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a b s t r a c t

Instead of the genetic operators such as crossover and mutation, compact Genetic Algorithms (cGAs)
use a probability vector (PV) for the current population to reproduce offsprings of the next generation.
Therefore, the original cGA can be easily implemented with no parameter tuning of the genetic oper-
ators and with reducing memory requirements. Many researchers have suggested their own schemes
to improve the performance of the cGA, such as quality of solutions and convergence speed. However,
these researches mainly have given fast convergence to the original cGA. They still have the premature
convergence problem resulting in the low quality of solutions. Besides, the additional control parameters
such as � of ne-cGA are even required for several cGAs. We propose two new schemes, called cGABV
(an acronym for cGA using belief vectors) and cGABVE (an acronym for cGABV with elitism), in order
to improve the performance of conventional cGAs by maintaining the diversity of individuals. For this
purpose, the proposed algorithms use a belief vector (BV) instead of a PV. Each element of the BV has a
probability distribution with a mean and a variance, whereas each element of a PV has a singular proba-

bility value. Accordingly, the proposed BV enables to affect the performances by controlling the genetic
diversity of each generation. In addition, we propose two variants of the proposed cGABV and cGABVE,
Var1 and Var2, employing the entropy-driven parameter control scheme in order to avoid the difficulty
of designing the control parameter (�). Experimental results show that the proposed variants of cGAs
outperform the conventional cGAs. For investigating the diversity of each cGA, the entropy is employed

nera
perim
and calculated at each ge
through the additional ex

. Introduction

The original compact Genetic Algorithm (cGA) [1] is one of
stimation of distribution algorithms (EDAs), which use proba-
ility density functions estimated from the current population to
eproduce offsprings of the next generation instead of the genetic
perators such as crossover and mutation. The original cGA firstly
ntroduced in [1] has mainly two advantages in comparison with
he simple GA (sGA) which employs uniform crossover. First, the
riginal cGA is easily implemented without tuning parameters
f the genetic operators according to a given problem. In other
ords, the original cGA basically requires no specified knowl-

dge to tune the parameters so that common users may easily
mplement the original cGA to solve their own problems with-

ut prior knowledge about the GA. In addition, the cGA is more
seful to solve the problems with memory constraints because
he cGA reduces the memory requirements from L · N of the sGA
o L · log 2(N + 1) (L: the length of a chromosome, N: the popula-
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tion. Finally, we discuss the effect of � related to the variances of the BV
ent.

© 2010 Elsevier B.V. All rights reserved.

tion size) [1,2]. Therefore, some researchers have already applied
the cGAs to the practical problems such as the intrinsic evolv-
able hardware [3], partitioning and placement of the multi-FPGA
systems [4,5], the traveling salesman problems (TSPs) [6], motor
control [7], and the hierarchical sensor network management
[8].

The performance of the cGA is commonly evaluated by two
measures: quality of solutions and convergence speed [1,9–11].
Moreover, these two measures generally have a trade-off relation-
ship with each other in the conventional cGAs. The original cGA
shows comparable performances to the sGA in terms of both mea-
sures for easy problems involving the low order building blocks
(BBs) [1]. However, the original cGA shows poor performances
for solving difficult continuous multimodal problems. In [1], a
parameter, called a ‘tournament size’, is suggested to improve this
drawback by controlling the selection pressure. A ‘tournament size’
represents the number of individuals participating in the selection
of a winner. Therefore, if a tournament size gets larger, the selection

pressure becomes higher so that the convergence speed of the cGA
is improved. At the same time, however, the quality of solutions
gets worse than the sGA under the same population size because
a local optima problem (i.e., the premature convergence) tends to
occur due to the high selection pressure. Furthermore, this scheme

dx.doi.org/10.1016/j.asoc.2011.01.010
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
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equires the additional memory in proportion to the tournament
ize.

Since then, there have been various related works to improve
he performances of the cGA and to keep the benefits of the origi-
al cGA, such as efficient memory requirements and the simplicity

or the implementation. Conventional methods are roughly catego-
ized into four kinds of cGAs: the cGAs combined with a local search
ethod [4,6,12], the cGAs combined with a genetic strategy (e.g.,
utation) [3,10,13], the cGAs employing elitism [3,9], and the cGAs

sing a different updating strategy of the PV [14], respectively.
Firstly, Harik et al. [12] presented an extended cGA (EcGA) for

olving complex problems by using the marginal product model
MPM) search algorithm. MPMs are formed as a product of marginal
istributions on a partition of the genes. Unlike the models used

n the cGA, MPMs can represent probability distributions for more
han one gene at a time. Thus, the EcGA can find the better solutions
or the difficult problems, whereas the EcGA requires additional

emory and more computational costs per a function evaluation.
araglia et al. [6] tried to combine the cGA with a Lin–Kernighan
LK) local search algorithm for solving the TSPs. Their algorithm can
chieve the better solutions for the TSPs than other conventional
ethods. Hidalgo et al. [4,5] also proposed a hybrid parallelized

GA-LK for solving the partitioning and placement of the multi-
PGA systems.

Secondly, Zhou et al. [10] proposed the mutated by bit cGA
MBBCGA) in which every bit of an individual is mutated one by
ne and every newly mutated individual is evaluated to compete
ith the previous individual at each generation. Anh et al. [13]
roposed an augmented cGA (acGA) using tournament selection
ithout replacement (TS/R). In the original cGA, if same individu-

ls begin to appear in a generation because of convergence of the
V to a solution (i.e., when many elements of the PV nearly equal
o 1 or 0), evolution process slows down until different individu-
ls appear. The acGA tried to solve the slowdown problem in the
teady state phase of evolution by flipping non-convergent genes
ith a probability. Since flipping non-convergent genes helps make

ndividuals different from each other, the acGA slightly improves
he performance of the cGA.

Thirdly, Anh et al. [9] proposed two elitism-based cGAs: the
ersistent elitist cGA (pe-cGA) and the nonpersistent elitist cGA
ne-cGA). The pe-cGA and ne-cGA combine the original cGA with
he elitist selection method, where the fittest individual of each
eneration is guaranteed to be selected as the parent of the off-
prings in the next generation. The elitism of the pe-cGA leads to
he faster convergence because the pe-cGA keeps the best solution
n the next generation until the better solution appears. However,
he pe-cGA shows poor quality of solutions due to the premature
onvergence. On the other hand, since the ne-cGA does not persis-
ently keep the best and ne-cGA reinitializes the best individual in
n effective manner, the selection pressure of the ne-cGA is reduced
o avoid the premature convergence (i.e., convergence to a local
olution). The parameter �, called the allowable length of the elite
hromosome’s inheritance, should be also preset properly accord-
ng to the problems. (In [9], � = 0.1N, where N is the population
ize.) However, the addition of elitism still leads to the loss of qual-
ty of solutions in comparison with the original cGA, even if the
onvergence speed is improved as faster.

Finally, Rimcharoen et al. [14] presented the moving average
echnique to modify the update rate of the PV in the cGAs. The

oving average technique prevents the PV from rapidly converg-
ng to an unreliable solution. The presented cGAs can improve the

uality of solutions with a smaller number of function evaluations

n compared with the original cGA. However, this scheme relatively
as the slow convergence in compared with the elitism-based cGAs
pe-cGA and ne-cGA). Furthermore, since the moving average win-
ow size (M), denoted as a control parameter of this schemes, has
ting 11 (2011) 3385–3401

few effects on the quality of solutions and the number of func-
tion evaluations, the tournament size is applied to improve the
converging speed as in [1].

The aim of this paper is to propose new schemes which can
easily control the performances (the quality of solutions and the
convergence speed) without any complex additional methods and
without the loss of advantages of the original cGA. For this pur-
pose, firstly, it is required that the advantages of the original cGA,
such as the less memory requirement and simpler implementation
than other EDAs and GAs [1,2,7], are carried in the proposed cGAs.
Next, the proposed cGAs in this paper improve the quality of solu-
tions as well as the convergence speed, while the conventional cGAs
mainly focused on the fast convergence. Accordingly we recall that
the genetic diversity in GAs is a pretty important factor to decide the
performances [15]. It is inferred that the genetic diversity mainte-
nance leads to explore with avoiding premature convergence also
in cGAs. Moreover, the quality of solutions in the proposed cGAs is
less affected by the population size unlike in the conventional cGAs.
It describes that the proposed cGAs can produce the high quality
solutions with the low population size by relevantly controlling the
genetic diversity.

