea behind hyper-heuristics is to discover some com-
bination of straightforward heuristics to solve a wide range
of problems. To be worthwhile, such combination should
outperform the single heuristics. This paper presents a GA-
based method that produces general hyper-heuristics for
the dynamic variable ordering within Constraint Satisfac-
tion Problems. The GA uses a variable-length representa-
tion, which evolves combinations of condition-action rules
producing hyper-heuristics after going through a learning
process which includes training and testing phases. Such
hyper-heuristics, when tested with a large set of benchmark
problems, produce encouraging results for most of the cases.
The testebed is composed of problems randomly generated
using an algorithm proposed by Prosser [17].
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1. INTRODUCTION

A Constraint Satisfaction Problem (CSP) is defined by a
set of variables X1, X2, ..., X, and a set of constraints C1,
Cs, ..., Cp. Each variable X; has a nonempty domain D; of
possible values. Each constraint C; involves some subset of
variables and specifies the allowable combinations of values
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for that subset [20]. When trying to find a solution for this
kind of problems, it is impossible to avoid the implicit issue
of determining which variable is the next to be instantiated.
Many researchers have proved, based on analysis and ex-
perimentation, the importance of the variable ordering and
its impact in the cost of the solution search [17]. Finding
methods that help to efficiently order these variables is an
important issue. For small combinatorial problems, exact
methods can be applied. However, when larger and more
complex problems appear, exact solutions are not a rea-
sonable choice since the search space grows exponentially,
and so does the time for finding the optimal order. Various
heuristic and approximate approaches have been proposed
that guarantee finding near optimal solutions. However, it
has not been possible to find a reliable method to solve all
instances of a given problem. In general, some methods work
well for particular instances, but not for all of them.

It is possible to establish different criteria to face the or-
dering problem, and it can be done either in static or in
dynamic fashion. In the static way, the order of the vari-
ables is set from the start and is kept during the complete
search procedure. This ordering does not guarantee to find
a feasible solution because it is a permutation problem, deri-
ving in an exponential growth in the number of variables. In
the other hand, in the dynamic variable ordering, the order
is constructed during the search, based on some criterion
about the characteristics of the variables left to instantiate.
With the dynamic ordering the search space is not as large
as in the static ordering. It has been proved in many stud-
ies that dynamic ordering delivers better results than static
ordering [5]. When working with dynamic ordering we can
use heuristics to select the next variable to instantiate.

The aim of this paper is to explore a novel alternative
on the usage of evolutionary approaches to generate hyper-
heuristics for the dynamic variable ordering in CSP.

A hyper-heuristic is used to define a high-level heuristic
that controls low-level heuristics [3]. The hyper-heuristic
should decide when and where to apply each single low-level
heuristic, depending on the given problem state. The choice
of low-level heuristics may depend on the features of the
problem state, such as CPU time, expected number of solu-
tions, values on the objective function, etcetera. Selecting
a particular heuristic is dynamic, and depends on both the
problem state produced by the previous heuristic applied
and the search space to be explored in that point of time.



The investigation in this article, presents a method to ge-
nerate a general hyper-heuristic intended to provide a way
to order variables for a wide variety of instances of CSP,
so they can be solved. The procedure learns the hyper-
heuristic by going through a training phase using instances
with a variety of features. The generated hyper-heuristic
is tested later with a collection of unseen examples provi-
ding acceptable results. The general method is based on a
variable-length Genetic Algorithm, where the chromosome
is conformed of a series of blocks, representing condition-
action rules.

The paper is organized as follows. Section 2 presents the
variable ordering problem, the solution method proposed
and its justification. This is followed by the experimental
setup, the results, their analysis and discussion in section
3. Finally, in section 4 we include our conclusions and some
ideas for future work.

2. SOLUTION APPROACH

In the literature one can see that Evolutionary Compu-
tation has been used in few CSP investigations [4,14]. Re-
cently, Terashima et al. used a combination between low
level heuristics and a Genetic Algorithm for dynnamic va-
riable ordering in CSP but did not incorporate the concept
of hyper-heuristic [22]. More recently, Terashima et al. also
used a GA based method to produce hyper-heuristics for the
2-D binpacking problem with encouraging results [23].

Evolutionary Computation usually includes several types
of evolutionary algorithms [24]: Genetic Algorithms [9,13],
Evolutionary Strategies [18,21], and Evolutionary Program-
ming [1,6]. In this research we use a GA with variable length
chromosomes, a resemblance of what is called a messy-GA
[10].

2.1 The variable ordering problem in CSP

In CSP, the variable ordering is relevant topic due to its
impact in the cost of the solution search. As we mentioned
before, there are two different ways to set this order: static
and dynamic. This research focuses on the dynamic fash-
ion, which uses heuristics to select the next variable. It has
been empirically proved in previous studies that dynamic va-
riable ordering is more efficient than the static approach [5].
Also, the literature is rich in heuristics designed for this task:
Fail-First [12], Saturation Degree [2], Rho [8], Kappa [8] and
E(N) [8], to mention some. However, none of these heuris-
tics has been proved to be efficient in every instance of the
problems.

Every time an instantiated variable is checked to verify if
it does not violate any constraint is called a constraint check.
Counting the constraint checks used to solve a specific ins-
tance is used in this work to compare the performance of
the different heuristics and the general hyper-heuristic.

2.2 The Set of Heuristics Used

In CSP, the related heuristics refer to the way the next
variable is selected and which value has to be used to ins-
tantiate that variable. In this investigation we focus on the
first kind of heuristics, those related to the order in which
variables are selected to be instantiated. Value ordering is
beyond the scope of this research and it is left for future
work. Some of the heuristics were taken from the literature
and others were adapted. We chose the most representa-
tive heuristics in its type, considering their individual per-
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formance presented in related studies and also in an initial
experimentation on a collection of benchmark problems.
The ordering heuristics used in this research are:

e Fail First (FF).- Also called Minimum Remaining Va-
lues (MRYV), it selects the variable with the minimun
number of available values in its domain. This heuris-
tic decreases the branching factor associated to the
search by selecting the variables that faster take to
dead ends [12].

e Modified Fail First (mFF).- It selects the variable in-
volved in the maximum number of constraints. It is a
modification of the Fail-First heuristic and they both
provide different results when used in the instances.

e Saturation Degree (Bz).- This heuristic has been used
mostly for graph coloring, but can be easily adapted to
be useful in this research. It selects the variable that is
involved in the maximum number of constraints from
variables already instantiated [2].

e Rho.- This heuristic was first used by Ian P. Gent [§]
and it is based on the estimation of the solution density
p, given by:

p=[10=p) (1)

ceC

where a constraint ¢ prohibits in average a fraction p.
of possible assignments.

It selects the heuristic that maximizes the solution
density of the resulting subproblem, that is, the varia-
ble with the most conflictive constraints. The resulting
subproblem contains the larger amount of states which
are solutions to the problem.

e E(N).- This heuristic selects a variable such that the
subproblem maximizes the expected number of solu-
tions. This number is calculated as:

BN =[] @) x [[a-p) (2)

veV ceC

where d, represents the uniform domain size of varia-
ble v.

This heuristic also maximizes the solution density of
the new subproblem. The selection criterion of the
E(N) heuristic is a combination of the Fail-First and
Rho heuristics [8].

e Kappa.- 1t selects the next variable such that the new
subproblem minimizes the kappa factor, wich is calcu-
lated as follows:

- ZCGC l092(1 - pc)
> vev loga(dy)

The kappa factor indicates how restricted an instance
is. With k£ < 1 instances are low-constrained, and
with k£ > 1 are highly restricted, and very likely to
have no solution [8].

k=

®3)



e Min-conflicts.- This is a very simple heuristic and it is
based on the idea of selecting a variable that produces
the subproblem that minimizes the number of conflicts
in the variables left to instantiate. This heuristic was
originally used for value ordering [15, 16], however it
was adapted to work for variable ordering.

Some of these heuristics are described also by Gent et
al. [8].

2.3 Combining Heuristics with the proposed
GA

The concept of hyper-heuristic is motivated by the ob-
jective to provide a more general procedure for optimiza-
tion [3]. Meta-heuristics methods usually solve problems by
operating directly on the problem. Hyper-heuristics deal
with the process to choose the right heuristic for solving the
problem at hand. The aim is to discover a combination of
simple heuristics that can perform well on a whole range
of problems. For real applications, exhaustive methods are
not a practical approach. The search space might be too
large, or the number and types of constraints may generate
a complex space of feasible solutions.