The key idea for these requirements is to apply the concept of
‘probability of probability’ to the PV of the original cGA. For this
purpose, we propose that each element of the PV has a proba-
bility distribution (e.g., a normal distribution) with a mean and a
variance, instead of a singular value. The similar assumption was
presented by the stochastic hill climbing with learning by vectors of
normal distributions (SHCLVND) [16]. SHCLVND also use a normal
distribution instead of a singular value to represent a real-coded
variable. This representation using a probability distribution has
been extended to the other EDAs in order to concern the depen-
dencies among the variables [17]. In the same manner, we can use
a probability distribution instead of a single probability value as the
element of the PV in the cGA. Therefore, this probability distribu-
tion (belief function) implies the certainty of the PV with which
genes of offsprings are defined as 1. In other words, the higher
‘degree of belief’ of the probability means that the probability is
more reliable and vice versa. Finally, a belief vector (BV), similar
to a vector of normal distributions [16], is proposed instead of the
conventional PV of the cGA. The BV employs the concept of ‘degree
of belief’ to the PV by using a probability distribution model for each
element. Each element of the BV is represented as a probability dis-
tribution with a center and width which, respectively, represent the
mean and uncertainty of the probability value. In the beginning of
evolution, all the elements of the BV (i.e., probability models) are
unreliable due to insufficient information from scanty samples of
the early generations. Thus, a variance of each element is assigned
as high to get the high uncertainty. As evolution proceeds, a vari-
ance of each element of the BV is proposed to decay in accordance
with the predesigned control parameter (�) because it is commonly
assumed that the probability models of the BV are reliably adapted
during the succession of generations. Finally, we propose two cGAs
using the BV: cGABV and cGABVE. The former uses the BV without
elitism, while the later uses the BV with elitism. The proposed cGAs
are defined without any complex additional local search methods.
Also, they can be easily implemented without additional memory
requirements. However, there still remains the difficulty of appro-
priately designing additional parameter � according to the given
problem. To avoid this difficulty, the entropy-driven parameter
control algorithm is employed to automatically adjust the control
parameter � regardless of the given problems. ‘Var1’ means the

variant applying the entropy-driven scheme to the cGABV. ‘Var2’
represents the variant applying the entropy-driven scheme to the
cGABVE.

To evaluate the performance of the proposed cGAs, we com-
pare the proposed cGAs with the original cGA, pe-cGA, and ne-cGA



J.-Y. Lee et al. / Applied Soft Compu

F
u

w
a
t
p
i
i
t
t
V
t
F
w

r
u
S
c
v
p
t
v
5

2

b

d
o
t
T
p

becomes a special case of � → 0 in this definition of the BV. As
ig. 1. Pseudocode of the original cGA. ‘rand( )’ represents that it generates the
niform random number in the range of (0,1).

hich have the most reliable performances for various problems
mong the existing cGAs. Accordingly, as similar to these conven-
ional cGAs, numerical experiments are performed with various
roblems involving the continuous unimodality and multimodal-

ties. Moreover, the quantitative diversity measure of the cGAs is
nvestigated by using the entropy of probability models. To inves-
igate the effect of the elitism in the propose cGAs, we compare
he proposed cGABV with the proposed cGABVE. We also compare
ar1 and Var2 with the cGABV and cGABVE to verify the effect of

he entropy-driven parameter control scheme in the propose cGAs.
urthermore, we also discuss the effect of the control parameter (�)
ith the additional experimental results.

The remainder of this paper is as follows. In Section 2, we briefly
eview the original cGAs. After that, we describe the proposed cGAs
sing the BV in compared with the original cGA using the PV in
ection 3. In Section 3, the elitism is also considered for the fast
onvergence due to the higher selection pressures. Moreover, two
ariants employing the entropy-driven � control scheme are pro-
osed in this section. Finally, after the experimental results show
he superiority of the proposed cGAs in comparison with the con-
entional cGAs in Section 4, we conclude this paper in Section
.

. The original cGA

In this section, we briefly review the original cGA and the PV,
efore we present the proposed algorithms.

Fig. 1 describes a pseudo-code of the original cGA [1], where L

enotes the bit length of one chromosome. The i th element value
f the PV means the i th gene’s probability. In the framework of
he original cGA, firstly, each element of the PV is initialized as 0.5.
hus, each gene is randomly generated by 0 or 1 with the same
robability in the first generation. After two individuals are evalu-
ting 11 (2011) 3385–3401 3387

ated and competed with one another, each probability is updated
to favor the winner individual (See Step 4 in Fig. 1).

In the original cGAs, each element of the PV denotes a value of
probability to assign 1 to the i th gene of an individual. In each gen-
eration, pj

i
is updated as much as 1/N (i.e., an update rate), where N

denotes the population size. Hence, increasing the population size
(N) results in increasing the number of steps needed for the ele-
ments of the PV to converge to 0 or 1 and leading to exploration. In
other words, if the chances that the genetic diversity is maintained
increase with increasing N, the quality of solutions also gets higher.
However, the slowdown of convergence occurs at the same time.
Furthermore, if some elements of the PV begin to converge to 0 or
1, the expressive range (i.e., diversity) of the variable generated by
this PV becomes too small so that the evolution of a population is
stagnant until two different individuals appear. If the population
size (N) becomes smaller, this stagnant phase is likely to occur in
an early stage of evolution. Hereby, the solutions tends not only to
have premature convergence (i.e., converge to a locally optimized
solutions), but also to keep on staying around local solutions.

3. The proposed cGAs

In this section, we present the proposed algorithms in detail. We
also describe the difference between the PV of the original cGA and
the BV of the proposed cGAs. Furthermore, the elitism is consid-
ered for improving the convergence speed of the proposed cGAs. In
addition, the entropy measure is applied to reasonably analysis the
diversity maintenance of a population in the cGAs. Finally, we intro-
duce the entropy-driven parameter control scheme to compensate
the defect due to the additional control parameter �.

3.1. The proposed cGA using BVs (cGABV)

Fig. 2 describes a pseudo-code of the proposed cGA. As previ-
ously mentioned, the concept of a BV is mainly distinguishable for
the original cGA. We enhance the PV of the cGA by employing a
probability distribution for each element. The original cGA is cho-
sen as a parent algorithm and the proposed BV is embedded in the
cGA to improve its performance and to prevent the algorithm from
falling into the premature convergence. A variance of probability
distribution models, called a belief function, represents how the
singular value of each probability (element) used to generate each
gene (0 or 1) is unknown and untrustworthy. Thus, each probabil-
ity value used to generate each gene is obtained from this belief
function. Therefore, the BV is defined as a set of real-coded val-
ues including a mean and a standard deviation (i.e., a center and
a width). The belief vector of the j th generation BVj is defined as
[�j

1, �j
1, �j

2, �j
2, · · · , �j

L, �j
L], where L denotes the length of a chro-

mosome. �j
i

and �j
i
, respectively, describe a mean and a standard

deviation of a belief function with regard to the i th gene in the j th
generation. In our work, all the �j

i
are referred as identical regard-

less of the genes to minimize the additional memory requirements.
Besides, a normal distribution (Gaussian distribution) is applied to
define a belief function for i th gene as follows:

f j
bel,i(x, �j

i
, �j

i
) = 1√

2��j
i

e((−(x−�j
i
)
2

)/2(�j
i
)
2

). (1)

As shown in Fig. 3, a variance produces the probability (uncer-
tainty) of a probability value that a gene becomes 1. Hence the PV

j

i

the uncertainty of a probability value increases with increasing a
variance (i.e., a width of a distribution), the diversity of a popula-
tion is also maintained, and vice versa. Furthermore, the shape of
f j
bel,i needs to properly change as evolution proceeds (e.g., as a → b
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Fig. 2. Pseudocode of the proposed cGABV. ‘rand( )’ represents

c in Fig. 3). For this purpose, the diversity should be guaranteed
nough that the exploration of populations in the early generations
igorously occurs to avoid a premature convergence. In the end
f generations, the selection pressure becomes higher as decreas-
ng uncertainties of the belief functions for the exploitation in the
icinity of a global solution. For this purpose, the variance in the j
h generation is defined as follows:

j
i
= �0 ·

(
1.0 + tanh

(
−�

j

Nmax

))
. (2)

n Eq. (2), Nmax denotes the maximum number of function evalua-
ions and this function is monotonically decreasing as generations
o by. The full width at half maximum (FWHM), considered as a
imple measure of the width of a distribution, should be less than
.5 for a probability value randomly generated from the belief func-
ion (normal distribution) to nearly stay in the range of [0, 1]. Hence,
0 = 0.5/(2