It is common to sacrifice quality of solutions by using
quick and simple heuristics to solve problems. Many heuris-
tics have been developed for specific problems. But, is there
a single heuristic for a problem that solves all instances well?
The immediate answer is no. Certain problems may con-
tain features that would make a specific heuristic to work
well, but those features may not be suitable for other heuris-
tics. The idea with hyper-heuristics is to combine heuristics
in such a way that a heuristic’s strengths make up for the
drawbacks of another.

The solution model used in this investigation carries fea-
tures from previous work by Ross et al. [19] and Terashima
et al. [23], in which the main focus is to solve one dimensional
and two dimensional bin-packing problems, respectively. In
the research presented in this article, a GA with variable-
length individuals is proposed to find a combination of single
heuristics to order variables to solve efficiently a wide variety
of instances of CSP.

The basic concept is that, given a problem state P, this is
associated with the closest point in the chromosome which
carries the ordering rules to be applied. This application
will transform the problem to a new state P’. The purpose
is to solve a problem by constructing the answer, deciding
on the heuristic to apply at each step. The current state
P of the problem is a much-simplified representation of the
actual state, and is described in more detail in section 2.3.1.

A chromosome in the messy GA represents a set of la-
belled points within this simplified problem state space; the
label of any point is a heuristic. The chromosome therefore
represents a complete recipe for solving a problem, using a
simple algorithm: until the problem is solved, (a) determine
the current problem state P, (b) find the nearest point to
it, (c) apply the heursitic attached to the point, and (d) up-
date the state. The GA is looking for the chromosome (rep-
resenting a hyper-heuristic) which contains the rules that
apply best to any intermediate state in the solving process
of a given instance.

The instances are divided into two groups: the training
and the testing set. The general procedure consists in solv-
ing first all instances in both sets with the single heuristics.
This is carried out to keep the best solution that is later
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used also by the GA we propose. The next step is to let the
GA work on the training set until termination criterion is
met and a general hyper-heuristic is produced. All instances
in both the testing and training sets are then solved with
this general hyper-heuristic.

The complete process is presented in Figure 1.

salving Training &
Testing Instances with

Single Heuristics

Run Ga with

Training Set

{ General Hyper-Heuristic }
|

' '
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Figure 1: Solution Model.
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2.3.1 Representation

Each chromosome is composed of a series of blocks. Each
block j includes nine numbers. The first eight represent an
instance of the problem state. The first number indicates
the percentage of variables that remain to be instantiated
(vj). The second number represents the percentage of va-
lues left in all the domains (d;). The next four numbers
are related to the tightness of constraints. For this, we de-
fined a three category classification for constraints: large
constraints are those that prohibit a fraction p. > 0.55 of
values between a pair of variables, medium constraints have
a 0.45 < p. < 0.55 and small constraints have a p. < 0.45.
These values were obtained through previous experimenta-
tion. With these categories we defined that the third num-
ber represents the percentage of prohibited values consid-
ering all constraints (c;), the fourth number indicates the
percentaje of large constraints (Ic;), the fifth one shows the
percentage of medium constraints (mc;), and the sixth num-
ber represents the percentage of small constraints (sc;). The
next two numbers represent the value of the rho (r;) and
kappa (k;) factors, respectively. The last number represents
the variable ordering heuristic associated to the instance of
the problem state. For a given problem state, the inital
eight numbers would lie in a range between 0 and 1, so that
the actual problem state is a point inside the unit eight-
dimensional space. Nevertheless, we allow the points defined
in each block to lie outside the unit cube, so we redefined
the range to be from —3 to 3. At each step, the algorithm
applies the heuristic that is associated to the block that is
closest to actual problem state. We measure the distance d
between the problem state P’ and the instance inside each
block j using the euclidean distance formula.

2.3.2  Genetic Operators
We dealt in this investigation with two crossover and three



mutation operators. The first crossover operator is very si-
milar to the normal two-point crossover. Since the number
of blocks in each chromosome is variable, each parent selects
the first and last block independently. However the points
selected inside each corresponding block are the same for
both parents. The blocks and poinst are chosen using a uni-
form distribution. The other crossover operator works at
block level, and it is very similar to the normal one-point
crossover. This operator exchanges 10% of blocks between
parents, meaning that the first child obtains 90% of infor-
mation form the first parent, and 10% from the second one.

The first mutation operator randomly generates a new
block and adds it at the end of the chromosome; the second
operator randomly selects and eliminates a block within the
chromosome; and the last one randomly selects a block in
the chromosome and a position inside that block to replace
it with a new number between —3 and 3, generated with
a normal distribution with mean 0.5 and truncated accor-
dingly.

2.3.3  The Fitness Function

The most common criterion to mesure the efficiency of a
search algorithm used to determine if a CSP instance has
or does not have a solution is the count of the consistency
checks made during the search. To calculate the quality of
an individual there are two steps that must be done:

1. Every CSP instance in the sets is solved using each
low level heuristic. The CSP instance solver combines
backtracking and forward checking to solve the ins-
tances. The best heuristic result, for each specified
instance i is stored (let us call it BH;). These results
are prepared in advance of running the GA.

2. Each one of the problems assigned to the individual
is solved using the coded hyper-heuristic. The best
result of the low level heuristics (BH;) is divided by the
number of consistency checks used during the search
(HH;). Combining all together, the fitness function
(FF;) is computed as:

BH;

FF =
HH;

(4)

This evaluation guarantees that, when the general hyper-
heuristic produces better results, the fitness function will
return a number greater than one.

The GA cycle consists of the following steps:

1. Generate initial population.

2. Assign five problems to each chromosome and get its
fitness.

3. Apply selection (tournament), crossover and mutation
operators to produce two children.

4. Assign five problems to each new child and get its fit-
ness.

5. Replace the two worst individuals with the new off-
spring.

6. Assign a new problem to every individual in the new
population and recompute fitness.
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7. Repeat from step three until a termination criterion is
reached.

To compute the fitness for each chromosome (at steps two
and four of the above cycle), the distance between the so-
lution obtained by that individual with respect to the best
result given by the single heuristic (BH;) is measured. The
fitness is a weighted average and it is given by:

PR - mp,, + 522 FF(m:)

FF =
mp+ 95

()

where FFL ! is the fitness for individual m in the previous
generation; mp,, is the number of problems individual m
has seen so far; F/F(m;) is the fitness obtained by individual
m for the each problem assigned to the hyper-heuristic and
computed with equation 4. After each generation [, a new
problem is assigned to each individual m in the population
and its fitness is recomputed again by a weighted average as
follows:

FELY mp,, + FF(m)
mp+ 1

FF, = (6)

In both cases the evaluation is the result of both the past
fitness and the current fitness. A very good performance for
certain instances is not very significative if for most of the
instances an individual has a low performance. In the other
hand, if a hyper-heuristics behaves really good for most of
the problems,; a bad result for a single case does not affect
negatively so much.

2.3.4 GA Parameter Set

After previous experimentation, the parameters for the
GA used in this investigation were set as follows: population
size, 20; number of generations, 100; crossover probability,
1.0; and mutation probability, 0.1.

3. EXPERIMENTS AND RESULTS

This section presents the experiments carried out during
the investigation and the results obtained. The benchmark
set is composed of randomly generated instances using the
algorithm proposed by Prosser [17]. This algorithm genera-
tes CSP characterized by the 4-tuple < n, m, p1, p2 >, where
n is the number of variables, m is the uniform domain size,
p1 is the probability that a constraint exists between a pair
of variables, and p2 as the tightness of constraints [17]. In
this research, two criteria are used to modify the CSP ins-
tances used in the experiments. The first criterion is the size
of the problem, which can be modified through the change
of the number of variables (n) and the size of the uniform
domain size (m). The second criterion is the tightness of the
constraints, which is related to the value of ps. The collec-
tion includes 460 different instances: 230 for training and
the same number for testing. Both the training and testing
sets are composed by instances taken from the following two
groups:

e Group I. Instances with constant number of variables
and variable uniform domain size. These instances are
divided into nine subgroups of 20 instances each: Al
(n =10, m = 10), A2 (n = 10, m = 15), A3 (n = 10,
m = 20), B1 (n = 15, m = 10), B2 (n = 15, m = 15),



B3 (n = 15, m = 20), C1 (n = 20, m = 10), C2
(n =20, m = 15) and C3 (n = 20, m = 20). There is
a different group I for training and for testing.