√
2 ln 2) � 0.2123 according to the relation between

he FWHM and �j
i

for a Gaussian function. Furthermore, the vari-

nce curves change according to �, as shown in Fig. 4. The larger
results in the faster reduction of the variance which describes

he degree of certainty, and vice versa. Experimental results show
hat � noticeably affects the performance of the proposed cGAs. In
articular, when the variance is greater than the update rate (1/N)
it generates the uniform random number in the range of (0,1).

of the mean value, the variance affects to generate the probability
value for each element (See Step 4 in Fig. 2). As evolution proceeds,
the affects of a variance gradually become insignificant due to con-
tinuous decrease of a variance. Therefore, in the same manner to
calculate �0 by using the FWHM, an inequality can be formulated
as follows:

1
2

(
1 + tanh

(
−�

je
Nmax

))
≥ 1

N
, (3)

where je means a boundary of generations in which the variance is
more effectible to the probability (pi) of elements than the update
rate of the mean value. Eq. (3) can be rewritten as

tanh−1
(

2
N

− 1
)

≤ −�
je

Nmax
. (4)

Here

tanh−1 x = 1
2

[ln(1 + x) − ln(1 − x)] . (5)
From this, Eq. (4) can be rewritten as follows:

1
2�

ln (N − 1) ≥ je
Nmax

. (6)

Therefore, if the population size and � are, respectively, given as 100
and 10, je ≤ 0.2298Nmax. In other words, if the maximum number of
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Fig. 3. The belief functions in various conditions. Each condition is as follows: (A)
�i = 0.5, � i = 0.1, (B) �i = 0.8, � i = 0.07, (C) �i = 0.99, � i = 0.02 and (D) �i = 0.5, � i = 0.05.
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s shown in this figure, if mean values of two belief functions are identical to each
ther but variances are different from each other (as between A and D), the proba-
ilities generated from two belief function may differ from each other with various
egrees of uncertainties.

unction evaluations is 4000, the variance loses effect after about
19th generation so that cGAs using the BV may become almost
imilar to cGA using the PV afterwards.

.2. Use of the elitism

Use of the elitism is a simple way to obtain the higher selection
ressure. The elitism leads the fast convergence rate also in the pro-
osed cGA using the BV. To combine the elitism with the previously
roposed cGABV, the procedure of Fig. 5 is added to the peudocode
f the proposed cGA, which is called the proposed cGABVE.

.3. Diversity measure for the cGAs
In this paper, the concept of entropy is applied to evaluate
he diversity in the cGAs. The Shannon entropy is a measure of
he uncertainty associated with a random variable. Actually, this
ntropy has been presented in evolutionary computation as a diver-

ig. 4. The change of the variance in accordance with �. �0 = 0.5/(2
√

2 ln 2) �
.2123.
Fig. 5. Additional pseudocodes for the proposed cGABVE.

sity measure of a population modeled by a probability distribution
[15,18,19]. In order to investigate the diversity of the cGA, entropy
of the j th generation is calculated as follows:

Dj = −
L∑

i=1

pj
i
· log pj

i
. (7)

pj
i

means a singular probability of each element in case of the PV,

whereas pj
i

in the BV means a random number generated from the

distribution f j
bel,i

(x, �j
i
, �j

i
) using Box–Muller transformation [20].

As investigating the diversity of each cGA, we show that there are
different behaviors between the conventional cGAs and the pro-
posed cGAs in the next section.

3.4. Entropy-driven � control for cGABV and cGABVE

Entropy-driven parameter control for evolutionary algorithms
(EAs) are proposed in [21]. In [21], the control parameters such
as the crossover rate and mutation rate are adjusted according to
the entropy value. In the same manner, we modify the entropy-
driven control written in programmable parameter control for EA
(PPCEA) [21] in order to avoid the difficulty of tuning � according
to the given problems. Algorithm 3.1 describes the pseudocode of
the entropy-driven scheme used in this paper. Algorithm 3.1 is per-
formed between Step 4 and Step 5 in the cGABV and between Step
6 and Step 7 in the cGABVE.

Algorithm 3.1 (Entropy-driven � control scheme for cGABV and
cGABVE).

After calculating the entropy Dj at the j th generation, adjust � as follows:
if Dj > 0.6then

�j+1 = �j × 1.22
else

if Dj < 0.4then

�j+1 = �j × 0.82

end if
else

�j+1 = �j

end if.



3390 J.-Y. Lee et al. / Applied Soft Computing 11 (2011) 3385–3401

Table 1
Test functions.

Problems Name Function

f1 OneMax problem f1(x) =
∑m

i=1
xi (xi = 0 or 1)

f2 MDP problem f2(x) =
∑m

i=1
g2(x2i) a

f3 3-Bit trap problem f3(x) =
∑m

i=1
g3(x3i) b

f4 De Jong’s function 1 f4(x) =
∑m

i=1
x2

i

f5 Circle function f5(x) =
(∑m

i=1
x2

i

)1/4
·
[

sin2
(

50 ·
(∑m

i=1
x2

i

)1/10
)

+ 1.0

]

f6 Schaffer’s binary function f6(x) = 0.5 +
sin2

(√∑m

i=1
x2

i

)
−0.5(

1.0+10−3 ·
(∑m

i=1
x2

i

))2√∑m
x2

∑m
cos(c·x )

i
t
v
a
w
p

4

c
d
t
T
c
p
u
o
a
b
a
o
f

4

u
e
‘
a
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e
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a

1

f7 Ackley’s path function

a g2(x2i) and g3(x3i) are fully described in Eqs. (8) and (9), respectively.
b m denotes the number of variables (see Table 2). x = {x1, x2, · · · , xm}.

As shown in Algorithm 3.1, as entropy is greater than 0.6, � is
ncreased to facilitate the exploitation phase. As entropy is smaller
han 0.4, more exploration is needed to avoid the premature con-
ergence into the local optima. Consequently, we propose two
dditional variants of the cGABV and cGABVE, ‘Var1’ and ‘Var2’,
hich represent the cGABV and cGABVE with entropy-driven
arameter control, respectively.

. Numerical studies

In this section, to evaluate the performance of the proposed
GAs, we have numerical studies with various test functions which
eal not only with the problems involving the BBs, but also with
he real-valued problems with more than one local optimum point.
he four proposed cGAs, cGABV, cGABVE, Var1, and Var2, are
ompared with the original cGAs, pe-cGA, and ne-cGA for each
roblems under the same conditions. The fitness function val-
es and the number of function evaluations averagely obtained
ver 50 independent runs are taken as performance measures
ccording to the population size as in [1]. All the problems have
een widely used for evaluating the performance of optimization
lgorithms. The brief descriptions of all the test functions can be
ffered from the original references [9,22]. Table 1 presents the test
unctions.

.1. Performance criteria and experimental conditions

For investigating the performances, fitness function error val-
es, the number of successful runs, and the number of function
valuations for successful runs are considered as the criteria of

quality of solutions’ and ‘convergence speed’, respectively. Mean
nd standard deviation of fitness function error values are calcu-
ated from the fitness function error values of the winner individual
n population at the last generation according to various popula-
ion sizes. Generally speaking, the time required to evaluate the
tness function occupies a major portion of the total time of a gen-
ration in practical real world problems. Therefore, the number of
unction evaluations is considered as a measure for evaluating the
onvergence property. Genetic diversity is also investigated in each
ndependent run by calculating entropy as in Eq. (7). Therefore,
hree features are mainly considered for evaluating the algorithms
s follows:
. Fitness function error values versus the population size: The fit-
ness function error values (f(x) − f(x∗)) for each algorithm are
averagely reported from 50 independent runs. As the fitness
function error values get smaller, it indicates that the quality
of solutions becomes higher. Therefore, this feature is consid-
f7(x) = −a · m + e
−b· i=1 i

m − e
i=1

i

m + a + e1

ered as a criterion for quality of solutions. Termination condition
for calculating the fitness function error values is the maximum
number of function evaluations.

2. Number of successful runs: A successful run indicates the run dur-
ing which the algorithm achieves the fixed accuracy level within
the maximum number of fitness evaluations. In other words,
according to the population size, this number means how often
the algorithm succeeds in finding the globally optimal solution
with overcoming the local optima problem. Therefore, this fea-
ture is also considered as the measure to evaluate quality of
solutions. The number of successful runs is counted among 50
independent runs.

3. Number of function evaluations versus the population size: The
number of function evaluations needed in each run to achieve
the corresponding fixed accuracy level is recorded. The maxi-
mum number of function evaluations applies. In the previous
works, the convergence speed is commonly related to how fast
the probabilities of the PV or BV are converged to 0 or 1. However,
even if the probabilities of the PV or BV are quickly converged, the
cGAs are useless if the cGAs just provide not the global optimum
solution but the local optimum solution. Therefore, we consider
the convergence speed meaningfully, only if the cGAs achieve
the successful run in this paper.

Table 2 shows experimental conditions used to evaluate the con-
ventional cGAs and the proposed cGAs, according to each problem.
For the numerical studies, we define � as 0.1N suggested from [9]
and � as 10 from experience. For Var1 and Var2, �1 is also initialized
as 10. After the experimental results are reported, we will discuss
the effect of � in the last subsection.

4.2. Results for the low-BBs problems

A 100-bit one max problem and a minimum deceptive prob-
lem (MDP) [9,23] are considered as representative test problems
involving the lower-order BBs. Tables 3 and 4 show the results of
the cGAs for the OneMax problem (f1). Table 3 shows the mean
and standard deviation of the fitness function error values obtained
from the winner individual of the last generation in 50 indepen-
dent runs during Nmax. As the mean value is smaller, it is likely
that the solutions are closer to the optimal solution. Table 4 shows
the number of function evaluations taken for the fitness function
error value of elite to achieve the given accuracy level as well

as the number of successful runs. Accordingly, the larger number
of successful runs indicates that quality of solutions is higher. As
mentioned previously, the number of function evaluations aver-
agely used for successful runs of each cGA is considered as the
convergence speed in this paper. As shown in Table 4, Var1 gen-
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Table 2
Experimental conditions.

Test problems Experimental conditions a Properties a

f∗ [xmin
i

, xmax
i

] L(m) Nmax Pm Pg Max/min

f1 1E−6 · 100 (100) 4000 100 10 Maximization
f2 1E−6 · 20 (10) 4000 200 20 Minimization
f3 1E−6 · 30 (10) 100000 3000 300 Minimization
f4 1E−6 [−5.12,5.12] 60 (3) 10000 200 20 Minimization
f5 1E−2 [−32.767,32.768] 40 (2) 10000 100 10 Minimization
f6 1E−6 [−100.0,100.0] 40 (2) 30000 300 30 Minimization
f7 1E−2 [−32.767,32.768] 100 (5) 40000 300 30 Minimization

a f∗: fixed accuracy level for each function, [xmin
i

, xmax
i

]: range of each variable, L: chromosome’s length, m: number of variables, Nmax: maximum number of function
evaluations, Pm: maximum population size, Pg: Gap between population sizes.

Table 3
Results for f1. Mean and standard deviation of the fitness error values are reported according to the population size.

Pop. size Org. cGA pe-cGA ne-cGA cGABV cGABVE Var1 Var2

10 13.18 2.14 24.62 3.52 35.4 2.66 2.48 1.25 11.86 2.46 0.2 0.45 0 0.00
20 3.64 1.61 20.08 3.22 25.84 2.51 0.54 0.85 11.06 2.35 1.68 1.12 0 0.00
30 1.22 1.10 17.16 3.18 23.34 3.48 0.12 0.32 9.98 2.63 1.02 1.10 0 0.00
40 0.28 0.49 17.76 2.78 21.46 3.32 0.04 0.20 9.94 2.12 0.84 0.90 0 0.00
50 0.02 0.14 15.8 2.76 18.64 3.20 0 0.00 8.98 2.15 0.8 0.98 0 0.00
60 0.04 0.20 13.04 2.76 17.82 2.74 0 0.00 9.76 2.61 0.78 1.03 0.02 0.14

0
0
0
0

e
E
p
g
a
e
z
c
a
i
t
o

T
R
‘

70 0 0.00 13.22 2.82 16.78 3.47
80 0 0.00 11.9 2.50 15.34 3.36
90 0 0.00 11.5 2.71 14.08 2.70

100 0 0.00 11.02 2.46 14.44 3.48

rally outperforms the other cGAs regardless of a population size.
specially, Var1 with the population size of 40 provides the best
erformance in terms of quality of solutions as well as the conver-
ence speed for the successful runs. However, since Var1 throws
way the elite at each generation, the average value of the fitness
rror values of Var1 at the last generation are not converged to
ero in spite of a one-hundred percent success. In other words, the

GAs without the elitism is likely to keep doing the exploitation
nd exploration if the probability for each gene is not converged
nto 0 or 1, although the global optimal solution is appeared. In
he population size of more than 70, the original cGA also gives a
ne-hundred percent success with the relatively small number of

able 4
esults for f1. The number of successful runs and the average of the number of function e

–’ represents that the corresponding algorithm fails to obtain the global optimum.

Pop. size Org. cGA pe-cGA ne-cGA

10 – – –
– – –

20 – – –
– – –

30 14 – –
923.2857 – –

40 37 – –
940.7027 – –

50 49 – –
1132.49 – –

60 48 – –
1344.167 – –

70 50 – –
1520.24 – –

80 50 – –
1710.76 – –

90 50 – –
1891.68 – –

100 50 – –
2101.68 – –
0.00 8.56 2.08 0.88 1.05 0.02 0.14
0.00 9.28 2.23 0.28 0.60 0.02 0.14
0.00 8.64 2.68 0 0.00 0.02 0.14
0.00 8.52 2.44 0 0.00 0.02 0.14

function evaluation. On the other hand, the cGAs combined with
the elitism such as pe-cGA, ne-cGA, and cGABVE give no success-
ful run. It is shown that the elitism is likely to give the negative
affects due to the higher selection pressure as cGAs are applied to
the OneMax problem. Var2 overcomes the locally optimized prob-
lem caused by the elitism with adjusting � according to the genetic
diversity, compared with the other cGAs with elitism. However,

Var2 records one failure for each in the population size of more
than 60. Besides, Var2 is relatively slower than the original cGA,
cGABV, and Var1 to achieve the successful runs. Fig. 6 represents
the change of the degree of diversity versus the number of function
evaluations on the OneMax problem with the population size of 10.

valuations called for successful runs are reported according to the population size.

cGABV cGABVE Var1 Var2

1 – 50 50
638 – 1252.56 1422.74

34 – 50 50
744.5882 – 1519.56 1667.82

45 – 50 50
909.9556 – 1452.4 1902.08

48 – 50 50
1096.917 – 1242.96 2033.9

50 – 50 50
1264.24 – 1273.48 2229.54

50 – 50 49
1429.56 – 1352.96 2409.367

50 – 50 49
1608.32 – 1538.92 2566.347

50 – 50 49
1776.68 – 1747.68 2692.347

50 – 50 49
2006.64 – 1919.04 2875.837

50 – 50 49
2193.48 – 2111.88 3048.041



3392 J.-Y. Lee et al. / Applied Soft Compu

F
e
a

F
(
t
U
c
d
o
c
d
u
i
t
o
a
c
o
d
l
d
p
F
c
s

{

F
p

ig. 6. (Population size = 10) The degree of diversity versus number of function
valuations on the OneMax problem (f1). � = 0.1 and � = 10 are applied to the ne-cGA
nd the proposed cGAs, respectively.

ig. 6 shows the differences of the genetic diversity calculated by Eq.
7) among the conventional cGAs and the proposed cGAs. It is easy
o show that the diversity curve of pe-cGA decreases most rapidly.
nlike the conventional cGAs, the diversity curves of the proposed
GAs have many oscillations in the beginning of the evolution. The
iversity curves of Var1 and Var2 become similar with the curves
f the original cGA and pe-cGA, respectively, as evolution pro-
eeds. However, in the curves of Var1 and Var2, an increase of the
iversity occasionally occurs in the middle of evolutionary process
nlike in the original cGA and pe-cGA. These oscillations intuitively

ndicate the genetic diversity is maintained to attempt the exploita-
ion. As a result, diversity maintenance leads the algorithms to
vercome the local optima problems (i.e., premature convergence)
nd to find the global optimal solution. On the other hand, in the
onventional cGAs, diversity curves consistently decrease without
scillations. Therefore, once individuals converge toward wrong
irections, it may be hard for these individuals to escape the

ocally optimal solutions and to continuously progress toward the

irection of global solutions. The decreasing rate is commonly pro-
ortional to the convergence speed and the selection pressure.
or these reasons, it is shown that the original cGA, the proposed
GABV, the proposed Var1 without the elitism have high quality of
olutions.