Group II. Instances with constant size and variable
probability of conflict generation. These instances con-
tain 10 variables with a uniform domain size of 10 and
p1 of 0.5. They are divided into five subgroups of 10
instances each: D1 (p2 = 0.2), D2 (p2 = 0.4), D3 (p2
= 0.6), D4 (p2 = 0.8) and D5 (p2 = 1.0).

The training set was used to generate the general hyper-
heuristic shown in Table 1, which represents the best indi-
vidual in the last generation of the training process from our
best run. It includes 9 rules indicating the different problem
states and the associated heuristic to be applied. In the re-
sulting hyper-heuristic, we can observe that despite the same
single heuristic appears more than once in the action part,
the conditions for applying it are quite different.

Table 1: General Hyper-heuristic produced by the
GA.

v d c 1c mc sc r k h
0.27 1.71 0.83 0.46 -0.47 -0.95 0.10 -0.08 FF
-0.74 -1.91 -0.55 0.37 0.82 0.24 1.64 -0.51 Rho
0.71 0.68 -0.99 -0.24 -0.21 0.00 -0.17 0.90 E(N)
0.42 -1.80 0.55 -0.61 -0.80 -0.64 -1.44 -0.67 FF
0.10 1.49 -0.41 -1.24 -0.23 0.38 -1.32 -1.13 E(N)
-0.15 0.03 0.97 -0.96 -0.57 -0.39 0.39 -1.25 Bz
-0.60 -1.56 -0.30 0.50 -0.55 0.52 0.52 -0.01 Bz
1.25 -0.47 -0.32 0.67 1.22 -0.43 -0.44 0.63 Bz
0.08 0.85 -1.41 0.38 -1.04 -0.15 -0.74 0.46 mFF

Aiming at testing the model effectiveness, three kinds of
experiments were carried out.

3.1 Experiment Type I

In this experiment we test the general hyper-heuristic with
a specific subset of instances from both the training and
the testing set. The number of variables (n) was set to
the values 10, 15 and 20. All the other parameters were
constant and set as follows: m = 10, p1 =0.5 and p2 =0.5.
This experiment used instances from group I (Al, Bl and
C1).

Next, we solved independently both the instances in the
training and testing set using the general hyper-heuristic
from Table 1. Results are compared against those generated
by the best result from the low level heuristics. Table 2
sumarizes the results from this experiment and clasifies them
in three main categories:

1. When the hyper-heuristic makes less consistency checks
than the best result obtained from the use of the low
level heuristics for certain instance.

When the hyper-heuristic makes the same consistency
checks than the best result from the the use of the low
level heuristics for certain instance. A difference of
+3% is considered as if both approaches use the same
amount of consistency checks.

When the hyper-heuristic makes the more consistency
checks than the best result from the the use of the low
level heuristics for certain instance.

It is interesting to see, if we focus in the results obtained
by the hyper-heuristic, that 60% of problems in the training

Table 2: Results from experiment type I.

Reduction Equal Increment
Set > 15% 15% to 3% + 3% 3% to 15% > 15%
Training 0.00 0.00 60.00 16.67 23.33
Testing 0.00 0.00 51.67 8.33 40.00

set were solved with no extra consistency checks or even with
a little reduction compared with the best result from the low
level heuristics. In 16.67% of problems, the hyper-heuristic
obtained solutions with a number of consistency checks bet-
ween 3 and 15% more than the best heuristic. Finally, in
a 23.33% of the instances the hyper-heuristic required more
than 15% of consistency checks than the best heuristic. It is
important to emphasize that the best single heuristic is not
always the same for all instances.

For the testing set, whose instances were not seen before
by the hyper-heuristic, results show that the hyper-heuristic
has a good performance in 51.67% problems, using the same
amount of consistency checks than the best heuristic, more
than 3% but lower than 15% in 8.33% of problems and more
than 15% in 40% of the instances.

The results obtained from the experiment type I, when
using the general hyper-heuristic to solve the training set,
are shown in Figure 2. It is also included the average con-
sistency check from all the low level heuristics.
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Figure 2: Results of experiment type I with instan-
ces from training set.

Figure 3 shows the results from experiment type I for the
testing set.
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Figure 3: Results of experiment type I with instan-
ces from testing set.