ig. 7. (Population size = 200) The degree of diversity versus number of function evaluat
roposed cGAs, respectively. (b) depicts the enlargement of (a)).
ting 11 (2011) 3385–3401

The next problem, called MDP (f2), is formed by concatenating
10 copies of minimum deceptive function [9,13] (see Table 2) as in
Eq. (8).

g2(x2i) =

⎧⎪⎨
⎪⎩

0.7, ifx2i = 00
0.4, ifx2i = 01
0.0, ifx2i = 10
1.0, ifx2i = 11

(8)

As shown in Tables 5 and 6, the cGAs combined with the elitism
have the poor performance in terms of quality of solutions as on
the OneMax problem. The cGAs with the elitism require the less
number of function evaluations for successful runs, whereas a suc-
cess rate of the cGAs with the elitism is lower than the other cGAs
without the elitism. In general, the proposed cGABV shows better
performance than the others and shows the best performance espe-
cially in the population size of 60. As the population size increases,
Var1 is also competitive with cGABV. In the diversity properties of
the proposed cGABV and cGABVE (see Fig. 7), there are some oscil-
lations as in the OneMax problem. The curves of the cGAs without
the elitism display the analogous trend after about 1000 function
evaluations. In the curve of Var2, it is shown that the diversity
increases due to the adjustment of � at about 1500 function evalu-
ations. Diversity maintenance caused by the adjustment of � leads
Var2 to achieve more successful runs than the other elitism-based
cGAs.

In summary, for solving the simple problems involving the lower
BBs, the proposed cGAs without the elitism generally have the best
performance in the aspect of quality of solutions. In other words,
it indicates that high selection pressure due to the elitism provides
the negative affect to solve f1 and f2. Var1 is superior among the
cGAs without the elitism. Var2 also tries to overcome the negative
affect due to the elitism by using the entropy-driven parame-
ter control scheme. Consequently, the proposed cGAs employing
the BV are competitive in compared with the conventional
cGAs.

4.3. Results for the high-BBs problems

We consider 3-bit trap problem (f3), one of the fully decep-
tive problems, as involving the high order BBs. In addition to the
equation of Table 1, the problems is formulated by
g3(x3i) = 0.35(2 − x3i), ifx3i ≤ 2
(x3i − 2), otherwise.

(9)

Tables 7 and 8 describe the results of the cGAs for f3. As in
the low-BBs problems, the cGAs without the elitism generally pro-

ions on the MDP problem (f2). � = 0.1 and � = 10 are applied to the ne-cGA and the
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Table 5
Results for f2. Mean and standard deviation of the fitness error values are reported according to the population size.

Pop. size Org. cGA pe-cGA ne-cGA cGABV cGABVE Var1 Var2

20 0.616 0.46 1.326 0.60 0.906 0.42 0.36 0.33 0.856 0.49 0.62 0.53 0.744 0.47
40 0.232 0.31 0.976 0.49 0.822 0.36 0.216 0.28 0.808 0.62 0.308 0.33 0.488 0.37
60 0.096 0.20 0.776 0.42 0.79 0.42 0.032 0.11 0.616 0.45 0.45 0.51 0.328 0.28
80 0.024 0.09 0.792 0.42 0.692 0.45 0.064 0.15 0.616 0.39 0.536 0.68 0.192 0.26

100 0.008 0.06 0.672 0.57 0.552 0.40 0.08 0.18 0.528 0.45 0.912 0.68 0.112 0.20
120 0.008 0.06 0.552 0.46 0.632 0.42 0 0.00 0.592 0.39 0.734 0.75 0.136 0.19
140 0 0.00 0.528 0.37 0.656 0.49 0 0.00 0.48 0.47 0.38 0.55 0.096 0.19
160 0.008 0.06 0.504 0.33 0.344 0.35 0 0.00 0.448 0.48 0.014 0.10 0.064 0.15
180 0 0.00 0.416 0.33 0.496 0.35 0 0.00 0.456 0.43 0 0.00 0.072 0.17
200 0 0.00 0.416 0.30 0.44 0.37 0 0.00 0.36 0.32 0 0.00 0.072 0.15

Table 6
Results for f2. The number of successful runs and the average of the number of function evaluations called for successful runs are reported according to the population size.

Pop. size Org. cGA pe-cGA ne-cGA cGABV cGABVE Var1 Var2

20 14 1 1 31 3 25 7
205.8571 77 56 351.5484 94.33333 387.36 354

40 39 2 2 36 7 47 11
386.4615 129.5 161.5 503.5556 186.7143 701.4894 1061.818

60 45 2 5 50 10 48 18
558.8 216.5 171 660.4 218 633.9167 886.7222

80 50 3 5 50 8 50 30
689.12 207.3333 241 817.64 352.875 733.88 1194.5

100 50 9 10 50 14 50 37
809.88 213.2222 281.5 1000.32 381.9286 861.52 1512.459

120 50 12 8 50 8 50 33
983.72 334.5 265.75 1068.4 401 1001.8 1182.667

140 50 11 11 50 15 50 39
1099.32 337.4545 324.2727 1198.96 398.4 1136.84 1496.333

160 50 10 19 50 17 50 42
1261.96 407.4 343.9474 1412.56 404.1176 1211.36 1420.905

180 50 14 10 50 16 50 42
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1369.48 467.6429 334.1

200 50 12 16
1561.84 476.0833 468.4375

ide better performance than the elitism-based cGAs. In particular,
he original cGA and Var1 show the best performance in terms of
uality of solutions and the number of function evaluations for a
uccessful run. The proposed cGABV also shows a one-hundred per-
ent success, but averagely requires the more number of function
valuations for a successful run in comparison with the original
GA and Var1. Accordingly, it indicates that the entropy-driven
arameter control of Var1 lead cGABV to achieve the optimal solu-
ion more quickly. As shown in Fig. 8, the diversity curves of the

roposed cGABV and cGABVE have many oscillation and slowly
ecreases as in the previous results. The curves of the cGAs with
litism and without elitism are, respectively, analogous to each
ther.

able 7
esults for f3. Mean and standard deviation of the fitness error values are reported accord

Pop. size Org. cGA pe-cGA ne-cGA cG

300 0.091 0.154 0.658 0.435 0.833 0.499 0.0
600 0.028 0.118 0.609 0.362 0.532 0.404 0.0
900 0.007 0.049 0.511 0.409 0.476 0.369 0

1200 0 0.000 0.399 0.321 0.378 0.349 0
1500 0 0.000 0.336 0.232 0.315 0.307 0
1800 0 0.000 0.224 0.278 0.301 0.262 0
2100 0 0.000 0.231 0.285 0.231 0.294 0
2400 0 0.000 0.189 0.245 0.224 0.260 0
2700 0 0.000 0.133 0.209 0.231 0.228 0
3000 0 0.000 0.175 0.201 0.203 0.253 0
1485.92 530.6875 1366.48 1636.905

50 17 50 41
1581.12 551.1765 1476.48 1670.683

4.4. Results for the continuous and unimodal problems

In this subsection, we deal with continuous, convex and uni-
modal problems, representatively De Jong’s function 1 problems
(f4). The results for this problems are reported in Tables 9 and 10.
The proposed cGAs generally shows better performance than the
conventional cGAs. The cGABVE and Var2 among the proposed
cGAs provide the best performance in particular in terms of the
convergence speed for successful runs as well as quality of solu-

tions. It is shown that the elitism leads the proposed cGAs to
improve the convergence speed without loss of quality of solu-
tions. The proposed cGABVE gives fast convergence property in
comparison with Var2, whereas a failure occurs sometimes in the

ing to the population size.

ABV cGABVE Var1 Var2

91 0.169 0.357 0.346 0.306 0.788 0.007 0.049
07 0.049 0.14 0.210 0.014 0.069 0 0.000

0.000 0.084 0.179 0 0.000 0.525 0.379
0.000 0.175 0.213 0 0.000 0.385 0.323
0.000 0.112 0.191 0 0.000 0.308 0.286
0.000 0.105 0.188 0 0.000 0.266 0.302
0.000 0.112 0.191 0 0.000 0.231 0.285
0.000 0.154 0.223 0 0.000 0.147 0.233
0.000 0.098 0.172 0 0.000 0.168 0.213
0.000 0.126 0.219 0 0.000 0.147 0.199
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Table 8
Results for f3. The number of successful runs and the average of the number of function evaluations called for successful runs are reported according to the population size.

Pop. size Org. cGA pe-cGA ne-cGA cGABV cGABVE Var1 Var2

300 50 7 5 50 17 50 49
4767.72 936.1429 751.4 8327.32 2782.824 4959.84 7655.388

600 50 5 10 50 33 50 50
8735.2 2259.2 1663.8 12990.04 4170.485 8566.36 9899

900 50 11 10 50 40 50 8
12344.04 2973.182 2048.6 17296 4964.075 12646.84 2312.5

1200 50 13 16 50 28 50 15
15984.72 3650.538 3442.25 20960.72 7060.643 16329.44 3079.733

1500 50 12 19 50 36 50 18
20556.96 4377.583 4337.158 24901.2 6635.694 20229.56 3993.167

1800 50 27 17 50 37 50 24
23977.4 5138.407 4902.882 27432.6 7835.757 24180.44 5256.417

2100 50 26 26 50 36 50 26
26982.8 5963.808 5277.962 31756.2 8561.028 27872.44 5984.923

2400 50 29 24 50 32 50 33
30925.84 6231.345 6354.708 35038.16 8650.938 31045.56 6126.818

2700 50 34 21 50 37 50 29
34306.44 6650.647 7833.476 37690.08 9362.622 34865.6 7714.69

3000 50 27 27 50 35 50 31
38840.92 7236.556 8415.519 40805.12 9809.343 38095.92 7962.452
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ig. 8. (Population size = 3000) The degree of diversity versus number of function e
he proposed cGAs, respectively. (b) illustrates the enlargement of (a).

roposed cGABVE. Fig. 9 illustrates the diversity curves of the
GAs.
.5. Results for the continuous and multimodal problems

Finally, we experiment the proposed cGAs with the continu-
us and multimodal functions in this subsection. All the functions

able 9
esults for f4. Mean and standard deviation of the fitness error values are reported accord

Pop. size Org. cGA pe-cGA ne-cGA cGAB

20 0.296 0.551 0.470 0.688 0.094 0.077 0.00
40 0.101 0.342 0.061 0.097 0.060 0.064 0.00
60 0.002 0.005 0.049 0.134 0.102 0.160 0.00
80 0.000 0.001 0.006 0.011 0.038 0.074 0.00

100 0.000 0.000 0.006 0.023 0.029 0.058 0.00
120 0.000 0.000 0.004 0.015 0.032 0.044 0.00
140 0.000 0.000 0.001 0.003 0.018 0.029 0.00
160 0.000 0.000 0.000 0.002 0.011 0.024 0.00
180 0.000 0.000 0.002 0.008 0.007 0.018 0.00
200 0.000 0.000 0.001 0.004 0.004 0.007 0.00
ions on the 3-bit trap problem (f3). � = 0.1 and � = 10 are applied to the ne-cGA and

used in this subsection have many local minima, namely highly
multimodal, so that the cGA is likely to converge to the wrong

directions.

Tables 11 and 12 shows the results for the Circle function prob-
lem (f5). As shown in Table 12, there are no cGAs with the success
rate of a one-hundred percent to achieve the fixed accuracy level.
The success rates of the proposed Var1 and Var2 are relatively

ing to the population size.

V cGABVE Var1 Var2

0 0.000 0.000 0.000 0.001 0.004 0.000 0.000
2 0.014 0.000 0.000 0.512 3.227 0.000 0.000
0 0.000 0.000 0.000 0.766 3.913 0.000 0.000
0 0.001 0.000 0.000 0.295 2.064 0.000 0.000
0 0.000 0.000 0.000 0.132 0.917 0.000 0.000
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 10
Results for f4. The number of successful runs and the average of the number of function evaluations called for successful runs are reported according to the population size.
‘–’ represents that the corresponding algorithm fails to obtain the global optimum.

Pop. size Org. cGA pe-cGA ne-cGA cGABV cGABVE Var1 Var2

20 1 – – 34 49 50 50
478 – – 1444.588 655 1925.84 753.36

40 8 – – 29 50 50 50
1211.75 – – 2141.862 899.2 3872.28 1169.14

60 16 – – 36 50 50 50
1964.5 – – 2816.889 1023.28 4340.92 1592.78

80 32 – – 37 50 50 50
2729.813 – – 3390.541 1202.42 4137.24 1908.86

100 44 – – 43 50 40 50
3298.045 – – 4018.977 1325.3 3512.25 2287.08

120 44 1 1 47 49 45 50
3910.273 1104 600 4585.021 1467.551 3913.022 2646.52

140 50 7 1 47 50 48 50
4543.68 3594.714 614 5064.511 1624.68 4670.75 3071.7

160 46 7 1 49 50 50 50
5096.565 4984.857 851 5774.245 1733.6 5072.96 3104.84

180 49 13 – 49 50 49 50
5875.184 3591.154 – 6342.245 1870.34 5794.122 3369.26

200 50 8 – 50 49 50 50
6578.12 1309 – 7072.28 1988.735 6480.6 3448.78
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ig. 9. (Population size = 200) The degree of diversity versus number of function e
e-cGA and the proposed cGAs, respectively. (b) illustrates the enlargement of (a).

igher than the others. In addition, Var2 averagely provides the
inimum fitness error value in comparison with the others as
hown in Table 11. The conventional pe-cGA and ne-cGA have no
uccessful runs in all the population sizes, since the premature con-
ergence tends to occur due to high selection pressure as shown in
ig. 10. On the other hand, the proposed cGABVE has a few success-

able 11
esults for f5. Mean and standard deviation of the fitness error values are reported accord

Pop. size Org. cGA pe-cGA ne-cGA cGAB

10 2.060 1.210 2.108 1.000 2.373 1.033 1.312
20 1.613 1.090 1.630 0.803 0.775 0.263 0.785
30 1.073 0.962 1.211 0.668 0.674 0.251 0.515
40 0.657 0.639 1.044 0.701 0.732 0.302 0.391
50 0.485 0.577 0.898 0.513 0.766 0.318 0.415
60 0.389 0.455 0.804 0.580 0.803 0.335 0.377
70 0.239 0.320 0.731 0.501 0.746 0.343 0.160
80 0.186 0.280 0.700 0.499 0.669 0.324 0.150
90 0.145 0.198 0.624 0.538 0.599 0.311 0.132

100 0.100 0.106 0.473 0.353 0.565 0.351 0.116
tions on the De Jong’s function 1 problem (f4). � = 0.1 and � = 10 are applied to the

ful runs in spite of the use of the elitism because of the diversity
maintenance due to the oscillations of the diversity change. As

shown in Fig. 10, the diversity curve shows the similar trend to
the curve for f4.

Tables 13 and 14 show the results for the Schaffer’s binary func-
tion problem (f6). As for the Circle function problem, there are no

ing to the population size.

V cGABVE Var1 Var2

0.904 1.073 0.935 1.216 1.017 1.033 1.057
0.686 0.748 0.622 1.059 0.880 0.347 0.419
0.510 0.441 0.391 0.677 0.812 0.316 0.416
0.398 0.366 0.418 0.631 1.094 0.198 0.330
0.414 0.265 0.262 0.473 0.848 0.146 0.277
0.394 0.221 0.228 0.712 1.098 0.136 0.236
0.155 0.269 0.381 1.019 1.594 0.097 0.151
0.168 0.165 0.140 0.295 0.418 0.063 0.075
0.152 0.261 0.414 0.192 0.350 0.049 0.039
0.128 0.159 0.174 0.157 0.326 0.061 0.064
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Table 12
Results for f5. The number of successful runs and the average of the number of function evaluations called for successful runs are reported according to the population size.
‘–’ represents that the corresponding algorithm fails to obtain the global optimum.