We can observe in both figures that, in general, the hyper-
heuristic behaves well when is compared against the best
result from the low level heuristics. In some cases, the
general hyper-heuristic reduces the number of consistency
checks needed to solve the problem using the best heuristic.




We present the number of consistency checks expressed as a
logarithm, as presented by Prosser [17]. If we compare the
results with the average of the low level heuristics, we can
clearly identify that the hyper-heuristic is better for almost
all cases. This difference in the performance exists because,
as we mentioned before, there is not a low level heuristic
good for all instances. Furthermore, in some cases a heuris-
tic requires too many consistency checks and increments the
average value.

3.2 Experiment Type 11

For this experiment we tested the general hyper-heuristic
with another subset of instances chosen from both the train-
ing and the testing set. This problems are harder to solve
than those presented in the experiment type I. The uniform
domain size (m) was set to the values 10, 15 and 20. All the
other parameters were constant and set as follows: n = 15,
p1 =0.5 and p2 =0.5. This experiment used the group I
instances (B1, B2 and B3).

For this second experiment, the results show that the
hyper-heuristic has a competitive performance, but is far
from representing a drastic reduction in the number of con-
sistency checks needed to solve the instances. For the train-
ing set, about the 42% of all the instances were solved with
the same performance with both the best low level heuristic
and the general hyper-heuristic. For the 37% of the ins-
tances, the results are less encouraging, because the require
more than 15% of consistency checks to solve the problems.
In the Testing set the results are similar to those in the
training set. A 32% of the instances is solved with the same
number of consistency checks (or with a worthless diffe-
rence). Again, almost half of the instances required more
than 15% consistency checks to be solved when using the
general hyper-heuristic. These results are summarized in
Table 3.

Table 3: Results from experiment type II.

Reduction Equal Increment
Set > 15% 15% a 3% + 3% 3% a 15% > 15%
Training 0.00 0.00 41.67 20.00 36.67
Testing 0.00 0.00 31.67 16.67 51.67

If we compare the performance of the best result of the low
level heuristics, the general hyper-heuristic and the average
of the low level heuristics, we can observe that the approach
exhibits a competitive behavior in most of the cases. How-
ever, in the cases where the hyper-heuristic reduces the num-
ber of consistency checks, does not represent a reduction
greater than 3%. Figure 4 shows the results of experiment
I for the training set.

Figure 5 shows the results from experiment type II for the
testing set.

In these figures we observe a similar behavior than in ex-
periment I. When compared to the average number of con-
sistency checks, the general hyper-heuristic proves to be a
good approach to solve this kind of problems. At about
95% of all the instances in the training and testing set are
solved with a smaller number of consistency checks than the
average of the low level heuristics, representing a reduction
greater than 15% in all cases.

3.3 Experiment Type II1

For this last experiment, the number of variables and the
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Figure 4: Results of experiment type II with instan-
ces from training set.
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Figure 5: Results of experiment type II with instan-
ces from testing set.

uniform domain size were set to 10. The value of p; was
set to 0.5. The parameter p2 varied between the values
0.2 and 1.0, with increments of 0.2. This experiment used
instances from the group II (D1, D2, D3, D4 and D5) from
both the training and the testing set. We observe in the
results from Figure 6 and 7 that, for a value of p2 < 0.4 and
p2 > 0.8 both the best low level heuristic and the general
hyper-heuristic show the same performance. For 0.4 < p2 <
0.8 there are minimal differences. The results show that
the transition phase is located in p2 around 0.4 (related to
problem hardness).
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Figure 6: Results of experiment type III with ins-
tances from training set.

Figure 7 shows the results from experiment type III for
the testing set.

In these plots is clear that, when a problem is either un-
derconstrained or overconstrained is fast to find the solu-
tion or to determine that there is not any. For values of ps
smaller than 0.6 and greater than 0.8 we observe that both
the best low level heuristic and the general hyper-heuristic
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Figure 7: Results of experiment type III with ins-
tances from testing set.

have the same performance. For values of 0.6 < p2 < 0.8
there are differences that can be observed in the figures. In
most of the cases the best result from the low level heuris-
tics requieres less consistency checks than the general hyper-
heuristic, but for some instances the hyper-heuristic reduces
the number used by the best heuristic. If we compare the
general hyper-heuristic against the average of consistency
checks of low level heuristics, the results are outstanding,
because the hyper-heuristic is never worse than the average
of the low level heuristics.