Pop. size Org. cGA pe-cGA ne-cGA cGABV cGABVE Var1 Var2

10 – – – – – 2 2
– – – – – 7795 507.5

20 – – – – – 3 1
– – – – – 3785.3333 641

30 – – – 1 – 1 4
– – – 2146 – 2322 2071.25

40 – – – 1 – 5 5
– – – 2154 – 5685.6 2264.2

50 – – – 3 1 4 1
– – – 2202 767 3962.5 9847

60 2 – – – 1 3 4
4189 – – – 1183 6404 2752.75

70 3 – – 2 3 8 7
3284.667 – – 3687 1112 5195 3742.8571

80 6 – – 3 1 4 4
3294 – – 3672.667 905 6075 5058

90 5 – – 4 3 3 7
3876.4 – – 4256 1445 3775.3333 5009.5714

100 3 – – 2 4 3 5
2965.333 – – 4853 1181.75 4593.3333 4345.2

Table 13
Results for f6. Mean and standard deviation of the fitness error values are reported according to the population size.

Pop. size Org. cGA pe-cGA ne-cGA cGABV cGABVE Var1 Var2

30 0.276 0.166 0.091 0.097 0.014 0.010 0.226 0.178 0.042 0.045 0.169 0.167 0.028 0.036
60 0.155 0.170 0.080 0.087 0.016 0.012 0.149 0.142 0.030 0.039 0.162 0.201 0.022 0.034
90 0.212 0.176 0.032 0.040 0.015 0.014 0.131 0.155 0.019 0.036 0.122 0.142 0.011 0.016

120 0.122 0.147 0.043 0.058 0.018 0.019 0.102 0.134 0.018 0.023 0.102 0.134 0.012 0.017
150 0.084 0.104 0.020 0.026 0.016 0.014 0.072 0.097 0.013 0.014 0.080 0.120 0.011 0.014
180 0.049 0.075 0.030 0.035 0.015 0.015 0.092 0.131 0.012 0.013 0.093 0.121 0.010 0.013
210 0.087 0.132 0.013 0.012 0.014 0.014 0.071 0.095 0.010 0.009 0.057 0.103 0.011 0.013
240 0.082 0.117 0.017 0.023 0.013 0.012 0.064 0.119 0.009 0.009 0.073 0.110 0.010 0.012
270 0.065 0.085 0.015 0.017 0.017 0.021 0.048 0.086 0.012 0.015 0.096 0.151 0.008 0.010
300 0.070 0.117 0.014 0.018 0.023 0.011 0.107 0.148 0.008 0.006 0.072 0.123 0.009 0.007

Table 14
Results for f6. The number of successful runs and the average of the number of function evaluations called for successful runs are reported according to the population size.
‘–’ represents that the corresponding algorithm fails to obtain the global optimum.

Pop. size Org. cGA pe-cGA ne-cGA cGABV cGABVE Var1 Var2

30 – – – 2 5 11 15
– – – 3551 882.4 4659.0909 1533.2

60 1 – – – 8 6 17
25936 – – – 920.125 9231 2089.8235

90 2 – – 5 12 7 13
8467 – – 7600 1371.583 15660.571 3050.4615

120 2 4 – 2 11 3 14
6087 14485.5 – 9017 1309.091 6904 2970.5714

150 – 1 – 5 8 1 13
– 953 – 12077.6 1638.75 7610 3534.3077

180 3 3 – 2 9 2 14
12012 16957.67 – 18683 1730.444 13469 4400.7143

210 1 6 1 1 12 4 13
22706 7953.667 1096 17780 1802.333 13135.5 4760.0769

240 5 3 – 7 14 2 11
18775.2 5646 – 18755.43 2174.286 16226 3418.0909

270 3 7 – 4 10 4 19
21984.67 7688.429 – 22408.5 2369 17208 4438.6842

300 5 6 2 3 10 2 11
23057.6 5767.667 1546.5 24009.33 2915.4 24530 3447.4545
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Table 15
Results for f7. Mean and standard deviation of the fitness error values are reported according to the population size.

Pop. size Org. cGA pe-cGA ne-cGA cGABV cGABVE Var1 Var2

30 3.933 2.702 4.735 2.332 9.090 2.121 2.038 1.261 1.065 1.373 2.298 2.737 1.366 1.285
60 2.842 2.439 4.880 2.161 7.836 2.224 1.847 1.404 0.579 1.030 1.947 3.490 0.887 1.244
90 1.309 1.304 3.333 1.788 6.765 1.934 1.741 1.344 0.718 1.161 1.699 3.466 0.557 1.062

120 0.895 1.189 3.177 1.538 6.209 2.271 1.061 1.227 0.661 1.130 0.923 1.114 0.495 0.992
150 0.698 1.789 2.749 1.611 4.949 2.111 0.744 1.205 0.732 1.176 0.465 0.813 0.148 0.551
180 0.367 0.837 2.264 1.243 4.740 2.033 0.589 1.028 0.628 1.056 0.408 0.901 0.124 0.494
210 0.049 0.324 1.828 1.312 3.977 1.583 0.421 0.915 0.362 0.856 0.318 0.757 0.058 0.394
240 0.254 0.703 1.542 1.228 3.444 1.646 0.127 0.503 0.405 0.897 0.110 0.440 0.001 0.000
270 0.095 0.456 1.909 1.236 3.505 1.631 0.338 0.808 0.455 0.956 0.002 0.001 0.174 0.589
300 0.056 0.328 1.719 1.157 3.052 1.635 0.141 0.552 0.324 0.861 0.239 0.667 0.260 0.708

Table 16
Results for f7. The number of successful runs and the average of the number of function evaluations called for successful runs are reported according to the population size.
‘–’ represents that the corresponding algorithm fails to obtain the global optimum.

Pop. size Org. cGA pe-cGA ne-cGA cGABV cGABVE Var1 Var2

30 – – – 11 31 14 23
– – – 5376.545 1711.839 5715 3769.7391

60 2 – – 16 37 25 33
16077 – – 7060.875 2273.459 9393.6 6097.8485

90 9 – – 18 36 30 39
12681.78 – – 9008.111 2978.278 14078.933 6872.5128

120 14 1 – 24 33 23 40
12470.43 39322 – 10278.42 3302.909 9669.7391 11244.95

150 34 – – 33 33 28 46
8825 – – 11882.85 3835.576 8703.8571 10547.674

180 41 2 – 35 34 37 47
10316.54 30319 – 13258.57 4120.618 10348.216 12434.936

210 47 3 – 39 38 41 49
11611.7 29466 – 14729.28 4447.026 11906.732 15349.224

240 43 1 – 47 36 47 50
13326.33 27181 – 16106.72 4862.333 13092.085 13210.7

270 48 1 – 42 31 50 46

c
b
t
c
a

T
R
W
v

14472.46 2517 –

300 48 – –
16128.42 – –
GAs with a one-hundred percent success. The proposed cGAs com-
ined with the elitism, cGABVE and Var2, are relatively superior to
he others as shown in Table 14. In general, Var2 shows the most
ompetitive performance in terms of the number of successful runs
nd mean of the fitness error values. As shown in Table 13, ne-cGA

able 17
esults of Wilcoxon rank-sum tests with the solutions obtained with ten kinds of populat
ilcoxon rank-sum test is performed between each algorithm and the target algorithm

ice versa.

Org. cGA pe-cGA ne-cGA

f1 Mean/stdv 1.838/4.047 15.610/5.062 20.314/6.972
p-Value/H 0/1 0/1 0/1

f2 Mean/stdv 0.099/0.268 0.696/0.517 0.633/0.439
p-Value/H 0.586/0 0/1 0/1

f3 Mean/stdv 0.013/0.069 0.347/0.357 0.372/0.381
p-Value/H 0.460/0 0/1 0/1

f4 Mean/stdv 0.040/0.224 0.060/0.263 0.039/0.077
p-Value/H 0/1 0/1 0/1

f5 Mean/stdv 0.695/0.943 1.022/0.800 0.870/0.673
p-Value/H 0/1 0/1 0/1

f6 Mean/stdv 0.120/0.150 0.035/0.057 0.015/0.015
p-Value/H 0/1 0/1 0/1

f7 Mean/stdv 1.050/1.923 2.814/1.981 5.357/2.743
p-Value/H 0/1 0/1 0/1
17476.76 4836.194 14434.36 13600.435

47 30 44 39
18905.96 5463.5 15736.818 13259
and cGABVE generally have better performance than the other con-
ventional cGAs. As shown in Fig. 11, the diversity curve shows the
similar trend to the curves for f4 and f5.