The detailed results from experiment III are presented in
Table 4.

Table 4: Results from experiment type III.

Reduction Equal Increment
Set > 15% 15% a 3% + 3% 3% a 15% > 15%
Training 0.00 0.00 63.33 15.00 21.67
Testing 0.00 0.00 58.33 13.33 28.33

3.4 Analysis on the hyper-heuristics produced

Looking at the results, it is clear in certain cases, that the
method to form hyper-heuristics, and the hyper-heuristics
themselves are not efficient yet, at least with respect to the
number of consistency checks used for each instance if com-
pared against the best result from all the single heuristics.
The GA-based procedure has found hyper-heuristics com-
posed of a set of rules which associate the problem state to
a combination of variable ordering heuristics. However, it is
important to get a better feeling of the real advantages or the
proposed approach, and the practical implications of using
it. For example, regarding the computational cost for deliv-
ering solutions by our approach, it is slightly higher than the
time used by the simple heuristics which run in just few se-
conds. When comparing the hyper-heuristics versus the best
result from the single low level heuristics the behavior is less
efficient for several cases. However, we must recall that the
best result was not always produced by the same heuristic,
and in real cases there is no way to know that one heuristic
is good for every instance of the problems. There are certain
characteristics that make one heuristic more suitable than
another.

When comparing the hyper-heuristic against the consis-
tency checks average used by all the low heuristics the results
are encouraging. For every instance in the training set the
hyper-heuristic requieres less consistency checks than the
average from the low level heuristics. When applying it to
the testing set the results are similar: a 0.02% of the instan-

ces were solved using more consistency checks than the ave-
rage from low level heuristics. Compared to the average, the
hyper-heuristic is capable of reducing in many cases more
than the 15% of the consistency checks used by the average
of the single heuristics.

Results also confirm the aim behind hyper-heuristics that
by exploiting the problem-specific features by means of choos-
ing a set of heuristics which best adapt to that, a better
performance can be achieved.

We finally compare the best three individuals of the last
generation for all runs performed. This is, three different
hyper-heuristics generated by our solution model. The re-
sults presented in figure 8 show that these heuristics have
a similar behavior for many instances, but there are differ-
ences that make the general hyper-heuristic (H H1) the best
option to solve a wide range of CSP instances.
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Figure 8: Results of experiment type II when using
three hyper-heuristics with instances from testing
set.

Table 5 presents a comparison between the percentage of
reduction or increment of consistency checks used by these
three hyper-heuristics and the best result from the low level
heuristics.

Table 5: Results from the comparisson of three
hyper-heuristics.
Reduction Equal Increment
> 15% 15% a 3% + 3% 3% a 15% > 15%
HHq 0.00 0.00 41.67 20.00 36.67
HHo 0.00 1.67 11.67 18.33 68.33
HHg 1.67 0.00 6.67 11.67 80.00

Even when H Hs is capable of reducing in 1.67% the num-
ber of constraint checks used by the best low level heuristic,
it presents a very poor behavior for most of the instances.
H H> has also a less efective performance than H H;. From
these last results we can observe that H H; is the best hyper-
heuristic from the three options.

4. CONCLUSIONS AND FUTURE WORK

This document has described experimental results in a
model based on a variable-length GA which evolves combi-
nations of condition-action rules representing problem states
and associated selection heuristics for the dinamic variable
ordering problem in CSP. These combinations are called
hyper-heuristics. Overall, the scheme identifies efficiently
general hyper-heuristics after going through a learning pro-
cedure with training and testing phases. When applied to
unseen examples, those hyper-heuristics solve many of the




problems very efficiently, in a few cases a better than the
best single heuristic for each instance.

Ideas for future work involve extending the proposed stra-
tegy to solve problems including heuristics for value ordering
and include another algorithms for the CSP solving module,
etcetera. It would be also interesting to work the approach
for including not uniform domain size for every variable.

S.

ACKNOWLEDGMENTS

This research was supported in part by ITESM under the
Research Chair CAT-010 and the CONACYT Project under
grant 41515.

[4]

(10]

(11]

REFERENCES

W. Banzhaf, P. Nordin, R. E. Keller, and F. D.
Francone. Genetic programming: An Introduction.
Morgan Kaufmann Publishers, Inc, London, 1998.

D. Brelaz. New methods to colour the vertices of a
graph. Comunications of the ACM, 22, 1979.

E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and
S. Schulenburg. Hyper-heuristics: An emerging
direction in modern research technolology. In
Handbook of Metaheuristics, pages 457-474. Kluwer
Academic Publishers, 2003.

B. G. W. Craenen, A. E. Eiben and J. I. van Hemert.
Comparing evolutionary algorithms on binary
constraint satisfaction problems. Evolutionary
Computation, IEEE Transactions on, 7(5):424-444,
2003.

R. Dechter and I. Meiri. Experimental evaluation of
preprocessing algorithms for constraint satisfaction
problems. Artificial Intelligence, 38(2):211-242, 1994.
D. B. Fogel, L. A. Owens, and M. Walsh. Artificial
Intelligence through Simulated Evolution. Wiley, New
York, 1966.

M. Garey and D. Johnson. Computers and
Intractability. W.H. Freeman and Company, New
York, 1979.

I.P. Gent, E. Maclntyre, P. Prosser, B.M. Smith, and
T.Walsh. An empirical study of dynamic variable
ordering heuristics for the constraint satisfaction
problem. In Proceedings of CP-96, pages 179-193,
1996.

D. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Adison Wesley,
1989.

D. Goldberg, B. Korb, and K. Deb. Messy genetic
algorithms: Motivation, analysis and first results.
Complex Systems, pages pp. 93-130, 1989.

B. L. Golden. Approaches to the cutting stock
problem. AIIE Transactions, 8:256-274, 1976.

578

(12]

(13]

(14]

[24]

R. M. Haralick and G. L. Elliott. Increasing tree
search efficiency for constraint satisfaction problems.
Artificial Intelligence, 14:263-313, 1980.

J. Holland. Adaptation in Natural and Artificial
Systems. The University of Michigan Press, Ann
Arbor, 1975.

E. Marchiori and A. Steenbeek. A genetic local search
algorithm for random binary constraint satisfaction
problems. Proceedings of the 2000 ACM symposium on
Applied computing. Volume 1, pages 458-462. Como,
Ttaly. 2000.

S. Minton, M. D. Johnston, A. Phillips, and P. Laird.
Minimizing conflicts: A heuristic repair method for
csp and scheduling problems. Artificial Intellgence,
58:161-205, 1992.

S. Minton, A. Phillips, and P. Laird. Solving
large-scale csp and scheduling problems using a
heuristic repair method. In Proceedings of the 8th
AAAI Conference, pages 17-24, 1990.

P. Prosser. Binary constraint satisfaction problems:
Some are harder than others. In Proceedings of the
FEuropean Conference in Artificial Intelligence, pages
95-99, Amsterdam, Holland, 1994.

I. Rechenberg. Evolutionstrategie: Optimierung
technischer systeme nach prinzipien dier biolischen
evolution. Frommann-Holzboog, Stuttgart, 1973.

P. Ross, J. M. Bldzquez, S. Schulenburg, and E. Hart.
Learning a procedure that can solve hard bin-packing
problems: A new ga-based approach to
hyper-heuristics. Proceedings of GECCO 2003, pages
1295-1306, 2003.

S. Russell and P. Norvig. Artificial Intelligence A
Modern Approach. Prentice Hall, 1995.

H. P. Schwefel. Numerical Optimization of Computer
Models. Wiley, Chinchester, UK, 1981.

H. Terashima-Marin, R. Calleja-Manzanedo and M.
Valenzuela-Rendén. Genetic Algorithms for Dynamic
Variable Ordering in Constraint Satisfaction
Problems. Advances in Artificial Intelligence Theory,
16: pages 35-44, 2005.

H. Terashima-Marin, C. J. Farias-Zérate, P. Ross and
M. Valenzuela-Rendén. A GA-Based Method to
Produce Generalized Hyper-heuristics for the
2D-Regular Cutting Stock Problem. Proceedings of the
8th annual conference on Genetic and evolutionary
computation, pages 591-598. Seattle, Washington,
USA, 2006

R. A. Wilson and F. C. Keil. The MIT Encyclopedia
of the Cognitive Science. MIT Press, Cambridge,
Massachussets, 1999.