Tables 15 and 16 show the results for the Ackley’s path function
problem (f7). Var1 with the population size of 270 and Var2 with

ion sizes for each problem. ‘–’ represents the target for the Wilcoxon rank-sum test.
. H = 1 indicates a rejection of the null hypothesis at the 1% significance level, and

cGABV cGABVE Var1 Var2

0.318/0.889 9.658/2.610 0.648/0.975 0.010/0.100
0/1 0/1 0/1 –

0.075/0.196 0.576/0.478 0.395/0.581 0.230/0.340
– 0/1 0/1 0/1

0.001/0.062 0.146/0.231 0.032/0.266 0.218/0.297
– 0/1 0.158/0 0/1

0.000/0.005 0.000/0.000 0.171/1.776 0/0
0/1 0.025/0 0/1 –

0.435/0.582 0.397/0.535 0.643/0.989 0.245/0.503
0/1 0/1 0/1 –

0.106/0.141 0.017/0.027 0.103/0.145 0.013/0.021
0/1 0.008/1 0/1 –

0.905/1.274 0.593/1.083 0.841/2.049 0.407/0.926
0/1 0/1 0/1 –
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ig. 10. (Population size = 100) The degree of diversity versus number of function
valuations on the Circle function problem (f5). � = 0.1 and � = 10 are applied to the
e-cGA and the proposed cGAs, respectively.
he population size of 240 provide a one-hundred percent success.
he latter has faster convergence property and smaller mean value
han the former. Fig. 12 illustrates the diversity curves of the cGAs

ig. 11. (Population size = 300) The degree of diversity versus number of function
valuations on the Schaffer’s binary function problem (f6). � = 0.1 and � = 10 are
pplied to the ne-cGA and the proposed cGAs, respectively.

ig. 12. (Population size = 300) The degree of diversity versus number of function evaluat
e-cGA and the proposed cGAs, respectively. (b) illustrates the enlargement of (a).
ting 11 (2011) 3385–3401

according to the number of function evaluations. This figure also
shows the similar trend to the curves for f4 and f5. However, it
is shown that ne-cGA attempts the exploitation as the diversity
increases during evolution. Since the elite individual is removed
at this moment in ne-cGA, the poor performance is obtained for
f7 in which many local optima exist. For this reason, � of ne-cGA
should be tuned for f7 additionally. For investigating the effect of
�, the additional experiments with f7 are performed in the next
subsection with changing �.

4.6. Summary of the results

As shown in the results, the proposed cGAs outperform the
conventional cGAs in general. To verify the results, the hypothe-
sis tests are carried out with the fitness function error values of
all the solutions obtained from each cGA on each problem. Since
solutions of each cGA being compared follow a non-normal distri-
bution, the Wilcoxon rank-sum test, which is one of the best-known
non-parametric significance tests, is utilized. This test is a non-
parametric test for assessing whether two independent samples of
observations come from the same distribution [24]. This test is vir-
tually identical to performing an ordinary parametric two-sample
t-test on the data after ranking over the combined samples. ˛ for
tests is 0.01. Table 17 shows the results of the Wilcoxon rank-sum
tests. Consequently, Var2 is superior to the others in the prob-
lems except f2 and f3. For f2 and f3, the original cGA and cGABV
are superior to the others.

4.7. Effects of �

As mentioned above, we investigate the effects of � through the
additional experiments in this subsection. The additional experi-
ments are performed for the Ackley’s path function problem (f7).

4.7.1. Changes in the diversity
Firstly, Fig. 13 shows that the diversity curve is changed accord-

ing to changing �. As mentioned previously, if � is increasing, the
diversity curves are more steeply decreasing with less oscillations.
In other words, it means that the proposed cGAs have the similar
behavior of the original cGA or pe-cGA in terms of genetic diversity.
As mentioned previously, the diversity property of the proposed

cGA is affected by the variation of � related with the change of
the variance determining the shape of a belief function (see Fig. 4).
Accordingly, it describes that, since � directly affects the diversity
of the cGAs, a relevant � is required for defining the belief function
of the proposed cGAs in order to control the algorithm according to

ions on the Ackley’s path function problem (f7). � = 0.1 and � = 10 are applied to the
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ig. 13. The degree of diversity versus number of function evaluations on the Ackley
nd (b) cGABVE.

certain problem. It also indicate that � of the proposed cGAs using
he BV indirectly affect the algorithm by controlling the diversity of
ach generation. For the Ackley’s path function problem (f7), when
= 10 or 5, diversity curves are too slowly decreasing as shown in

ig. 13 so that it is likely to fail to find the optimal solution in the
earch space because of the complexity of the problem.
.7.2. Changes in the performance
Fig. 14 describes the performances of the proposed cGAs accord-

ng to � for the Ackley’s path function problem (f7). Here, Figs.
nd show the results of the proposed cGABV. Figs. and show the

ig. 14. The performances of the proposed cGAs on the Ackley’s Path function problem (
c)) Fitness function values versus the population size. ((b) and (d)) Number of function e
h function problem (f7) according to the � in case of population size 300: (a) cGABV

results of the proposed cGABVE. In case of the proposed cGABV, if
� are decreasing as 5, the proposed cGABV produces poor quality
of solutions. Furthermore, as mentioned above, the diversity curve
is too slowly converging as shown in Fig. 13 so that the property
of convergence also becomes quite worse. On the other hand, if �
is increasing, the proposed cGABV becomes similar to the original

cGA, because the effect caused by the uncertainty of the BV is early
reduced as in the original cGA. However, when the population size
is less than about 100, the proposed cGABV is superior to the any
other cGAs. Unlike the proposed cGABV, if � are decreasing in the
proposed cGABVE, the fast convergence is obtained with loss of

f7). ((a) and (b)) The proposed cGABV. ((c) and (d)) The proposed cGABVE. ((a) and
valuations versus the population size.
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Fig. 15. Change of � in the proposed variants of cGAs for the Ackley’s Pa

uality of solutions. On the other hand, if � is increasing, the pro-
osed cGABVE becomes similar to the pe-cGA, because the effect
aused by the uncertainty of the BV is early reduced as in the pro-
osed cGABV. If the � is predefined as about 50 or 70, the proposed
GAs may have the best and the most well-balanced performance,
ompared with the other cGAs, because of the highest quality of
olutions with the minimum loss of the convergence speed.

.7.3. Changes of � in Var1 and Var2
As shown in the results, the entropy-driven parameter control

cheme for � leads the proposed cGAs to overcome the negative
ffects due to the elitism and to improve the convergence speed. For
he Ackley’s path function problem (f7), Fig. 15 shows the change of
in Var1 and Var2 with the population size of 300. At the beginning
f evolution, � of both the proposed variants increases exponen-
ially. The difference between Var1 and Var2 appears after about
000 function evaluations. � of Var1 is maintained as the large
alue, whereas � of Var2 starts to decrease.

. Conclusion

This paper presents the combination of the probability distribu-
ion with the PV of the cGA. We focus on the diversity maintenance
o improve the original cGA using PVs. The BV is newly proposed
nstead of the PV to control generic diversity and we also propose
he cGABV and cGABVE using the BV. For evaluating the genetic
iversity, the concept of entropy is employed. However, the addi-
ional control parameter � should be appropriately predefined by
sers according to the given problems for the proposed cGABV
nd cGABVE. In order to avoid the difficulty of parameter tuning,
e additionally propose two variants, Var1 and Var2, employ-

ng the entropy-driven control scheme for cGABV and cGABVE,
espectively. The experimental results show that the proposed
GAs commonly has the highest quality of solutions regardless of
he benchmark problems. For the problems involving the building
locks, Var1 generally give the best performance in comparison
ith the others. For the continuous problems, Var2 provides the

etter performance than the other cGAs in terms of the quality of
olutions and the convergence property for the successful runs. To
erify the experimental results, the Wilcoxon rank-sum tests are
erformed with the fitness function error values of all the solu-

ions obtained from each cGA on each problem. From the results of
he hypothesis tests, it is shown that Var2 is the most competitive
n except for f2 and f3 in comparison with the other cGAs. For f2
nd f3, the proposed cGABV and original cGA are superior to the
thers. The additional experiment is carried out for investigating

[

[

ction problem (f7): (a) change of � and (b) change of � at the beginning.

the effects of � and these results show that � can directly control
the diversity maintenance. In addition, the change of � in Var1 and
Var2 employing the entropy-driven parameter control scheme is
also investigated.
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